Skip to main content

Current Status of Photodynamic Therapy for Renal Tumors

  • Chapter
Renal Cell Cancer
  • 1012 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dougherty TJ. An update on photodynamic therapy applications. Journal of Clinical Laser Medicine & Surgery 2002;20(1):3–7.

    Article  Google Scholar 

  2. Kereiakes DJ, Szyniszewski AM, Wahr D, et al. Phase 1 drug and light dose-escalation trial of motexafin lutetium and far red light activation (phototherapy) in subjects with coronary artery disease undergoing percutaneous coronary intervention and stent deployment. Circulation 2003;108:1310.

    Article  PubMed  Google Scholar 

  3. Shackley DC, Briggs C, Whitehurst C, et al. Photodynamic therapy for superficial bladder cancer. Expert Review of Anticancer Therapy 2001;1(4):523–530.

    Article  Google Scholar 

  4. Frimberger D, Zaak D, Hofstetter A. Endoscopic fluorescence diagnosis and laser treatment of transitional cell carcinoma of the bladder. Seminars in Urologic Oncology 2000;18(4):264–272.

    Google Scholar 

  5. Weersink RA, Bogaards A, Gertner M, et al. Techniques for delivery and monitoring of TOOKAD (WST09)-mediated photodynamic therapy of the prostate: clinical experience and practicalities. Journal of Photochemistry and Photobiology 2005;79:211–222.

    Article  CAS  Google Scholar 

  6. Vakrat-Haglili Y, Weiner L, Brumfeld V, et al. The microenvironment effect on the generation of reactive oxygen species by Pd-bacteriopheophorbide. Journal of the American Chemical Society 2005;127:6487–6497.

    Article  PubMed  CAS  Google Scholar 

  7. Agarwal ML, Clay ME, Harvey EJ, et al. Photodynamic therapy induces rapid cell death by apoptosis in L5178Y mouse lymphoma cells. Cancer Research 1991;51:5993–5996.

    PubMed  CAS  Google Scholar 

  8. Nieminen AL. Apoptosis and necrosis in health and disease: role of mitochondria. International Review of Cytology—-a Survey of Cell Biology 2003;224:29–55.

    CAS  Google Scholar 

  9. Agostinis P, Buytaert E, Breyssens H, Hendrickx N. Regulatory pathways in photodynamic therapy induced apoptosis. Photochemical & Photobiological Sciences 2004;3:721–729.

    Article  CAS  Google Scholar 

  10. Svaasand LO. Photodynamic and photohyperthermic response of malignant tumors. Medical Physics 1985;12(4):455–461.

    Article  Google Scholar 

  11. Abels C. Targeting of the vascular system of solid tumours by photodynamic therapy (PDT). Photochemical & Photobiological Sciences 2004;3(8):765–771.

    Article  Google Scholar 

  12. Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: part three—-photosensitizer pharmacokinetics, biodistribution, tumor localization and modes of tumor destruction. Photodiagnosis and Photodynamic Therapy 2005;2:91–106.

    Article  CAS  Google Scholar 

  13. Keam SJ, Scott LJ, Curran MP. Verteporfin—-a review of its use in the management of subfoveal choroidal neovascularisation. Drugs 2003;63:2521–2554.

    Article  PubMed  CAS  Google Scholar 

  14. Schreiber S, Gross S, Brandis A, et al. Local photodynamic therapy (PDT) of rat C6 glioma xenografts with Pd-bacteriopheophorbide leads to decreased metastases and increase of animal cure compared with surgery. International Journal of Cancer 2002;99(2):279–285.

    Article  Google Scholar 

  15. Weersink RA, Forbes J, Bisland S, et al. Assessment of cutaneous photosensitivity of TOOKAD (WST09) in pre-clinical animal models and in patients. Photochemistry and Photobiology 2005;81:106–113.

    Article  PubMed  CAS  Google Scholar 

  16. Moan J, Peng Q. An outline of the hundred-year history of PDT. Anticancer Research 2003;23:3591–3600.

    PubMed  Google Scholar 

  17. Dougherty TJ, Gomer CJ, Henderson BW, et al. Photodynamic therapy. Journal of the National Cancer Institute 1998;90(12):889–905.

    Article  Google Scholar 

  18. Mazor O, Brandis A, Plaks V, et al. WST11, A Novel Water-soluble bacteriochlorophyll derivative; cellular uptake, pharmacokinetics, biodistribution and vascular-targeted photodynamic activity using melanoma tumors as a model. Photochemistry and Photobiology 2005;81:342–351.

    Article  PubMed  CAS  Google Scholar 

  19. Brandis A, Mazor O, Neumark E, et al. Novel water-soluble bacteriochlorophyll derivatives for vascular-targeted photodynamic therapy: synthesis, solubility, phototoxicity and the effect of serum proteins. Photochemistry and Photobiology 2005;81:983–993.

    Article  PubMed  CAS  Google Scholar 

  20. Fukuda H, Casas A, Batlle A. Aminolevulinic acid: from its unique biological function to its star role in photodynamic therapy. International Journal of Biochemistry & Cell Biology 2005;37(2):272–276.

    Article  Google Scholar 

  21. Ackroyd R, Kelty C, Brown N, Reed M. The history of photodetection and photodynamic therapy. Photochemistry and Photobiology 2001;74(5):656–669.

    Article  Google Scholar 

  22. Casas A, Batlle A. Rational design of 5-aminolevulinic acid derivatives aimed at improving photodynamic therapy. Current Medicinal Chemistry Anti Cancer Agents 2002;2(4):465–475.

    Article  Google Scholar 

  23. Wong TW, Tracy E, Oseroff AR, Baumann H. Photodynamic therapy mediates immediate loss of cellular responsiveness to cytokines and growth factors. Cancer Research 2003;63(13):3812–3818.

    Google Scholar 

  24. Savellano MD, Hasan T. Photochemical targeting of epidermal growth factor receptor: a mechanistic study. Clinical Cancer Research 2005;11:1658–1668.

    Article  PubMed  CAS  Google Scholar 

  25. Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine, 3 ed. New York: Oxford University Press, 1999.

    Google Scholar 

  26. Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: part two—-cellular signaling, cell metabolism and modes of cell death. Photodiagnosis and Photodynamic Therapy 2005;2:1–23.

    Article  CAS  Google Scholar 

  27. Rosenkranz AA, Jans DA, Sobolev AS. Targeted intracellular delivery of photosensitizers to enhance photodynamic efficiency. Immunology and Cell Biology 2000;78(4): 452–464.

    Article  Google Scholar 

  28. Matroule J-Y, Piette J. Nuclear factor-kB activation by singlet oxygen produced during photosensitization. Methods in Enzymology 2000;319:119–129.

    Article  PubMed  CAS  Google Scholar 

  29. Dougherty TJ. Photosensitization of malignant tumors. Seminars in Surgical Oncology 1986;2(1):24–37.

    Article  Google Scholar 

  30. Kramer B. Vascular effects of photodynamic therapy. Anticancer Research 2001;21(6B):4271–4277.

    Google Scholar 

  31. Michaels MJ, Rhee HK, Mourtzinos AP, et al. Incomplete renal tumor destruction using radio frequency interstitial ablation. Journal of Urology 2002;168:2406–2410.

    Article  PubMed  Google Scholar 

  32. Chen J, Keltner L, Christophersen J, et al. New technology for deep light distribution in tissue for phototherapy. Cancer Journal 2002;8(2):154–163.

    Article  Google Scholar 

  33. Vardi IY, Koudinova NV, Leibovitch I, et al. Photodynamic therapy of renal cell carcinoma (RCC) xenografts in mice, using a second generation photosensitizer—- Tookad (WST09). Journal of Urology 2004;171(4):261.

    Google Scholar 

  34. Huang Z, Chen Q, Luck D, et al. Studies of a vascular-acting photosensitizer, Pd-bacteriopheophorbide (Tookad), in normal canine prostate and spontaneous canine prostate cancer. Lasers in Surgery and Medicine 2005;36(5): 390–397.

    Article  Google Scholar 

  35. Borle F, Radu A, Monnier P, van den Bergh H, Wagnieres G. Evaluation of the photosensitizer Tookad for photodynamic therapy on the Syrian golden hamster cheek pouch model: Light dose, drug dose and drug-light interval effects. Photochemistry and Photobiology 2003;78(4):377–383.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Matin, S.F., Scherz, A. (2008). Current Status of Photodynamic Therapy for Renal Tumors. In: Rosette, J.J.d., Sternberg, C.N., Poppel, H.P.v. (eds) Renal Cell Cancer. Springer, London. https://doi.org/10.1007/978-1-84628-763-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-763-3_32

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-385-7

  • Online ISBN: 978-1-84628-763-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics