Skip to main content

Pathogenic Mediators of Vessel Sclerosis: Regulation of Vascular Smooth Muscle Cell Proliferation by Growth Factors, the Extracellular Matrix, and the Endothelium

  • Chapter
Vascular Complications in Human Disease

Abstract

Arterial sclerosis is by definition an expansion of its connective tissue component. Normal arterial connective tissue comprises multiple layers of vascular smooth muscle cells (VSMCs), each surrounded by a basement membrane (BM) composed of type IV collagen, laminin, and heparan sulfate proteoglycans (Figure 7-1A). An interstitial extracellular matrix (ECM), consisting of fibrillar types I and III collagen, glycoproteins such as fibronectin, and dermatan sulfate proteoglycans such as versican, further surrounds the VSMCs.1 Separated from the media by the internal elastic lamina is the intima, often a simple monolayer of endothelial cells and their basement membrane. During atherosclerosis (Figure 7-1B) VSMCs and newly formed ECM thicken the intima together with inflammatory cells and sometimes microvascular endothelial cells (not shown). VSMCs predominate in the intimal thickenings in pulmonary hypertension,2 in veins used as arteriovenous fistulas,3 in coronary or peripheral vein grafts 4,5 and after balloon angioplasty with or without stent implantation.6,7 Although adventitial fibroblasts8 and various types of progenitor cells9 could contribute, most intimal VSMCs probably originate from the media. In the rat carotid artery after balloon injury, VSMCs can be observed crossing the internal elastic lamina.10,11 Furthermore, wasting of the media is often observed at the base of spontaneous human and experimental animal atherosclerotic plaques, consistent with the idea that fibrous cap VSMCs derive ultimately from medial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wight TN, Merrilees MJ. Proteoglycans in atherosclerosis and restenosis: key roles for versican. Circ Res 2004;94:1158–1167.

    Article  PubMed  CAS  Google Scholar 

  2. Weiser MCM, Majack RA, Tucker A, Orton EC. Static tension is associated with increased smooth muscle cell DNA synthesis in rat pulmonary arteries. Am J Physiol 1995;268:H1133–H1138.

    PubMed  CAS  Google Scholar 

  3. Hofstra L, Tordoir JH, Kitslaar PJ, Hoeks AP, Daemen MJ. Enhanced cellular proliferation in intact stenotic lesions derived from human arteriovenous fistulas and peripheral bypass grafts. Does it correlate with flow parameters? Circulation 1996;94:1283–1290.

    PubMed  CAS  Google Scholar 

  4. Dilley RJ, McGeachie JK, Prendergast FJ. A review of the histological changes in vein to artery grafts, with particular reference to intimal hyperplasia. Arch Surg 1988;123:691–696.

    PubMed  CAS  Google Scholar 

  5. Angelini GD, Newby AC. The future of saphenous vein as a coronary artery bypass conduit. Eur Heart J 1989;10:273–280.

    PubMed  CAS  Google Scholar 

  6. Bennett MR. In-stent stenosis: Pathology and implications for the development of drug-eluting stents. Heart 2003;89:218–224.

    Article  PubMed  Google Scholar 

  7. Bennett MR, O’Sullivan M. Mechanisms of angioplasty and stent restenosis: implications for design of rational therapy. Pharmacol Therapeut 2001;91:149–166.

    Article  CAS  Google Scholar 

  8. Zalewski A, Shi Y, Johnson AG. Diverse origin of intimal cells: smooth muscle cells, myofibroblasts, fibroblasts, and beyond? Circ Res 2002;91:652–655.

    Article  PubMed  CAS  Google Scholar 

  9. Hu Y, Zhang Z, Torsney E, et al. Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice. J Clin Invest 2004;113:1258–1265.

    PubMed  CAS  Google Scholar 

  10. Clowes AW, Reidy MA, Clowes MM. Kinetics of cellular proliferation after arterial injury. Smooth muscle growth in the absence of endothelium. Lab Invest 1983;49:327–333.

    PubMed  CAS  Google Scholar 

  11. Thyberg J, Blomgren K, Hedin U, Dryjski M. Phenotypic modulation of smooth-muscle cells during the formation of neointimal thickenings in the rat carotid-artery after balloon injury—an electron-microscopic and stereological study. Cell Tissue Res 1995;281:421–433.

    Article  PubMed  CAS  Google Scholar 

  12. O’Brien ER, Alpers CE, Stewart DK, et al. Proliferation in primary and restenotic coronary atherectomy tissue: implications for antiproliferative therapy. Circ Res 1993;73:223–231.

    PubMed  CAS  Google Scholar 

  13. Orekhov AN, Andreeva ER, Krushinski AV, et al. Intimal cells and atherosclerosis: Relationship between the number of intimal cells and major manifestations of atherosclerosis in the human heart. Am J Pathol 1986;125:402–415.

    PubMed  CAS  Google Scholar 

  14. Virmani R, Kolodgie FD, Farb A, Lafont A. Drug eluting stents: are human and animal studies comparable? Heart 2003;89:133–138.

    Article  PubMed  CAS  Google Scholar 

  15. Ma ZD, Qin HW, Benveniste EN. Transcriptional suppression of matrix metalloproteinase-9 gene expression by IFN-gamma and IFN-beta: critical role of STAT-1 alpha. J Immunol 2001;167:5150–5159.

    PubMed  CAS  Google Scholar 

  16. Morice MC, Serruys PW, Sousa JE, et al. A randomized comparison of a sirolimuseluting stent with a standard stent for coronary revascularization. N Engl J Med 2002;346:1773–1780.

    Article  PubMed  CAS  Google Scholar 

  17. Park SJ, Shim WH, Ho DS, et al. A paclitaxel-eluting stent for the prevention of coronary restenosis. N Engl J Med 2003;348:1537–1545.

    Article  PubMed  CAS  Google Scholar 

  18. Moses JW, Leon MB, Popma JJ, et al. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N Engl J Med 2003;349:1315–1323.

    Article  PubMed  CAS  Google Scholar 

  19. Fajadet J, Morice MC, Bode C, et al. Maintenance of long-term clinical benefit with sirolimus-eluting coronary stents: three-year results of the RAVEL trial. Circulation 2005;111:1040–1044.

    Article  PubMed  CAS  Google Scholar 

  20. Angelini GD, Bryan AJ, Williams HMJ, et al. Timecourse of medial and intimal thickening in pig arteriovenous bypass grafts: relationship to endothelial injury and cholesterol accumulation. J Thorac Cardiovasc Surg 1992;103:1093–1103.

    PubMed  CAS  Google Scholar 

  21. Zou Y, Dietrich H, Hu Y, Metzler B, Wick G, Xu Q. Mouse model of vein bypass graft arteriosclerosis. Am J Pathol 1998;153:1301–1310.

    PubMed  CAS  Google Scholar 

  22. Mann MJ, Gibbons GH, Kernoff RS, et al. Genetic engineering of vein grafts resistant to atherosclerosis. Proc Natl Acad Sci USA 1995;92:4502–4506.

    Article  PubMed  CAS  Google Scholar 

  23. Ehsan A, Mann MJ, Dell’Acqua G, Dzau VJ. Long-term stabilization of vein graft wall architecture and prolonged resistance to experimental atherosclerosis after E2F decoy oligonucleotide gene therapy. J Thorac Cardiovasc Surg 2001;121:714–722.

    Article  PubMed  CAS  Google Scholar 

  24. Mann MJ, Whittemorre AD, Donaldson MC, et al. Ex-vivo gene therapy of human vascular bypass grafts with E2F decoy; the prevent single centre randomised controlled trial. Lancet 1999;354:1493–1498.

    Article  PubMed  CAS  Google Scholar 

  25. Koyama H, Raines EW, Bornfeldt KE, Roberts JM, Ross R. Fibrillar collagen inhibits arterial smooth muscle proliferation through regulation of Cdk2 inhibitors. Cell 1996;87:1069–1078.

    Article  PubMed  CAS  Google Scholar 

  26. Izzard TD, Taylor C, Birkett SD, Jackson CL, Newby AC. Mechanisms underlying maintenance of smooth muscle cell quiescence in rat aorta: role of the cyclin dependent kinases and their inhibitors. Cardiovasc Res 2002;53:242–252.

    Article  PubMed  CAS  Google Scholar 

  27. Hulleman E, Boonstra J. Regulation of G1 phase progression by growth factors and the extracellular matrix. Cell Mol Life Sci 2001;58:80–93.

    Article  PubMed  CAS  Google Scholar 

  28. Tanner FC, Yang Z-Y, Duckers E, Gordon D, Nabel GJ, Nabel EG. Expression of cyclin-dependent kinase inhibitors in vascular disease. Circ Res 1998;82:396–403.

    PubMed  CAS  Google Scholar 

  29. Tanner FC, Boehm M, Akyurek LM, et al. Differential effects of the cyclin-dependent kinase inhibitors p27kip1, p21cip1 and p16Ink4 on vascular smooth muscle cell proliferation. Circulation 2000;101:2022–2025.

    PubMed  CAS  Google Scholar 

  30. Newby AC, George SJ. Proposed roles for growth factors in mediating smooth muscle proliferation in vascular pathologies. Cardiovasc Res 1993;27:1173–1183.

    Article  PubMed  CAS  Google Scholar 

  31. Reidy MA. Factors Controlling Smooth-Muscle Cell-Proliferation. Arch Pathol Lab Med 1992;116:1276–1280.

    PubMed  CAS  Google Scholar 

  32. Jung F, Haendeler J, Goebel C, Zeiher AM, Dimmeler S. Growth factor-induced phosphoinositide 3-OH kinase/Akt phosphorylation in smooth muscle cells: induction of cell proliferation and inhibition of cell death. Cardiovasc Res 2000;48:148–157.

    Article  PubMed  CAS  Google Scholar 

  33. Higashiyama S, Abraham JA, Klagsbrun M. Heparin-binding EGF-like growth factor synthesis by smooth muscle cells. Horm Res 1994;42:9–13.

    Article  PubMed  CAS  Google Scholar 

  34. Weissberg PL, Witchell C, Davenport AP, Hesketh TR, Metcalfe JC. The endothelin peptides ET-1, ET-2, ET-3 and sarafotoxin S6b are co-mitogenic with platelet-derived growth factor for vascular smooth muscle cells. Atherosclerosis 1990;85:257–262.

    Article  PubMed  CAS  Google Scholar 

  35. Daemen MJAP, Lombardi DM, Bosman FT, Schwartz SM. Angiotensin II induces smooth muscle cell proliferation in the normal and injured rat arterial wall. Circ Res 1991;68:450–456.

    PubMed  CAS  Google Scholar 

  36. Dzau VJ, Gibbons GH, Pratt RE. Molecular mechanisms of vascular reninangiotensin system in myointimal hyperplasia. Hypertension 1991;18(suppl 2):II-100–II-105.

    CAS  Google Scholar 

  37. Eguchi S, Dempsey PJ, Frank GD, Motley ED, Inagami T. Activation of MAP kinases by angiotensin II in vascular smooth muscle cells: metalloprotease-dependent EGF receptor activation is required for activation of ERK and p38 MAP kinase, but not for JNK. J Biol Chem 2000;276:7957–7962.

    Article  PubMed  Google Scholar 

  38. Clowes AW, Clowes MM. Kinetics of cellular proliferation after arterial injury. IV. Heparin inhibits rat smooth muscle mitogenesis and migration. Circ Res 1986;58:839–845.

    PubMed  CAS  Google Scholar 

  39. Segev A, Nili N, Strauss BH. The role of perlecan in arterial injury and angiogenesis. Cardiovasc Res 2004;63:603–610.

    Article  PubMed  CAS  Google Scholar 

  40. Hedin U, Roy J, Tran PK. Control of smooth muscle cell proliferation in vascular disease. Curr Opin Lipidol 2004;15:559–565.

    Article  PubMed  CAS  Google Scholar 

  41. Assoian RK, Marcantonio EE. The extracellular matrix as a cell cycle control element in atherosclerosis and restenosis. J Clin Invest 1996;98:2436–2439.

    Article  PubMed  CAS  Google Scholar 

  42. Morla A, Mogford J. Control of smooth muscle cell proliferation and phenotype by integrin signaling through focal adhesion kinase. Biochem Biophys Res Comm 2000;272:298–302.

    Article  PubMed  CAS  Google Scholar 

  43. Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 2004;84:767–801.

    Article  PubMed  CAS  Google Scholar 

  44. Hedin U, Bottger BA, Forsberg E, Johansson S, Thyberg J. Diverse effects of fibronectin and laminin on phenotypic properties of cultured arterial smooth muscle cells. J Cell Biol 1988;107:307–319.

    Article  PubMed  CAS  Google Scholar 

  45. Garl P, Wenzlau J, Walker H, Whitelock J, Costell M, Weiser-Evans M. Perlecan-induced suppression of smooth muscle cell proliferation is mediated through increased activity of the tumor suppressor PTEN. Circ Res 2004;94:175–183.

    Article  PubMed  CAS  Google Scholar 

  46. Walker H, Whitelock J, Gark P, Nemenoff R, Stenmak K, Weiser-Evans M. Perlecan up-regulation of FRNK suppresses smooth muscle cell proliferation via inhibition of FAK signalling. Mol Biol Cell 2003;14:1941–1952.

    Article  PubMed  CAS  Google Scholar 

  47. Jeremy JY, Rowe D, Emsley AM, Newby AC. Nitric oxide and the proliferation of vascular smooth muscle cells. Cardiovasc Res 1999;43:580–594.

    Article  PubMed  CAS  Google Scholar 

  48. Bond M, Sala-Newby GB, Newby AC. Focal adhesion kinase (FAK)-dependent regulation S-phase kinase associated protein-2 (Skp-2) stability: a novel mechanism regulating smooth muscle cell proliferation. J Biol Chem 2004;279:37304–37310.

    Article  PubMed  CAS  Google Scholar 

  49. Carrano A, Eytan E, Hershko A, Pagano M. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol 1999;1:193–199.

    Article  PubMed  CAS  Google Scholar 

  50. Sutterluty H, Chatelain E, Marti A, et al. p45skp2 promotes p27kip1 degradation and induces S phase in quiescent cells. Nat Cell Biol 1999;1:207–214.

    Article  PubMed  CAS  Google Scholar 

  51. Wu Y-J, Bond M, Sala-Newby GB, Newby AC. Altered S-phase kinase-associated protein-2 levels are a major mediator of cyclic nucleotide-induced inhibition of vascular smooth muscle cell proliferation. Circ Res 2006;98:1141–1150.

    Article  PubMed  CAS  Google Scholar 

  52. Giancotti FG, Ruoslahti E. Integrin signaling. Science 1999;285:1028–1032.

    Article  PubMed  CAS  Google Scholar 

  53. Bond M, Sala-Newby GB, Wu Y-J, Newby AC. Biphasic effect of p21Cip1 on smooth muscle cell proliferation: role of PI 3-kinase and Skp2-mediated degradation. Cardiovasc Res 2006;69:198–206.

    Article  PubMed  CAS  Google Scholar 

  54. Tanner FC, Boehm M, Akyurek LM, et al. Differential effects of the cyclin-dependent kinase inhibitors p27(Kip1), p21(Cip1), and p16(Ink4) on vascular smooth muscle cell proliferation. Circulation 2000;101:2022–205.

    PubMed  CAS  Google Scholar 

  55. Gizard F, Amant C, Barbier O, et al. PPAR alpha inhibits vascular smooth muscle cell proliferation underlying intimal hyperplasia by inducing the tumor suppressor p16INK4a. J Clin Invest 2005;115:3228–3238.

    Article  PubMed  CAS  Google Scholar 

  56. Bulin C, Albrecht U, Bode JG, et al. Differential effects of vasodilatory prostaglandins on focal adhesions, cytoskeletal architecture, and migration in human aortic smooth muscle cells. Arterioscler Thromb Vasc Biol 2005;25:84–89.

    PubMed  CAS  Google Scholar 

  57. Graves LM, Bornfeldt KE, Raines EW, et al. Protein kinase A antagonizes platelet-derived growth factor signaling by mitogen-activated protein kinase in human arterial smooth muscle cells. Proc Natl Acad Sci 1993;90:10300–10304.

    Article  PubMed  CAS  Google Scholar 

  58. Lallemain G, Lavoie JN, Rivard N, Baldin V, Pouyssegur J. Cyclin D1 expression is a major target of the cAMP-induced inhibition of cell cycle entry in fibroblasts. Oncogene 1997;14:1981–1990.

    Article  CAS  Google Scholar 

  59. Bennett MR, Evan GI, Newby AC. Deregulated expression of the c-myc oncogene abolishes inhibition of proliferation of rat vascular smooth muscle cells by serum reduction, interferon-γ, heparin and cyclic nucleotide analogues and induces apoptosis. Circ Res 1994;74:525–536.

    PubMed  CAS  Google Scholar 

  60. Bond M, Chase AJ, Baker AH, Newby AC. Inhibition of transcription factor NF-κB reduces matrix metalloproteinase-1,-3 and-9 production by vascular smooth muscle cells. Cardiovasc Res 2001;50:556–565.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Bond, M., Wu, YJ., Sala-Newby, G., Newby, A.C. (2008). Pathogenic Mediators of Vessel Sclerosis: Regulation of Vascular Smooth Muscle Cell Proliferation by Growth Factors, the Extracellular Matrix, and the Endothelium. In: Abraham, D., Dashwood, M., Handler, C., Coghlan, G. (eds) Vascular Complications in Human Disease. Springer, London. https://doi.org/10.1007/978-1-84628-919-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-919-4_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-918-7

  • Online ISBN: 978-1-84628-919-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics