Skip to main content

The Role of Cellular Sodium and Calcium Loading in Cardiac Energetics and Arrhythmogenesis: Contribution of the Late Sodium Current

  • Chapter
Electrical Diseases of the Heart

Abstract

An imbalance between myocardial oxygen supply and demand, as occurs during ischemia, leads to increases of cellular concentrations of sodium and calcium (Figure 8-1).1 Reperfusion of the ischemic heart may further exacerbate an ischemia-induced loss of ionic homeostasis. Ischemia and ischemic metabolites can increase the influx of sodium into myocytes.27 Concurrent reduction of sodium efflux during ischemia, as a consequence of reductions of cellular ATP and activity of the cell membrane Na+-K+-ATPase, allows the intracellular sodium concentration to rise. By virtue of the coupled exchange of sodium and calcium facilitated by the cell membrane Na+-Ca2+ exchanger (NCX), an elevation of the intracellular sodium concentration leads to an increased influx of calcium. An excessive or prolonged increase of the intracellular sodium concentration leads to intracellular calcium ([Ca2+]i) overload. The mechanisms and consequences of sodium and calcium overload are the subject of this review. Evidence supporting a role for the late sodium current (late I Na) as a mechanism of calcium overloading and cardiac dysfunction is emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Silverman HS, Stern MD. Ionic basis of ischaemic cardiac injury: Insights from cellular studies. Cardiovasc Res 1994;28:581–597.

    Article  PubMed  CAS  Google Scholar 

  2. Eng S, Maddaford TG, Kardami E, Pierce GN. Protection against myocardial ischemic/reperfusion injury by inhibitors of two separate pathways of Na+ entry. J Mol Cell Cardiol 1998;30:829–835.

    Article  PubMed  CAS  Google Scholar 

  3. Ju YK, Saint DA, Gage PW. Hypoxia increases persistent sodium current in rat ventricular myocytes. J Physiol 1996;497:337–347.

    PubMed  CAS  Google Scholar 

  4. Pike MM, Kitakaze M, Marban E. 23Na-NMR measurements of intracellular sodium in intact perfused ferret hearts during ischemia and reperfusion. Am J Physiol 1990;259:H1767–H1773.

    PubMed  CAS  Google Scholar 

  5. Saint DA. The role of the persistent Na(+) current during cardiac ischemia and hypoxia. J Cardiovasc Electrophysiol 2006;17(Suppl. 1):S96–S103.

    Article  PubMed  Google Scholar 

  6. van Emous JG, Nederhoff MG, Ruigrok TJ, van Echteld CJ. The role of the Na+ channel in the accumulation of intracellular Na+ during myocardial ischemia: Consequences for post-ischemic recovery. J Mol Cell Cardiol 1997;29:85–96.

    Article  PubMed  Google Scholar 

  7. Wu J, Corr PB. Palmitoylcarnitine increases [Na+]i and initiates transient inward current in adult ventricular myocytes. Am J Physiol 1995;268:H2405–H2417.

    PubMed  CAS  Google Scholar 

  8. Cohen CJ, Fozzard HA, Sheu SS. Increase in intracellular sodium ion activity during stimulation in mammalian cardiac muscle. Circ Res 1982;50:651–662.

    PubMed  CAS  Google Scholar 

  9. Ahern GP, Hsu SF, Klyachko VA, Jackson MB. Induction of persistent sodium current by exogenous and endogenous nitric oxide. J Biol Chem 2000;275:28810–28815.

    Article  PubMed  CAS  Google Scholar 

  10. Eigel BN, Hadley RW. Contribution of the Na(+) channel and Na(+)/H(+) exchanger to the anoxic rise of [Na(+)] in ventricular myocytes. Am J Physiol 1999;277:H1817–H1822.

    PubMed  CAS  Google Scholar 

  11. Xiao XH, Allen DG. Role of Na(+)/H(+) exchanger during ischemia and preconditioning in the isolated rat heart. Circ Res 1999;85:723–730.

    PubMed  CAS  Google Scholar 

  12. Despa S, Islam MA, Weber CR, Pogwizd SM, Bers DM. Intracellular Na(+) concentration is elevated in heart failure but Na/K pump function is unchanged. Circulation 2002;105:2543–2548.

    Article  PubMed  CAS  Google Scholar 

  13. Pieske B, Houser SR. [Na+]i handling in the failing human heart. Cardiovasc Res 2003;57:874–886.

    Article  PubMed  CAS  Google Scholar 

  14. Valdivia CR, Chu WW, Pu J, Foell JD, Haworth RA, Wolff MR, Kamp TJ, Makielski JC. Increased late sodium current in myocytes from a canine heart failure model and from failing human heart. J Mol Cell Cardiol 2005;38:475–483.

    Article  PubMed  CAS  Google Scholar 

  15. Huang B, El Sherif T, Gidh-Jain M, Qin D, El Sherif N. Alterations of sodium channel kinetics and gene expression in the postinfarction remodeled myocardium. J Cardiovasc Electrophysiol 2001;12:218–225.

    Article  PubMed  CAS  Google Scholar 

  16. Decking UK, Hartmann M, Rose H, Bruckner R, Meil J, Schrader J. Cardioprotective actions of KC 12291.I. Inhibition of voltage-gated Na+ channels in ischemia delays myocardial Na+ overload. Naunyn Schmiedebergs Arch Pharmacol 1998;358: 547–553.

    Article  PubMed  CAS  Google Scholar 

  17. Haigney MC, Lakatta EG, Stern MD, Silverman HS. Sodium channel blockade reduces hypoxic sodium loading and sodium-dependent calcium loading. Circulation 1994;90:391–399.

    PubMed  CAS  Google Scholar 

  18. Hallman K, Carlsson L. Prevention of class III-induced proarrhythmias by flecainide in an animal model of the acquired long QT syndrome. Pharmacol Toxicol 1995;77:250–254.

    PubMed  CAS  Google Scholar 

  19. Baetz D, Bernard M, Pinet C, Tamareille S, Chattou S, El Banani H, Coulombe A, Feuvray D. Different pathways for sodium entry in cardiac cells during ischemia and early reperfusion. Mol Cell Biochem 2003;242:115–120.

    Article  PubMed  CAS  Google Scholar 

  20. Hartmann M, Decking UK. Blocking Na(+)-H+ exchange by cariporide reduces Na(+)-overload in ischemia and is cardioprotective. J Mol Cell Cardiol 1999;31:1985–1995.

    Article  PubMed  CAS  Google Scholar 

  21. Scholz W, Albus U, Counillon L, Gogelein H, Lang HJ, Linz W, Weichert A, Scholkens BA. Protective effects of HOE642, a selective sodium-hydrogen exchange subtype 1 inhibitor, on cardiac ischaemia and reperfusion. Cardiovasc Res 1995;29:260–268.

    PubMed  CAS  Google Scholar 

  22. Benzinger GR, Kyle JW, Blumenthal KM, Hanck DA. A specific interaction between the cardiac sodium channel and site-3 toxin anthopleurin B. J BiolChem 1998;273:80–84.

    CAS  Google Scholar 

  23. El Sherif N, Fozzard HA, Hanck DA. Dosedependent modulation of the cardiac sodium channel by sea anemone toxin ATXII. Circ Res 1992;70:285–301.

    PubMed  Google Scholar 

  24. Hoey A, Harrison SM, Boyett MR, Ravens U. Effects of the Anemonia sulcata toxin (ATX II) on intracellular sodium and contractility in rat and guinea-pig myocardium. Pharmacol Toxicol 1994;75:356–365.

    Article  PubMed  CAS  Google Scholar 

  25. Denac H, Mevissen M, Scholtysik G. Structure, function and pharmacology of voltage-gated sodium channels. Naunyn Schmiedebergs Arch Pharmacol 2000;362:453–479.

    Article  PubMed  CAS  Google Scholar 

  26. Kuhlkamp V, Mewis C, Bosch R, Seipel L. Delayed sodium channel inactivation mimics long QT syndrome 3. J Cardiovasc Pharmacol 2003;42:113–117.

    Article  PubMed  Google Scholar 

  27. Schwinger RH, Bundgaard H, Muller-Ehmsen J, Kjeldsen K. The Na, K-ATPase in the failing human heart. Cardiovasc Res 2003;57:913–920.

    Article  PubMed  CAS  Google Scholar 

  28. Zygmunt AC, Eddlestone GT, Thomas GP, Nesterenko VV, Antzelevitch C. Larger late sodium conductance in M cells contributes to electrical heterogeneity in canine ventricle. Am J Physiol Heart Circ Physiol 2001;281:H689–H697.

    PubMed  CAS  Google Scholar 

  29. Kiyosue T, Arita M. Late sodium current and its contribution to action potential configuration in guinea pig ventricular myocytes. Circ Res 1989;64: 389–397.

    PubMed  CAS  Google Scholar 

  30. Li CZ, Wang XD, Wang HW, Bian YT, Liu YM. Four types of late Na channel current in isolated ventricular myocytes with reference to their contribution to the lastingness of action potential plateau. Sheng Li Xue Bao 1997;49:241–248.

    PubMed  CAS  Google Scholar 

  31. Attwell D, Cohen I, Eisner D, Ohba M, Ojeda C. The steady state TTX-sensitive (“window”) sodium current in cardiac Purkinje fibres. Pflugers Arch 1979;379:137–142.

    Article  PubMed  CAS  Google Scholar 

  32. Le Grand B, Vie B, Talmant JM, Coraboeuf E, John GW. Alleviation of contractile dysfunction in ischemic hearts by slowly inactivating Na+ current blockers. Am J Physiol 1995;269:H533–H540.

    PubMed  Google Scholar 

  33. Undrovinas AI, Fleidervish IA, Makielski JC. Inward sodium current at resting potentials in single cardiac myocytes induced by the ischemic metabolite lysophosphatidylcholine. Circ Res 1992;71: 1231–1241.

    PubMed  CAS  Google Scholar 

  34. Undrovinas AI, Maltsev VA, Sabbah HN. Repolarization abnormalities in cardiomyocytes of dogs with chronic heart failure: Role of sustained inward current. Cell Mol Life Sci 1999;55:494–505.

    Article  PubMed  CAS  Google Scholar 

  35. Becker LB. New concepts in reactive oxygen species and cardiovascular reperfusion physiology. Cardiovasc Res 2004;61:461–470.

    Article  PubMed  CAS  Google Scholar 

  36. Hammarstrom AK, Gage PW. Hypoxia and persistent sodium current. Eur Biophys J 2002;31:323–330.

    Article  PubMed  CAS  Google Scholar 

  37. Ma JH, Luo AT, Zhang PH. Effect of hydrogen peroxide on persistent sodium current in guinea pig ventricular myocytes. Acta Pharmacol Sin 2005; 26:828–834.

    Article  PubMed  CAS  Google Scholar 

  38. Ward CA, Giles WR. Ionic mechanism of the effects of hydrogen peroxide in rat ventricular myocytes. J Physiol 1997;500:631–642.

    PubMed  CAS  Google Scholar 

  39. Maier LS, Hasenfuss G. Role of [Na+]i and the emerging involvement of the late sodium current in the pathophysiology of cardiovascular disease. Eur Heart J 2006;(Suppl. A):A6–A9.

    Google Scholar 

  40. Tateyama M, Rivolta I, Clancy CE, Kass RS. Modulation of cardiac sodium channel gating by protein kinase A can be altered by disease-linked mutation. J Biol Chem 2003;278:46718–46726.

    Article  PubMed  CAS  Google Scholar 

  41. Bennett PB, Yazawa K, Makita N, George AL Jr. Molecular mechanism for an inherited cardiac arrhythmia. Nature 1995;376:683–685.

    Article  PubMed  CAS  Google Scholar 

  42. Clancy CE, Rudy Y. Linking a genetic defect to its cellular phenotype in a cardiac arrhythmia. Nature 1999;400:566–569.

    Article  PubMed  CAS  Google Scholar 

  43. Clancy CE, Tateyama M, Liu H, Wehrens XH, Kass RS. Non-equilibrium gating in cardiac Na+ channels: An original mechanism of arrhythmia. Circulation 2003;107:2233–2237.

    Article  PubMed  CAS  Google Scholar 

  44. Splawski I, Timothy KW, Tateyama M, Clancy CE, Malhotra A, Beggs AH, Cappuccio FP, Sagnella GA, Kass RS, Keating MT. Variant of SCN5A sodium channel implicated in risk of cardiac arrhythmia. Science 2002;297:1333–1336.

    Article  PubMed  CAS  Google Scholar 

  45. Wang Q, Shen J, Splawski I, Atkinson D, Li Z, Robinson JL, Moss AJ, Towbin JA, Keating MT. SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell 1995;80:805–811.

    Article  PubMed  CAS  Google Scholar 

  46. Sakmann BF, Spindler AJ, Bryant SM, Linz KW, Noble D. Distribution of a persistent sodium current across the ventricular wall in guinea pigs. Circ Res 2000;87:910–914.

    PubMed  CAS  Google Scholar 

  47. Makielski JC, Farley AL. Na(+) current in human ventricle: Implications for sodium loading and homeostasis. J Cardiovasc Electrophysiol 2006; 17(Suppl. 1):S15–S20.

    Article  PubMed  Google Scholar 

  48. Antzelevitch C, Belardinelli L. The role of sodium channel current in modulating transmural dispersion of repolarization and arrhythmogenesis. J Cardiovasc Electrophysiol 2006;17(Suppl. 1):S79–S85.

    Article  PubMed  Google Scholar 

  49. Volders PG, Vos MA, Szabo B, Sipido KR, de Groot SH, Gorgels AP, Wellens HJ, Lazzara R. Progress in the understanding of cardiac early afterdepolarizations and torsades de pointes: Time to revise current concepts. Cardiovasc Res 2000;46:376–392.

    Article  PubMed  CAS  Google Scholar 

  50. John GW, Letienne R, Le Grand B, Pignier C, Vacher B, Patoiseau JF, Colpaert FC, Coulombe A. KC 12291: An atypical sodium channel blocker with myocardial antiischemic properties. Cardiovasc Drug Rev 2004;22:17–26.

    PubMed  CAS  Google Scholar 

  51. Orth PM, Hesketh JC, Mak CK, Yang Y, Lin S, Beatch GN, Ezrin AM, Fedida D. RSD1235 blocks late INa and suppresses early afterdepolarizations and torsades de pointes induced by class III agents. Cardiovasc Res 2006;70:486–496.

    Article  PubMed  CAS  Google Scholar 

  52. Song Y, Shryock JC, Wu L, Belardinelli L. Antagonism by ranolazine of the pro-arrhythmic effects of increasing late INa in guinea pig ventricular myocytes. J Cardiovasc Pharmacol 2004;44:192–199.

    Article  PubMed  CAS  Google Scholar 

  53. Wu L, Shryock JC, Song Y, Li Y, Antzelevitch C, Belardinelli L. Antiarrhythmic effects of ranolazine in a guinea pig in vitro model of long-QT syndrome. J Pharmacol Exp Ther 2004;310:599–605.

    Article  PubMed  CAS  Google Scholar 

  54. Tian XL, Yong SL, Wan X, Wu L, Chung MK, Tchou PJ, Rosenbaum DS, Van Wagoner DR, Kirsch GE, Wang Q. Mechanisms by which SCN5A mutation N1325S causes cardiac arrhythmias and sudden death in vivo. Cardiovasc Res 2004;61:256–267.

    Article  PubMed  CAS  Google Scholar 

  55. Abrahamsson C, Carlsson L, Duker G. Lidocaine and nisoldipine attenuate almokalant-induced dispersion of repolarization and early afterdepolarizations in vitro. J Cardiovasc Electrophysiol 1996;7: 1074–1081.

    Article  PubMed  CAS  Google Scholar 

  56. Wang DW, Yazawa K, Makita N, George AL Jr, Bennett PB. Pharmacological targeting of long QT mutant sodium channels. J Clin Invest 1997;99: 1714–1720.

    Article  PubMed  CAS  Google Scholar 

  57. Maack C, Cortassa S, Aon MA, Ganesan AN, Liu T, O’Rourke B. Elevated cytosolic Na+ decreases mitochondrial Ca2+ uptake during excitation-contraction coupling and impairs energetic adaptation in cardiac myocytes. Circ Res 2006;99:172–182.

    Article  PubMed  CAS  Google Scholar 

  58. Bers DM. Cardiac excitation-contraction coupling. Nature 2002;415:198–205.

    Article  PubMed  CAS  Google Scholar 

  59. Weber CR, Piacentino V, III, Ginsburg KS, Houser SR, Bers DM. Na(+)-Ca(2+) exchange current and submembrane [Ca(2+)] during the cardiac action potential. Circ Res 2002;90:182–189.

    Article  PubMed  CAS  Google Scholar 

  60. Bers DM. Excitation-Contraction Coupling and Cardiac Contractile Force. Dordrecht, The Netherlands: Kluwer Academic Publishers, 2001.

    Google Scholar 

  61. Bers DM, Barry WH, Despa S. Intracellular Na+ regulation in cardiac myocytes. Cardiovasc Res 2003;57:897–912.

    Article  PubMed  CAS  Google Scholar 

  62. Eigel BN, Hadley RW. Antisense inhibition of Na+/ Ca2+ exchange during anoxia/reoxygenation in ventricular myocytes. Am J Physiol Heart Circ Physiol 2001;281:H2184–H2190.

    PubMed  CAS  Google Scholar 

  63. Hagihara H, Yoshikawa Y, Ohga Y, Takenaka C, Murata KY, Taniguchi S, Takaki M. Na+/Ca2+ exchange inhibition protects the rat heart from ischemia-reperfusion injury by blocking energywasting processes. Am J Physiol Heart Circ Physiol 2005;288:H1699–H1707.

    Article  PubMed  CAS  Google Scholar 

  64. Haigney MC, Miyata H, Lakatta EG, Stern MD, Silverman HS. Dependence of hypoxic cellular calcium loading on Na(+)-Ca2+ exchange. Circ Res 1992;71: 547–557.

    PubMed  CAS  Google Scholar 

  65. Imahashi K, Pott C, Goldhaber JI, Steenbergen C, Philipson KD, Murphy E. Cardiac-specific ablation of the Na+-Ca2+ exchanger confers protection against ischemia/reperfusion injury. Circ Res 2005; 97:916–921.

    Article  PubMed  CAS  Google Scholar 

  66. Schafer C, Ladilov Y, Inserte J, Schafer M, Haffner S, Garcia-Dorado D, Piper HM. Role of the reverse mode of the Na+/Ca2+ exchanger in reoxygenation-induced cardiomyocyte injury. Cardiovasc Res 2001;51:241–250.

    Article  PubMed  CAS  Google Scholar 

  67. Wagner S, Seidler T, Picht E, Maier LS, Kazanski V, Teucher N, Schillinger W, Pieske B, Isenberg G, Hasenfuss G, Kogler H. Na(+)-Ca(2+) exchanger overexpression predisposes to reactive oxygen species-induced injury. Cardiovasc Res 2003;60: 404–412.

    Article  PubMed  CAS  Google Scholar 

  68. Zeitz O, Maass AE, Van Nguyen P, Hensmann G, Kogler H, Moller K, Hasenfuss G, Janssen PM. Hydroxyl radical-induced acute diastolic dysfunction is due to calcium overload via reverse-mode Na(+)-Ca(2+) exchange. Circ Res 2002;90:988–995.

    Article  PubMed  CAS  Google Scholar 

  69. Bai CX, Namekata I, Kurokawa J, Tanaka H, Shigenobu K, Furukawa T. Role of nitric oxide in Ca2+ sensitivity of the slowly activating delayed rectifier K+ current in cardiac myocytes. Circ Res 2005;96:64–72.

    Article  PubMed  CAS  Google Scholar 

  70. Fauconnier J, Lacampagne A, Rauzier JM, Vassort G, Richard S. Ca2+-dependent reduction of IK1 in rat ventricular cells: A novel paradigm for arrhythmia in heart failure? Cardiovasc Res 2005;68:204–212.

    Article  PubMed  CAS  Google Scholar 

  71. Fabiato A, Fabiato F. Contractions induced by a calcium-triggered release of calcium from the sarcoplasmic reticulum of single skinned cardiac cells. J Physiol 1975;249:469–495.

    PubMed  CAS  Google Scholar 

  72. Katra RP, Laurita KR. Cellular mechanism of calcium-mediated triggered activity in the heart. Circ Res 2005;96:535–542.

    Article  PubMed  CAS  Google Scholar 

  73. Lederer WJ, Tsien RW. Transient inward current underlying arrhythmogenic effects of cardiotonic steroids in Purkinje fibres. J Physiol 1976;263:73–100.

    PubMed  CAS  Google Scholar 

  74. Pogwizd SM, Schlotthauer K, Li L, Yuan W, Bers DM. Arrhythmogenesis and contractile dysfunction in heart failure: Roles of sodium-calcium exchange, inward rectifier potassium current, and residual beta-adrenergic responsiveness. Circ Res 2001;88:1159–1167.

    Article  PubMed  CAS  Google Scholar 

  75. Wit AL, Rosen MR. Afterdepolarizations and triggered activity: Distinction from automaticity as an arrhythmogenic mechanism. In: Fozzard HA, Habert E, Jennings RB, Katz AM, Morgan HE, Eds. Heart and Cardiovascular System: Scientific Foundations. New York: Raven Press, 1992:2113–2163.

    Google Scholar 

  76. Eigel BN, Gursahani H, Hadley RW. ROS are required for rapid reactivation of Na+/Ca2+ exchanger in hypoxic reoxygenated guinea pig ventricular myocytes. Am J Physiol Heart Circ Physiol 2004;286:H955–H963.

    Article  PubMed  CAS  Google Scholar 

  77. Wu Y, Roden DM, Anderson ME. Calmodulin kinase inhibition prevents development of the arrhythmogenic transient inward current. Circ Res 1999;84:906–912.

    PubMed  CAS  Google Scholar 

  78. Belardinelli L, Shryock JC, Fraser H. Inhibition of the late sodium current as a potential cardioprotective principle: Effects of the late sodium current inhibitor ranolazine. Heart 2006;92(Suppl. 4): iv6–iv14.

    Article  PubMed  CAS  Google Scholar 

  79. Fedida D, Orth PM, Hesketh JC, Ezrin AM. The role of late I and antiarrhythmic drugs in EAD formation and termination in Purkinje fibers. J Cardiovasc Electrophysiol 2006;17(Suppl. 1):S71–S78.

    Article  PubMed  Google Scholar 

  80. Pu J, Balser JR, Boyden PA. Lidocaine action on Na+ currents in ventricular myocytes from the epicardial border zone of the infarcted heart. Circ Res 1998;83:431–440.

    PubMed  CAS  Google Scholar 

  81. Undrovinas AI, Belardinelli L, Undrovinas NA, Sabbah HN. Ranolazine improves abnormal repolarization and contraction in left ventricular myocytes of dogs with heart failure by inhibiting late sodium current. J Cardiovasc Electrophysiol 2006; 17(Suppl. 1):S169–S177.

    Article  PubMed  Google Scholar 

  82. Ver Donck L, Borgers M, Verdonck F. Inhibition of sodium and calcium overload pathology in the myocardium: A new cytoprotective principle. Cardiovasc Res 1993;27:349–357.

    Article  Google Scholar 

  83. Li GR, Lau CP, Ducharme A, Tardif JC, Nattel S. Transmural action potential and ionic current remodeling in ventricles of failing canine hearts. Am J Physiol Heart Circ Physiol 2002;283:H1031–H1041.

    PubMed  CAS  Google Scholar 

  84. Maltsev VA, Sabbah HN, Higgins RS, Silverman N, Lesch M, Undrovinas AI. Novel, ultraslow inactivating sodium current in human ventricular cardiomyocytes. Circulation 1998;98:2545–2552.

    PubMed  CAS  Google Scholar 

  85. CV Therapeutics. Ranexa (ranolazine) review documents NDA. CV Therapeutics, Ed. 2003:21–526.

    Google Scholar 

  86. Shimizu W, Antzelevitch C. Cellular and ionic basis for T-wave alternans under long-QT conditions. Circulation 1999;99:1499–1507.

    PubMed  CAS  Google Scholar 

  87. Belardinelli L, Antzelevitch C, Vos MA. Assessing predictors of drug-induced torsade de pointes. Trends Pharmacol Sci 2003;24:619–625.

    Article  PubMed  CAS  Google Scholar 

  88. Zaniboni M, Pollard AE, Yang L, Spitzer KW. Beat-to-beat repolarization variability in ventricular myocytes and its suppression by electrical coupling. Am J Physiol Heart Circ Physiol 2000;278: H677–H687.

    PubMed  CAS  Google Scholar 

  89. Antzelevitch C, Belardinelli L, Wu L, Fraser H, Zygmunt AC, Burashnikov A, Diego JM, Fish JM, Cordeiro JM, Goodrow RJ Jr, Scornik F, Perez G. Electrophysiologic properties and antiarrhythmic actions of a novel antianginal agent. J Cardiovasc Pharmacol Ther 2004;9(Suppl. 1):S65–S83.

    Article  PubMed  CAS  Google Scholar 

  90. Wu L, Shryock JC, Song Y, Belardinelli L. An increase in late sodium current potentiates the proarrhythmic activities of low-risk QT-prolonging drugs in female rabbit hearts. J Pharmacol Exp Ther 2006;316:718–726.

    Article  PubMed  CAS  Google Scholar 

  91. Chaitman BR. Ranolazine for the treatment of chronic angina and potential use in other cardiovascular conditions. Circulation 2006;113:2462–2472.

    Article  PubMed  Google Scholar 

  92. Fredj S, Sampson KJ, Liu H, Kass RS. Molecular basis of ranolazine block of LQT-3 mutant sodium channels: Evidence for site of action. Br J Pharmacol 2006;148:16–24.

    Article  PubMed  CAS  Google Scholar 

  93. Antzelevitch C, Belardinelli L, Zygmunt AC, Burashnikov A, Di Diego JM, Fish JM, Cordeiro JM, Thomas G. Electrophysiological effects of ranolazine, a novel antianginal agent with antiarrhythmic properties. Circulation 2004; 10:904–910.

    Article  CAS  Google Scholar 

  94. Makielski JC, Valdivia CR. Ranolazine and late cardiac sodium current-a therapeutic target for angina, arrhythmia and more? Br J Pharmacol 2006;48:4–6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Shryock, J.C., Belardinelli, L., Rajamani, S. (2008). The Role of Cellular Sodium and Calcium Loading in Cardiac Energetics and Arrhythmogenesis: Contribution of the Late Sodium Current. In: Gussak, I., Antzelevitch, C., Wilde, A.A.M., Friedman, P.A., Ackerman, M.J., Shen, WK. (eds) Electrical Diseases of the Heart. Springer, London. https://doi.org/10.1007/978-1-84628-854-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-854-8_9

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-853-1

  • Online ISBN: 978-1-84628-854-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics