Skip to main content

Novel Osteoarthritis Therapeutics

  • Chapter
Bone and Osteoarthritis

Part of the book series: Topics in Bone Biology ((TBB,volume 4))

  • 2094 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellamy N, Campbell J, Robinson V, Gee T, Bourne R, Wells G. (2005) Viscosupplementation for the treatment of osteoarthritis of the knee. Cochrane Database Syst Rev 2:CD005321.

    PubMed  Google Scholar 

  2. Lo GH, LaValley M, McAlindon T, Felson DT (2003) Intra-articular hyaluronic acid in treatment of knee osteoarthritis: a meta-analysis. JAMA 290(23):3115–3121.

    PubMed  CAS  Google Scholar 

  3. Persiani S, Roda E, Rovati LC, Locatelli M, Giacovelli G, Roda A (2005) Glucosamine oral bioavailability and plasma pharmacokinetics after increasing doses of crystalline glucosamine sulfate in man. Osteoarthritis Cartilage 13(12):1041–1049.

    PubMed  CAS  Google Scholar 

  4. Biggee BA, Blinn CM, McAlindon TE, Nuite M, Silbert JE (2006) Low levels of human serum glucosamine after ingestion of glucosamine sulphate relative to capability for peripheral effectiveness. Ann Rheum Dis 65(2):222–226.

    PubMed  CAS  Google Scholar 

  5. Parkman CA (2005) NCCAM herbal supplement studies underway in the United States. Case Manager 16(3):41–43.

    PubMed  Google Scholar 

  6. Towheed TE, Anastassiades TP, Shea B, Houpt J, Welch V, Hochberg MC (2001) Glucosamine therapy for treating osteoarthritis. Cochrane Database Syst Rev 1:CD002946.

    PubMed  Google Scholar 

  7. Berman BM, Bausell RB, Lee WL (2002) Use and referral patterns for 22 complementary and alternative medical therapies by members of the American College of Rheumatology: results of a national survey. Arch Intern Med 162(7):766–770.

    PubMed  Google Scholar 

  8. Berman BM, Lao L, Langenberg P, Lee WL, Gilpin AM, Hochberg MC (2004) Effectiveness of acupuncture as adjunctive therapy in osteoarthritis of the knee: a randomized, controlled trial. Ann Intern Med 141(12):901–910.

    PubMed  Google Scholar 

  9. Focht BC, Rejeski WJ, Ambrosius WT, Katula JA, Messier SP (2005) Exercise, self-efficacy, and mobility performance in overweight and obese older adults with knee osteoarthritis. Arthritis Rheum 53(5):659–665.

    PubMed  Google Scholar 

  10. Messier SP, Gutekunst DJ, Davis C, DeVita P (2005) Weight loss reduces knee-joint loads in overweight and obese older adults with knee osteoarthritis. Arthritis Rheum 52(7):2026–2032.

    PubMed  Google Scholar 

  11. Christensen R, Astrup A, Bliddal H (2005) Weight loss: the treatment of choice for knee osteoarthritis? A randomized trial. Osteoarthritis Cartilage 13(1):20–27.

    PubMed  CAS  Google Scholar 

  12. Russell AS, Aghazadeh-Habashi A, Jamali F (2002) Active ingredient consistency of commercially available glucosamine sulfate products. J Rheumatol 29(11):2407–2409.

    PubMed  CAS  Google Scholar 

  13. McAlindon TE, LaValley MP, Gulin JP, Felson DT (2000) Glucosamine and chondroitin for treatment of osteoarthritis: a systematic quality assessment and meta-analysis. JAMA 283(11):1469–1475.

    PubMed  CAS  Google Scholar 

  14. Reichenbach S, Sterchi R, Scherer M, Trelle S, Burgi E, Burgi U et al. Meta-analsis: chondroitin for osteoarthritis of the knee or hip. Ann Intern Med 2007;146(8):550–90.

    Google Scholar 

  15. Clegg DO, Reda DJ, Harris CL, Klein MA, O’Dell JR, Hooper MM, et al (2006) Glucosamine, chondroitin sulfate, and the two in combination for painful knee osteoarthritis. N Engl J Med 354(8):795–808.

    PubMed  CAS  Google Scholar 

  16. Abadie E, ethgen D, Avouac B, Bouvenot G, Branco J, Bruyere O, et al (2004) Recommendations for the use of new methods to assess the efficacy of disease-modifying drugs in the treatment of osteoarthritis. Osteoarthritis Cartilage 12(4):263–268.

    PubMed  Google Scholar 

  17. Beary JF 3rd (2001) Joint structure modification in osteoarthritis: development of SMOAD drugs. Curr Rheumatol Rep 3(6):506–512.

    PubMed  Google Scholar 

  18. Mahomed NN, Barrett J, Katz JN, Baron JA, Wright J, Losina E (2005) Epidemiology of total knee replacement in the United States Medicare population. J Bone Joint Surg Am 87(6):1222–1228.

    PubMed  Google Scholar 

  19. Landewe R, van der Heijde D (2005) Radiographic progression in rheumatoid arthritis. Clin Exp Rheumatol 23(5 suppl 39):S63–68.

    PubMed  Google Scholar 

  20. Landewe R, van der Heijde D (2005) Presentation and analysis of radiographic data in clinical trials and observational studies. Ann Rheum Dis 64 (suppl 4):iv48–51.

    PubMed  Google Scholar 

  21. van der Heijde D (2000) How to read radiographs according to the Sharp/van der Heijde method. J Rheumatol 27(1):261–263.

    Google Scholar 

  22. van der Heijde D, Landewe R, Klareskog L, Rodriguez-Valverde V, Settas L, Pedersen R, et al (2005) Presentation and analysis of data on radiographic outcome in clinical trials: experience from the TEMPO study. Arthritis Rheum 52(1):49–60.

    Google Scholar 

  23. Conaghan PG, McQueen FM, Peterfy CG, Lassere MN, Ejbjerg B, Bird P, et al (2005) The evidence for magnetic resonance imaging as an outcome measure in proof-of-concept rheumatoid arthritis studies. J Rheumatol 32(12):2465–2469.

    PubMed  Google Scholar 

  24. Hunter DJ, Conaghan PG (2006) Imaging outcomes and their role in determining outcomes in osteoarthritis and rheumatoid arthritis. Curr Opin Rheumatol 18(2):157–162.

    PubMed  Google Scholar 

  25. Buckland-Wright C (2006) Which radiographic techniques should we use for research and clinical practice? Best Pract Res Clin Rheumatol 20(1):39–55.

    PubMed  Google Scholar 

  26. Buckland-Wright JC, Ward RJ, Peterfy C, Mojcik CF, Leff RL (2004) Reproducibility of the semiflexed (metatarsophalangeal) radiographic knee position and automated measurements of medial tibiofemoral joint space width in a multicenter clinical trial of knee osteoarthritis. J Rheumatol 31(8):1588–1597.

    PubMed  Google Scholar 

  27. Spector TD, Conaghan PG, Buckland-Wright JC, Garnero P, Cline GA, Beary JF, et al (2005) Effect of risedronate on joint structure and symptoms of knee osteoarthritis: results of the BRISK randomized, controlled trial [ISRCTN01928173]. Arthritis Res Ther 7(3):R625–633.

    PubMed  CAS  Google Scholar 

  28. Felson DT, McLaughlin S, Goggins J, LaValley MP, Gale ME, Totterman S, et al (2003) Bone marrow edema and its relation to progression of knee osteoarthritis. Ann Intern Med 139(5 pt 1):330–336.

    PubMed  Google Scholar 

  29. Felson DT, Chaisson CE, Hill CL, Totterman SM, Gale ME, Skinner KM, et al (2001) The association of bone marrow lesions with pain in knee osteoarthritis. Ann Intern Med 134(7):541–549.

    PubMed  CAS  Google Scholar 

  30. Russell RG, Rogers MJ, Frith JC, Luckman SP, Coxon FP, Benford HL, et al (1999) The pharmacology of bisphosphonates and new insights into their mechanisms of action. J Bone Miner Res 14 (suppl 2):53–65.

    PubMed  CAS  Google Scholar 

  31. Van Offel JF, Schuerwegh AJ, Bridts CH, Stevens WJ, De Clerck LS (2002) Effect of bisphosphonates on viability, proliferation, and dexamethasone-induced apoptosis of articular chondrocytes. Ann Rheum Dis 61(10):925–958.

    PubMed  Google Scholar 

  32. Podworny NV, Kandel RA, Renlund RC, Grynpas MD (1999) Partial chondroprotective effect of zoledronate in a rabbit model of inflammatory arthritis. J Rheumatol 26(9):1972–1982.

    PubMed  CAS  Google Scholar 

  33. Garnero P, Christgau S, Delmas PD (2001) The bisphosphonate zoledronate decreases type II collagen breakdown in patients with Paget’s disease of bone. Bone 28(5):461–464.

    PubMed  CAS  Google Scholar 

  34. Valleala H, Hanemaaijer R, Mandelin J, Salminen A, Teronen O, Monkkonen J, et al (2003) Regulation of MMP-9 (gelatinase B) in activated human monocyte/macrophages by two different types of bisphosphonates. Life Sci 73(19):2413–2420.

    PubMed  CAS  Google Scholar 

  35. Heikkila P, Teronen O, Moilanen M, Konttinen YT, Hanemaaijer R, Laitinen M, et al (2002) Bisphosphonates inhibit stromelysin-1 (MMP-3), matrix metalloelastase (MMP-12), collagenase-3 (MMP-13) and enamelysin (MMP-20), but not urokinase-type plasminogen activator, and diminish invasion and migration of human malignant and endothelial cell lines. Anticancer Drugs 13(3):245–254.

    PubMed  CAS  Google Scholar 

  36. Teronen O, Laitinen M, Salo T, Hanemaaijer R, Heikkila P, Konttinen YT, et al (2000) Inhibition of matrix metalloproteinases by bisphosphonates may in part explain their effects in the treatment of multiple myeloma. Blood 96(12):4006–4007.

    PubMed  CAS  Google Scholar 

  37. Teronen O, Heikkila P, Konttinen YT, Laitinen M, Salo T, Hanemaaijer R, et al (1999) MMP inhibition and downregulation by bisphosphonates. Ann N Y Acad Sci 878:453–465.

    PubMed  CAS  Google Scholar 

  38. Green JR, Clezardin P (2002) Mechanisms of bisphosphonate effects on osteoclasts, tumor cell growth, and metastasis. Am J Clin Oncol 25(6 suppl 1):S3–9.

    PubMed  Google Scholar 

  39. Giuliani N, Pedrazzoni M, Negri G, Passeri G, Impicciatore M, Girasole G (1998) Bisphosphonates stimulate formation of osteoblast precursors and mineralized nodules in murine and human bone marrow cultures in vitro and promote early osteoblastogenesis in young and aged mice in vivo. Bone 22(5):455–461.

    PubMed  CAS  Google Scholar 

  40. Giuliani N, Pedrazzoni M, Passeri G, Girasole G (1998) Bisphosphonates inhibit IL-6 production by human osteoblast-like cells. Scand J Rheumatol 27(1):38–41.

    PubMed  CAS  Google Scholar 

  41. Pennanen N, Lapinjoki S, Urtti A, Monkkonen J (1995) Effect of liposomal and free bisphosphonates on the IL-1 beta, IL-6 and TNF alpha secretion from RAW 264 cells in vitro. Pharm Res 12(6):916–922.

    PubMed  CAS  Google Scholar 

  42. Viereck V, Emons G, Lauck V, Frosch KH, Blaschke S, Grundker C, et al (2002) Bisphosphonates pamidronate and zoledronic acid stimulate osteoprotegerin production by primary human osteoblasts. Biochem Biophys Res Commun 291(3):680–686.

    PubMed  CAS  Google Scholar 

  43. Green JR (2002) Bisphosphonates in cancer therapy. Curr Opin Oncol 14(6):609–615.

    PubMed  CAS  Google Scholar 

  44. Wood J, Bonjean K, Ruetz S, Bellahcene A, Devy L, Foidart JM, et al (2002) Novel antiangiogenic effects of the bisphosphonate compound zoledronic acid. J Pharmacol Exp Ther 302(3):1055–1061.

    PubMed  CAS  Google Scholar 

  45. Clezardin P, Fournier P, Boissier S, Peyruchaud O (2003) In vitro and in vivo antitumor effects of bisphosphonates. Curr Med Chem 10(2):173–180.

    PubMed  CAS  Google Scholar 

  46. Fournier P, Boissier S, Filleur S, Guglielmi J, Cabon F, Colombel M, et al (2002) Bisphosphonates inhibit angiogenesis in vitro and testosterone-stimulated vascular regrowth in the ventral prostate in castrated rats. Cancer Res 62(22):6538–6544.

    PubMed  CAS  Google Scholar 

  47. Boissier S, Ferreras M, Peyruchaud O, Magnetto S, Ebetino FH, Colombel M, et al (2002) Bisphosphonates inhibit breast and prostate carcinoma cell invasion, an early event in the formation of bone metastases. Cancer Res 60(11):2949–2954.

    Google Scholar 

  48. Santini D, Vincenzi B, Dicuonzo G, Avvisati G, Massacesi C, Battistoni F, et al (2003) Zoledronic acid induces significant and long-lasting modifications of circulating angiogenic factors in cancer patients. Clin Cancer Res 9(8):2893–2897.

    PubMed  CAS  Google Scholar 

  49. Santini D, Vincenzi B, Avvisati G, Dicuonzo G, Battistoni F, Gavasci M, et al (2002) Pamidronate induces modifications of circulating angiogenetic factors in cancer patients. Clin Cancer Res 8(5):1080–1084.

    PubMed  CAS  Google Scholar 

  50. Zimering MB (2002) Effect of intravenous bisphosphonates on release of basic fibroblast growth factor in serum of patients with cancer-associated hypercalcemia. Life Sci 70(16):1947–1960.

    PubMed  CAS  Google Scholar 

  51. Matsuo A, Shuto T, Hirata G, Satoh H, Matsumoto Y, Zhao H, et al (2003) Antiinflammatory and chondroprotective effects of the aminobisphosphonate incadronate (YM175) in adjuvant induced arthritis. J Rheumatol 30(6):1280–1290.

    PubMed  CAS  Google Scholar 

  52. Zhao H, Shuto T, Hirata G, Iwamoto Y (2000) Aminobisphosphonate (YM175) inhibits bone destruction in rat adjuvant arthritis. J Orthop Sci 5(4):397–403.

    PubMed  CAS  Google Scholar 

  53. Sims NA, Green JR, Glatt M, Schlict S, Martin TJ, Gillespie MT, et al (2004) Targeting osteoclasts with zoledronic acid prevents bone destruction in collagen-induced arthritis. Arthritis Rheum 50(7):2338–2346.

    PubMed  CAS  Google Scholar 

  54. Herrak P, Gortz B, Hayer S, Redlich K, Reiter E, Gasser J, et al (2004) Zoledronic acid protects against local and systemic bone loss in tumor necrosis factor-mediated arthritis. Arthritis Rheum 50(7):2327–2337.

    PubMed  CAS  Google Scholar 

  55. Hayami T, Pickarski M, Wesolowski GA, McLane J, Bone A, Destefano J, et al (2004) The role of subchondral bone remodeling in osteoarthritis: reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transection model. Arthritis Rheum 50(4):1193–1206.

    PubMed  CAS  Google Scholar 

  56. Doschak MR, LaMothe JM, Cooper DM, Hallgrimsson B, Hanley DA, Bray RC, et al (2005) Bisphosphonates reduce bone mineral loss at ligament entheses after joint injury. Osteoarthritis Cartilage 13(9):790–797.

    PubMed  CAS  Google Scholar 

  57. Doschak MR, Wohl GR, Hanley DA, Bray RC, Zernicke RF (2004) Antiresorptive therapy conserves some periarticular bone and ligament mechanical properties after anterior cruciate ligament disruption in the rabbit knee. J Orthop Res 22(5):942–948.

    PubMed  CAS  Google Scholar 

  58. Muehleman C, Green J, Williams JM, Kuettner KE, Thonar EJ, Sumner DR (2002) The effect of bone remodeling inhibition by zoledronic acid in an animal model of cartilage matrix damage. Osteoarthritis Cartilage 10(3):226–233.

    PubMed  CAS  Google Scholar 

  59. Meyer JM DS, Farmer RW, Jeans GL, Prenger MC (2001) Bisphosphonates structurally similar to risedronate (actonel) slow disease progression in the guinea pig model of primary osteoarthritis. Arthritis Rheum 5307:1527 (abstr).

    Google Scholar 

  60. Meyer J FR, Prenger MC (2001) Risedronate but not alendronate slows disease progression in the guinea pig model of primary osteoarthritis. J Bone Miner Res 2001;16(1S):SA472 (abstr).

    Google Scholar 

  61. Spector TD (2003) Bisphosphonates: potential therapeutic agents for disease modification in osteoarthritis. Aging Clin Exp Res 15(5):413–418.

    PubMed  CAS  Google Scholar 

  62. Karvonen RL, Miller PR, Nelson DA, Granda JL, Fernandez-Madrid F (1998) Periarticular osteoporosis in osteoarthritis of the knee. J Rheumatol 25(11):2187–2194.

    PubMed  CAS  Google Scholar 

  63. Li B, Marshall D, Roe M, Aspden RM (1999) The electron microscope appearance of the subchondral bone plate in the human femoral head in osteoarthritis and osteoporosis. J Anat 195 (pt 1):101–110.

    PubMed  Google Scholar 

  64. Li B, Aspden RM (1997) Mechanical and material properties of the subchondral bone plate from the femoral head of patients with osteoarthritis or osteoporosis. Ann Rheum Dis 56(4):247–254.

    PubMed  CAS  Google Scholar 

  65. Li B, Aspden RM (1997) Composition and mechanical properties of cancellous bone from the femoral head of patients with osteoporosis or osteoarthritis. J Bone Miner Res 12(4):641–651.

    PubMed  CAS  Google Scholar 

  66. Chai BF, Tang XM, Li H (1991) Scanning electron microscopic study of subchondral bone tissues in osteoarthritic femoral head. Chin Med J (Engl) 104(6):503–509.

    CAS  Google Scholar 

  67. Coats AM, Zioupos P, Aspden RM (2003) Material properties of subchondral bone from patients with osteoporosis or osteoarthritis by microindentation testing and electron probe microanalysis. Calcif Tissue Int 73(1):66–71.

    PubMed  CAS  Google Scholar 

  68. Kamibayashi L, Wyss UP, Cooke TD, Zee B (1995) Changes in mean trabecular orientation in the medial condyle of the proximal tibia in osteoarthritis. Calcif Tissue Int 57(1):69–73.

    PubMed  CAS  Google Scholar 

  69. Kamibayashi L, Wyss UP, Cooke TD, Zee B (1995) Trabecular microstructure in the medial condyle of the proximal tibia of patients with knee osteoarthritis. Bone 17(1):27–35.

    PubMed  CAS  Google Scholar 

  70. Messent EA, Ward RJ, Tonkin CJ, Buckland-Wright C (2005) Tibial cancellous bone changes in patients with knee osteoarthritis. A short-term longitudinal study using Fractal Signature Analysis. Osteoarthritis Cartilage 13(6):463–470.

    PubMed  Google Scholar 

  71. Messent EA, Buckland-Wright JC, Blake GM (2005) Fractal analysis of trabecular bone in knee osteoarthritis (OA) is a more sensitive marker of disease status than bone mineral density (BMD). Calcif Tissue Int 76(6):419–425.

    PubMed  CAS  Google Scholar 

  72. Messent EA, Ward RJ, Tonkin CJ, Buckland-Wright C (2005) Cancellous bone differences between knees with early, definite and advanced joint space loss; a comparative quantitative macroradiographic study. Osteoarthritis Cartilage 13(1):39–47.

    PubMed  Google Scholar 

  73. Bettica P, Cline G, Hart DJ, Meyer J, Spector TD (2002) Evidence for increased bone resorption in patients with progressive knee osteoarthritis: longitudinal results from the Chingford study. Arthritis Rheum 46(12):3178–3184.

    PubMed  Google Scholar 

  74. Carbone LD, Nevitt MC, Wildy K, Barrow KD, Harris F, Felson D, et al (2004) The relationship of antiresorptive drug use to structural findings and symptoms of knee osteoarthritis. Arthritis Rheum 50(11):3516–3525.

    PubMed  Google Scholar 

  75. Bingham CO III BJ, Adami S. Clauw D, Cohen S, Dougados M, Cline G, Meyer J (2004) Clinically significant placebo improvement occurs by 6 months and is maintained in a study of knee OA pain and function. Osteoarthritis Cartilage 12(suppl B): S132.

    Google Scholar 

  76. Bingham CO III AW, Adami S, Cohen S, Conaghan P, Dougados M, Beary M, Meyer J, Garnero P (2004) Treatment with Risedronate reduced urinary CTX-II, a specific biochemical marker of type II collagen degradation in a 24-month study of knee OA. Osteoarthritis Cartilage 12(suppl B): S9.

    Google Scholar 

  77. Bingham CO III CG, Adami S, Buckland-Wright C, Cohen S, Conaghan P, Beary J, Dougados M, Strand V, Wenderoth D, Meyer J (2004) Predictors of structural progression in knee osteoarthritis over 24 months. Osteoarthritis Cartilage 12(suppl B): S136.

    Google Scholar 

  78. Bingham CO III B-WJ, Garnero P, Cohen SB, Dougados M, Adami S, Clauw DJ, Spector TD, Pelletier J-P, Raynauld J-P, Strand V, Simon LS, Meyer JM, Cline GA, Beary JF (2006) Risedronate decreases biochemical markers of cartilage degradation but does not decrease symptoms or slow x-ray progression in patients with medial compartment osteoarthritis of the knee: results of the two-year multinational Knee OA Structural Arthritis (KOSTAR) study. Arthritis Rheum 54:3494–3507

    Google Scholar 

  79. Raynauld JP, Martel-Pelletier J, Berthiaume MJ, Beaudoin G, Choquette D, Haraoui B, et al (2005) Long term evaluation of disease progression through the quantitative magnetic resonance imaging of symptomatic knee osteoarthritis patients: correlation with clinical symptoms and radiographic changes. Arthritis Res Ther 8(1):R21.

    PubMed  Google Scholar 

  80. Garnero P, Peterfy C, Zaim S, Schoenharting M (2005) Bone marrow abnormalities on magnetic resonance imaging are associated with type II collagen degradation in knee osteoarthritis: a three-month longitudinal study. Arthritis Rheum 52(9):2822–2829.

    PubMed  CAS  Google Scholar 

  81. Buckland-Wright C EAME, Cline GA, Beary J, Meyer J (2005) Risedronate protects against subchondral bone loss in OA knee patients with progressive joint space narrowing. Arthritis Rheum ACR Meting Abstr 1204.

    Google Scholar 

  82. Buckland-Wright JC ME, Bingham CO III, Ward RJ, Tonkin C (2007) A two-year longitudinal radiographic study examining the effect of a bisphosphonate (risedronate) upon subchondral bone loss in osteoarthritic knee patients. Rheumatology (Oxford) July 11, 2006 46(2):257–264.

    Google Scholar 

  83. Hofbauer LC, Schoppet M (2004) Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases. JAMA 292(4):490–495.

    PubMed  CAS  Google Scholar 

  84. Neumann E, Gay S, Muller-Ladner U (2005) The RANK/RANKL/osteoprotegerin system in rheumatoid arthritis: new insights from animal models. Arthritis Rheum 52(10):2960–2967.

    PubMed  CAS  Google Scholar 

  85. McClung MR, Lewiecki EM, Cohen SB, Bolognese MA, Woodson GC, Moffett AH, et al (2006) Denosumab in postmenopausal women with low bone mineral density. N Engl J Med 354(8):821–831.

    PubMed  CAS  Google Scholar 

  86. Manicourt DH, Altman RD, Williams JM, Devogelaer JP, Druetz-Van Egeren A, Lenz ME, et al (1999) Treatment with calcitonin suppresses the responses of bone, cartilage, and synovium in the early stages of canine experimental osteoarthritis and significantly reduces the severity of the cartilage lesions. Arthritis Rheum 42(6):1159–1167.

    PubMed  CAS  Google Scholar 

  87. Menuel C, Garnero L, Bardinet E, Poupon F, Phalippou D, Dormont D (2005) Characterization and correction of distortions in stereotactic magnetic resonance imaging for bilateral subthalamic stimulation in Parkinson disease. J Neurosurg 103(2):256–266.

    PubMed  Google Scholar 

  88. Bagger YZ, Tanko LB, Alexandersen P, Karsdal MA, Olson M, Mindeholm L, et al (2005) Oral salmon calcitonin induced suppression of urinary collagen type II degradation in postmenopausal women: a new potential treatment of osteoarthritis. Bone 37(3):425–430.

    PubMed  CAS  Google Scholar 

  89. Yasuda Y, Kaleta J, Bromme D (2005) The role of cathepsins in osteoporosis and arthritis: rationale for the design of new therapeutics. Adv Drug Deliv Rev 57(7):973–993.

    PubMed  CAS  Google Scholar 

  90. Dinarello CA (1996) Biologic basis for interleukin-1 in disease. Blood 87(6):2095–2147.

    PubMed  CAS  Google Scholar 

  91. Dinarello CA (2002) The IL-1 family and inflammatory diseases. Clin Exp Rheumatol 20(5 suppl 27):S1–13.

    PubMed  CAS  Google Scholar 

  92. Dinarello CA (1998) Interleukin-1, interleukin-1 receptors and interleukin-1 receptor antagonist. Int Rev Immunol 16(5–6):457–499.

    PubMed  CAS  Google Scholar 

  93. Dayer JM (2003) The pivotal role of interleukin-1 in the clinical manifestations of rheumatoid arthritis. Rheumatology (Oxford) 42(suppl 2):ii3–10.

    CAS  Google Scholar 

  94. Pelletier J, Martel-Pelletier J, Abramson SB (2000) Osteoarthritis, an inflammatory disease: potential implication for the selection of new therapeutic targets. Arthritis Rheum 44(6):1237–1247.

    Google Scholar 

  95. Pelletier JP, DiBattista JA, Roughley P, McCollum R, Martel-Pelletier J (1993) Cytokines and inflammation in cartilage degradation. Rheum Dis Clin North Am 19(3):545–568.

    PubMed  CAS  Google Scholar 

  96. Meulenbelt I, Seymour AB, Nieuwland M, Huizinga TW, van Duijn CM, Slagboom PE (2004) Association of the interleukin-1 gene cluster with radiographic signs of osteoarthritis of the hip. Arthritis Rheum 50(4):1179–1186.

    PubMed  CAS  Google Scholar 

  97. Moos V, Rudwaleit M, Herzog V, Hohlig K, Sieper J, Muller B (2000) Association of genotypes affecting the expression of interleukin-1beta or interleukin-1 receptor antagonist with osteoarthritis. Arthritis Rheum 43(11):2417–2422.

    PubMed  CAS  Google Scholar 

  98. Smith AJ, Keen LJ, Billingham MJ, Perry MJ, Elson CJ, Kirwan JR, et al (2004) Extended haplotypes and linkage disequilibrium in the IL1R1-IL1A-IL1B-IL1RN gene cluster: association with knee osteoarthritis. Genes Immun 5(6):451–460.

    PubMed  Google Scholar 

  99. Attur MG, Dave M, Cipolletta C, Kang P, Goldring MB, Patel IR, et al (2000) Reversal of autocrine and paracrine effects of interleukin 1 (IL-1) in human arthritis by type II IL-1 decoy receptor. Potential for pharmacological intervention. J Biol Chem 275(51):40307–40315.

    CAS  Google Scholar 

  100. Attur MG, Patel IR, Patel RN, Abramson SB, Amin AR (1998) Autocrine production of IL-1 beta by human osteoarthritis-affected cartilage and differential regulation of endogenous nitric oxide, IL-6, prostaglandin E2, and IL-8. Proc Assoc Am Physicians 110(1):65–72.

    PubMed  CAS  Google Scholar 

  101. Amin AR, Abramson SB (1998) The role of nitric oxide in articular cartilage breakdown in osteoarthritis. Curr Opin Rheumatol 10(3):263–268.

    PubMed  CAS  Google Scholar 

  102. Clancy R, Rediske J, Koehne C, Stoyanovsky D, Amin A, Attur M, et al (2001) Activation of stress-activated protein kinase in osteoarthritic cartilage: evidence for nitric oxide dependence. Osteoarthritis Cartilage 9(4):294–299.

    PubMed  CAS  Google Scholar 

  103. van de Loo FA, Joosten LA, van Lent PL, Arntz OJ, van den Berg WB (1995) Role of interleukin-1, tumor necrosis factor alpha, and interleukin-6 in cartilage proteoglycan metabolism and destruction. Effect of in situ blocking in murine antigen- and zymosan-induced arthritis. Arthritis Rheum 38(2):164–172.

    Google Scholar 

  104. Goldring MB, Birkhead J, Sandell LJ, Kimura T, Krane SM (1988) Interleukin 1 suppresses expression of cartilage-specific types II and IX collagens and increases types I and III collagens in human chondrocytes. J Clin Invest 82(6):2026–2037.

    PubMed  CAS  Google Scholar 

  105. Komuro H, Olee T, Kuhn K, Quach J, Brinson DC, Shikhman A, et al (2001) The osteoprotegerin/receptor activator of nuclear factor kappaB/receptor activator of nuclear factor kappaB ligand system in cartilage. Arthritis Rheum 44(12):2768–2776.

    PubMed  CAS  Google Scholar 

  106. van den Berg WB (2001) Uncoupling of inflammatory and destructive mechanisms in arthritis. Semin Arthritis Rheum 30(5 suppl 2):7–16.

    Google Scholar 

  107. Van den Berg WB (2002) Lessons from animal models of arthritis. Curr Rheumatol Rep 4(3):232–239.

    Google Scholar 

  108. van den Berg WB (2001) Lessons from animal models of osteoarthritis. Curr Opin Rheumatol 13(5):452–456.

    Google Scholar 

  109. Spencer CM, Wilde MI (1997) Diacerein. Drugs 53(1):98–106; discussion 107–108.

    PubMed  CAS  Google Scholar 

  110. Smith GN Jr, Myers SL, Brandt KD, Mickler EA, Albrecht ME (1999) Diacerhein treatment reduces the severity of osteoarthritis in the canine cruciate-deficiency model of osteoarthritis. Arthritis Rheum 42(3):545–554.

    PubMed  CAS  Google Scholar 

  111. Felisaz N, Boumediene K, Ghayor C, Herrouin JF, Bogdanowicz P, Galerra P, et al (1999) Stimulating effect of diacerein on TGF-beta1 and beta2 expression in articular chondrocytes cultured with and without interleukin-1. Osteoarthritis Cartilage 7(3):255–264.

    PubMed  CAS  Google Scholar 

  112. Yaron M, Shirazi I, Yaron I (1999) Anti-interleukin-1 effects of diacerein and rhein in human osteoarthritic synovial tissue and cartilage cultures. Osteoarthritis Cartilage 7(3):272–280.

    PubMed  CAS  Google Scholar 

  113. Brandt KD, Smith G, Kang SY, Myers S, O’Connor B, Albrecht M (1997) Effects of diacerhein in an accelerated canine model of osteoarthritis. Osteoarthritis Cartilage 5(6):438–449.

    PubMed  CAS  Google Scholar 

  114. Fidelix T, Soares B, Trevisani VM (2006) Diacerein for osteoarthritis. Cochrane Database Syst Rev 1:CD005117.

    PubMed  Google Scholar 

  115. Dougados M, Nguyen M, Berdah L, Mazieres B, Vignon E, Lequesne M (2001) Evaluation of the structure-modifying effects of diacerein in hip osteoarthritis: ECHODIAH, a three-year, placebo-controlled trial. Evaluation of the Chondromodulating Effect of Diacerein in OA of the Hip. Arthritis Rheum 44(11):2539–2547.

    PubMed  CAS  Google Scholar 

  116. Mazieres B, Garnero P, Gueguen A, Abbal M, Berdah L, Lequesne M, et al (2006) Molecular markers of cartilage breakdown and synovitis at baseline as predictors of structural progression of hip osteoarthritis. The ECHODIAH Cohort. Ann Rheum Dis 65(3):354–359.

    CAS  Google Scholar 

  117. Pham T, Le Henanff A, Ravaud P, Dieppe P, Paolozzi L, Dougados M (2004) Evaluation of the symptomatic and structural efficacy of a new hyaluronic acid compound, NRD101, in comparison with diacerein and placebo in a 1 year randomised controlled study in symptomatic knee osteoarthritis. Ann Rheum Dis 63(12):1611–1617.

    PubMed  CAS  Google Scholar 

  118. Pelletier JP, Yaron M, Haraoui B, Cohen P, Nahir MA, Choquette D, et al (2000) Efficacy and safety of diacerein in osteoarthritis of the knee: a double-blind, placebo-controlled trial. The Diacerein Study Group. Arthritis Rheum 43(10):2339–2348.

    CAS  Google Scholar 

  119. Jiang Y, Genant HK, Watt I, Cobby M, Bresnihan B, Aitchison R, et al (2000) A multicenter, double-blind, dose-ranging, randomized, placebo-controlled study of recombinant human interleukin-1 receptor antagonist in patients with rheumatoid arthritis: radiologic progression and correlation of Genant and Larsen scores. Arthritis Rheum 43(5):1001–1009.

    PubMed  CAS  Google Scholar 

  120. Cunnane G, Madigan A, Murphy E, FitzGerald O, Bresnihan B (2001) The effects of treatment with interleukin-1 receptor antagonist on the inflamed synovial membrane in rheumatoid arthritis. Rheumatology (Oxford) 40(1):62–69.

    CAS  Google Scholar 

  121. Lovell DJ, Bowyer SL, Solinger AM (2005) Interleukin-1 blockade by anakinra improves clinical symptoms in patients with neonatal-onset multisystem inflammatory disease. Arthritis Rheum 52(4):1283–1286.

    PubMed  CAS  Google Scholar 

  122. Economides AN, Carpenter LR, Rudge JS, Wong V, Koehler-Stec EM, Hartnett C, et al (2003) Cytokine traps: multi-component, high-affinity blockers of cytokine action. Nat Med 9(1):47–52.

    PubMed  CAS  Google Scholar 

  123. Bingham CO III GM, Moreland LW, Papadopoulos J, Parsey MV (2004) Results of a phase II study of IL1-Trap in moderate to severe rheumatoid arthritis. Arthritis Rheum (abstr) 50(9) Supplement, 5237 (Abstract 517)

    Google Scholar 

  124. Bingham CO III GM, Moreland L, Papadopoulos, Parsey MV (2004) Treatment of moderate to severe rheumatoid arthritis with IL1-TRAP. Ann Rheum Dis OP0108 (oral presentation)(EULAR 2004) (abstr).

    Google Scholar 

  125. Rudolphi K, Gerwin N, Verzijl N, van der Kraan P, van den Berg W (2003) Pralnacasan, an inhibitor of interleukin-1beta converting enzyme, reduces joint damage in two murine models of osteoarthritis. Osteoarthritis Cartilage 11(10):738–746.

    PubMed  CAS  Google Scholar 

  126. Le GT, Abbenante G (2005) Inhibitors of TACE and Caspase-1 as anti-inflammatory drugs. Curr Med Chem 12(25):2963–2977.

    PubMed  CAS  Google Scholar 

  127. http://library. corporate-ir.net/library/61/616/61656/items/166982/050928 UBSWarburg3.pdf.

    Google Scholar 

  128. Kim SH, Lechman ER, Kim S, Nash J, Oligino TJ, Robbins PD (2002) Ex vivo gene delivery of IL-1Ra and soluble TNF receptor confers a distal synergistic therapeutic effect in antigen-induced arthritis. Mol Ther 6(5):591–600.

    PubMed  CAS  Google Scholar 

  129. Evans CH, Robbins PD, Ghivizzani SC, Wasko MC, Tomaino MM, Kang R, et al (2005) Gene transfer to human joints: progress toward a gene therapy of arthritis. Proc Natl Acad Sci U S A 102(24):8698–8703.

    PubMed  CAS  Google Scholar 

  130. Evans CH (2005) Novel biological approaches to the intra-articular treatment of osteoarthritis. BioDrugs 19(6):355–362.

    PubMed  CAS  Google Scholar 

  131. Gouze JN, Stoddart MJ, Gouze E, Palmer GD, Ghivizzani SC, Grodzinsky AJ, et al (2004) In vitro gene transfer to chondrocytes and synovial fibroblasts by adenoviral vectors. Methods Mol Med 100:147–764.

    PubMed  CAS  Google Scholar 

  132. Evans CH, Gouze JN, Gouze E, Robbins PD, Ghivizzani SC (2004) Osteoarthritis gene therapy. Gene Ther 11(4):379–389.

    PubMed  CAS  Google Scholar 

  133. Evans CH, Robbins PD (1996) The promise of a new clinical trial—intra-articular IL-1 receptor antagonist. Proc Assoc Am Physicians 108(1):1–5.

    PubMed  CAS  Google Scholar 

  134. Evans CH, Robbins PD (1994) The interleukin-1 receptor antagonist and its delivery by gene transfer. Receptor 4(1):9–15.

    PubMed  CAS  Google Scholar 

  135. Moss RB, Rodman D, Spencer LT, Aitken ML, Zeitlin PL, Waltz D, et al (2004) Repeated adeno-associated virus serotype 2 aerosol-mediated cystic fibrosis transmembrane regulator gene transfer to the lungs of patients with cystic fibrosis: a multicenter, double-blind, placebo-controlled trial. Chest 125(2):509–521.

    PubMed  Google Scholar 

  136. http://www.targen.com/trials/rheumatoid-arthritis.php.

    Google Scholar 

  137. Giles JT, Meose P, Boers M, Bresnihan B, Conaghan PG, Heald A et al. Assessing Single Joints in arthritis clinical trials J Rheumatol 2007, 34(3):641–7

    PubMed  Google Scholar 

  138. Close DR (2001) Matrix metalloproteinase inhi-bitors in rheumatic diseases. Ann Rheum Dis 60 (suppl 3):iii62–67.

    PubMed  CAS  Google Scholar 

  139. Hidalgo M, Eckhardt SG (2001) Development of matrix metalloproteinase inhibitors in cancer therapy. J Natl Cancer Inst 93(3):178–193.

    PubMed  CAS  Google Scholar 

  140. Lewis EJ, Bishop J, Bottomley KM, Bradshaw D, Brewster M, Broadhurst MJ, et al (1997) Ro 32–3555, an orally active collagenase inhibitor, prevents cartilage breakdown in vitro and in vivo. Br J Pharmacol 121(3):540–546.

    PubMed  CAS  Google Scholar 

  141. Greenwald RA, Golub LM, Ramamurthy NS, Chowdhury M, Moak SA, Sorsa T (1998) In vitro sensitivity of the three mammalian collagenases to tetracycline inhibition: relationship to bone and cartilage degradation. Bone 22(1):33–38.

    PubMed  Google Scholar 

  142. Golub LM, Lee HM, Ryan ME, Giannobile WV, Payne J, Sorsa T (1998) Tetracyclines inhibit connective tissue breakdown by multiple non-antimicrobial mechanisms. Adv Dent Res 12(2):12–26.

    PubMed  CAS  Google Scholar 

  143. Smith GN Jr, Yu LP Jr, Brandt KD, Capello WN (1998) Oral administration of doxycycline reduces collagenase and gelatinase activities in extracts of human osteoarthritic cartilage. J Rheumatol 25(3):532–535.

    PubMed  CAS  Google Scholar 

  144. Sadowski T, Steinmeyer J (2001) Effects of tetracyclines on the production of matrix metalloproteinases and plasminogen activators as well as of their natural inhibitors, tissue inhibitor of metalloproteinases-1 and plasminogen activator inhibitor-1. Inflamm Res 50(3):175–182.

    PubMed  CAS  Google Scholar 

  145. Steinmeyer J, Daufeldt S, Taiwo YO (1998) Pharmacological effect of tetracyclines on proteoglycanases from interleukin-1-treated articular cartilage. Biochem Pharmacol 55(1):93–100.

    PubMed  CAS  Google Scholar 

  146. Sewell KL, Breedveld F, Furrie E, O’Brien J, Brinckerhoff C, Dynesius-Trentham R, et al (1996) The effect of minocycline in rat models of inflammatory arthritis: correlation of arthritis suppression with enhanced T cell calcium flux. Cell Immunol 167(2):195–204.

    PubMed  CAS  Google Scholar 

  147. Tilley BC, Alarcon GS, Heyse SP, Trentham DE, Neuner R, Kaplan DA, et al (1995) Minocycline in rheumatoid arthritis. A 48-week, double-blind, placebo-controlled trial. MIRA Trial Group. Ann Intern Med 122(2):81–89.

    PubMed  CAS  Google Scholar 

  148. Bluhm GB, Sharp JT, Tilley BC, Alarcon GS, Cooper SM, Pillemer SR, et al (1997) Radiographic results from the Minocycline in Rheumatoid Arthritis (MIRA) Trial. J Rheumatol 24(7):1295–1302.

    PubMed  CAS  Google Scholar 

  149. O’Dell JR, Leff R, Paulsen G, Haire C, Mallek J, Eckhoff PJ, et al (2002) Treatment of rheumatoid arthritis with methotrexate and hydroxychloroquine, methotrexate and sulfasalazine, or a combination of the three medications: results of a two-year, randomized, double-blind, placebo-controlled trial. Arthritis Rheum 46(5):1164–1170.

    PubMed  CAS  Google Scholar 

  150. Suwannarat P, Phornphutkul C, Bernardini I, Turner M, Gahl WA (2004) Minocycline-induced hyperpigmentation masquerading as alkaptonuria in individuals with joint pain. Arthritis Rheum 50(11):3698–3701.

    PubMed  Google Scholar 

  151. Brandt KD, Mazzuca SA (2006) Experience with a placebo-controlled randomized clinical trial of a disease-modifying drug for osteoarthritis: the doxycycline trial. Rheum Dis Clin North Am 32(1):217–234, xi-xii.

    PubMed  Google Scholar 

  152. Brandt KD, Mazzuca SA, Katz BP, Lane KA, Buckwalter KA, Yocum DE, et al (2005) Effects of doxycycline on progression of osteoarthritis: results of a randomized, placebo-controlled, double-blind trial. Arthritis Rheum 52(7):2015–2025.

    PubMed  CAS  Google Scholar 

  153. Mazzuca SA, Brandt KD, Eyre DR, Katz BP, Askew J, Lane KA (2005) Urinary levels of type II collagen C-telopeptide crosslink are unrelated to joint space narrowing in patients with knee osteoarthritis. Ann Rheum Dis 65:1055–9

    PubMed  Google Scholar 

  154. Mazzuca SA, Poole AR, Brandt KD, Katz BP, Lane KA, Lobanok T (2006) Associations between joint space narrowing and molecular markers of collagen and proteoglycan turnover in patients with knee osteoarthritis. J Rheumatol 33:1147–1151

    PubMed  CAS  Google Scholar 

  155. Lohmander LS, Brandt KD, Mazzuca SA, Katz BP, Larsson S, Struglics A, et al (2005) Use of the plasma stromelysin (matrix metalloproteinase 3) concentration to predict joint space narrowing in knee osteoarthritis. Arthritis Rheum 52(10): 3160–3167.

    PubMed  CAS  Google Scholar 

  156. Leff RL, Elias I, Ionescu M, Reiner A, Poole AR (2003) Molecular changes in human osteoarthritic cartilage after 3 weeks of oral administration of BAY 12–9566, a matrix metalloproteinase inhibitor. J Rheumatol 30(3):544–549.

    PubMed  CAS  Google Scholar 

  157. Sparano JA, Bernardo P, Stephenson P, Gradishar WJ, Ingle JN, Zucker S, et al (2004) Randomized phase III trial of marimastat versus placebo in patients with metastatic breast cancer who have responding or stable disease after first-line chemotherapy: Eastern Cooperative Oncology Group trial E2196. J Clin Oncol 22(23):4683–4690.

    PubMed  CAS  Google Scholar 

  158. Steward WP, Thomas AL (2000) Marimastat: the clinical development of a matrix metalloproteinase inhibitor. Expert Opin Invest Drugs 9(12): 2913–2922.

    CAS  Google Scholar 

  159. Morko J, Kiviranta R, Joronen K, Saamanen AM, Vuorio E, Salminen-Mankonen H (2005) Spontaneous development of synovitis and cartilage degeneration in transgenic mice overexpressing cathepsin K. Arthritis Rheum 52(12):3713–3717.

    PubMed  CAS  Google Scholar 

  160. Morko JP, Soderstrom M, Saamanen AM, Salminen HJ, Vuorio EI (2004) Up regulation of cathepsin K expression in articular chondrocytes in a transgenic mouse model for osteoarthritis. Ann Rheum Dis 63(6):649–655.

    PubMed  CAS  Google Scholar 

  161. Hou WS, Li W, Keyszer G, Weber E, Levy R, Klein MJ, et al (2002) Comparison of cathepsins K and S expression within the rheumatoid and osteoarthritic synovium. Arthritis Rheum 46(3):663–674.

    PubMed  CAS  Google Scholar 

  162. Gelb BD, Shi GP, Chapman HA, Desnick RJ (1996) Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science 273(5279):1236–1238.

    PubMed  CAS  Google Scholar 

  163. Kiviranta R, Morko J, Uusitalo H, Aro HT, Vuorio E, Rantakokko J (2001) Accelerated turnover of metaphyseal trabecular bone in mice overexpressing cathepsin K. J Bone Miner Res 16(8):1444–1452.

    PubMed  CAS  Google Scholar 

  164. Connor JR LC, Bendele AM, Maul DH, Kumar S (2005) Effects of an orally administered cathepsin K inhibtor (SB-553484) on the beagle dog medial meniscectomy model of osteoarthritis. Osteoarthritis Cartilage 13 (suppl A):P126, S67.

    Google Scholar 

  165. http://www.gsk.com/investors/presentations/oncology 2005/early-bw.pdf.

    Google Scholar 

  166. Williams A, Sharma L, McKenzie CA, Prasad PV, Burstein D (2005) Delayed gadolinium-enhanced magnetic resonance imaging of cartilage in knee osteoarthritis: findings at different radiographic stages of disease and relationship to malalignment. Arthritis Rheum 52(11):3528–3535.

    PubMed  CAS  Google Scholar 

  167. Lohmander LS, Felson D (2004) Can we identify a “high risk” patient profile to determine who will experience rapid progression of osteoarthritis? Osteoarthritis Cartilage 12(suppl A):S49–52.

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this chapter

Cite this chapter

Bingham, C.O. (2007). Novel Osteoarthritis Therapeutics. In: Bronner, F., Farach-Carson, M.C. (eds) Bone and Osteoarthritis. Topics in Bone Biology, vol 4. Springer, London. https://doi.org/10.1007/978-1-84628-701-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-701-5_11

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-513-4

  • Online ISBN: 978-1-84628-701-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics