Skip to main content

Animal Models for Senile Osteoporosis

  • Chapter
Osteoporosis in Older Persons
  • 929 Accesses

Age-related decline in bone mass is a universal phenomenon among laboratory mammals. Research on aging has been conducted using various models from yeast and nematode to mouse and non-human primates, and has rapidly progressed because of the recent development of forward and reverse genetics, as well as functional genomics. A number of mouse models bearing artificially or naturally modified genes develop bone phenotypes with various pathologies. Among those mice, some are considered to be potent models for understanding the pathophysiology of senile osteoporosis in humans. Here, available models for the study of senile osteoporosis, and mouse models in particular, are introduced and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aufdemorte TB, Fox WC, Miller D, Buffum K, Holt GR, Carey KD. A non-human primate model for the study of osteoporosis and oral bone loss. Bone 1993;14(3):581–586.

    Article  CAS  PubMed  Google Scholar 

  2. Champ JE, Binkley N, Havighurst T, Colman RJ, Kemnitz JW, Roecker EB. The effect of advancing age on bone mineral content of female rhesus monkeys. Bone 1996;19(5):485–492.

    Article  CAS  PubMed  Google Scholar 

  3. Colman RJ, Kemnitz JW, Lane MA, Abbott DH, Binkley N. Skeletal effects of aging and meno-pausal status in female rhesus macaques. J Clin Endocrinol Metab 1999;84(11):4144–4148.

    Article  CAS  PubMed  Google Scholar 

  4. Colman RJ, Lane MA, Binkley N, Wegner FH, Kemnitz JW. Skeletal effects of aging in male rhesus monkeys. Bone 1999;24(1):17–23.

    Article  CAS  PubMed  Google Scholar 

  5. Jayo MJ, Rankin SE, Weaver DS, Carlson CS, Clarkson TB. Accuracy and precision of lumbar bone mineral content by dual-energy X-ray absorptiometry in live female monkeys. Calcif Tissue Int 1991;49(6):438–440.

    Article  CAS  PubMed  Google Scholar 

  6. Jayo MJ, Weaver DS, Rankin SE, Kaplan JR. Accuracy and reproducibility of lumbar bone mineral status determined by dual photon absorp-tiometry in live male cynomolgus macaques (Macaca fascicularis). Lab Anim Sci 1990;40(3): 266–269.

    CAS  PubMed  Google Scholar 

  7. Ikeda T, Utsuyama M, Hirokawa K. Expression profiles of receptor activator of nuclear factor kappaB ligand, receptor activator of nuclear factor kappaB, and osteoprotegerin messenger RNA in aged and ovariectomized rat bones. J Bone Miner Res 2001;16(8):1416–1425.

    Article  CAS  PubMed  Google Scholar 

  8. Perkins SL, Gibbons R, Kling S, Kahn AJ. Age-related bone loss in mice is associated with an increased osteoclast progenitor pool. Bone 1994; 15(1):65–72.

    Article  CAS  PubMed  Google Scholar 

  9. Halloran BP, Ferguson VL, Simske SJ, Burghardt A, Venton LL, Majumdar S. Changes in bone structure and mass with advancing age in the male C57BL/6J mouse. J Bone Miner Res 2002; 17(6):1044–1050.

    Article  PubMed  Google Scholar 

  10. Ferguson VL, Ayers RA, Bateman TA, Simske SJ. Bone development and age-related bone loss in male C57BL/6J mice. Bone 2003;33(3):387–398.

    Article  PubMed  Google Scholar 

  11. Cao J, Venton L, Sakata T, Halloran BP. Expression of RANKL and OPG correlates with age-related bone loss in male C57BL/6 mice. J Bone Miner Res 2003;18(2):270–277.

    Article  CAS  PubMed  Google Scholar 

  12. Bergman RJ, Gazit D, Kahn AJ, Gruber H, Mc -Dougall S, Hahn TJ. Age-related changes in osteo-genic stem cells in mice. J Bone Miner Res 1996; 11(5):568–577.

    Article  CAS  PubMed  Google Scholar 

  13. Morrison SJ, Wandycz AM, Akashi K, Globerson A, Weissman IL. The aging of hematopoietic stem cells. Nat Med 1996;2(9):1011–1016.

    Article  CAS  PubMed  Google Scholar 

  14. Ghia P, Melchers F, Rolink AG. Age-dependent changes in B lymphocyte development in man and mouse. Exp Gerontol 2000;35(2):159–165.

    Article  CAS  PubMed  Google Scholar 

  15. LeMaoult J, Manavalan JS, Dyall R, Szabo P, Nikolic-Zugic J, Weksler ME. Cellular basis of B cell clonal populations in old mice. J Immunol 1999;162(11):6384–6391.

    CAS  PubMed  Google Scholar 

  16. Takeda T, Matsushita T, Kurozumi M, Takemura K, Higuchi K, Hosokawa M. Pathobiology of the senescence-accelerated mouse (SAM). Exp Geron-tol 1997;32(1–2):117–127.

    Article  CAS  Google Scholar 

  17. Jilka RL, Weinstein RS, Takahashi K, Parfitt AM, Manolagas SC. Linkage of decreased bone mass with impaired osteoblastogenesis in a murine model of accelerated senescence. J Clin Invest 1996;97(7):1732–1740.

    Article  CAS  PubMed  Google Scholar 

  18. Silva MJ, Brodt MD, Ettner SL. Long bones from the senescence accelerated mouse SAMP6 have increased size but reduced whole-bone strength and resistance to fracture. J Bone Miner Res 2002;17(9):1597–1603.

    Article  PubMed  Google Scholar 

  19. Kajkenova O, Lecka-Czernik B, Gubrij I, et al. Increased adipogenesis and myelopoiesis in the bone marrow of SAMP6, a murine model of defective osteoblastogenesis and low turnover osteope-nia. J Bone Miner Res 1997;12(11):1772–1779.

    Article  CAS  PubMed  Google Scholar 

  20. Matsushita M, Tsuboyama T, Kasai R, et al. Age-related changes in bone mass in the senescence-accelerated mouse (SAM). SAM-R/3 and SAM-P/6 as new murine models for senile osteoporosis. Am J Pathol 1986;125(2):276–283.

    CAS  PubMed  Google Scholar 

  21. Takada K, Inaba M, Ichioka N, et al. Treatment of senile osteoporosis in SAMP6 mice by intra-bone marrow injection of allogeneic bone marrow cells. Stem Cells 2006;24(2):399–405.

    Article  PubMed  Google Scholar 

  22. Duque G, Macoritto M, Dion N, Ste-Marie LG, Kremer R. 1,25(OH)2D3 acts as a bone-forming agent in the hormone-independent senescence-accelerated mouse (SAM-P/6). Am J Physiol Endocrinol Metab 2005;288(4):E723–E730.

    Article  CAS  PubMed  Google Scholar 

  23. Ichioka N, Inaba M, Kushida T, et al. Prevention of senile osteoporosis in SAMP6 mice by intrab-one marrow injection of allogeneic bone marrow cells. Stem Cells 2002;20(6):542–551.

    Article  PubMed  Google Scholar 

  24. Li CY, Schaffler MB, Wolde-Semait HT, Hernandez CJ, Jepsen KJ. Genetic background influences cortical bone response to ovariectomy. J Bone Miner Res 2005;20(12):2150–2158.

    Article  PubMed  Google Scholar 

  25. Beamer WG, Shultz KL, Donahue LR, et al. Quantitative trait loci for femoral and lumbar vertebral bone mineral density in C57BL/6J and C3H/HeJ inbred strains of mice. J Bone Miner Res 2001; 16(7):1195–1206.

    Article  CAS  PubMed  Google Scholar 

  26. Hishiya A, Watanabe K. Progeroid syndrome as a model for impaired bone formation in senile osteoporosis. J Bone Miner Metab 2004;22(5): 399–403.

    Article  PubMed  Google Scholar 

  27. Warner HR, Sierra F. Models of accelerated ageing can be informative about the molecular mechanisms of ageing and/or age-related pathology. Mech Ageing Dev 2003;124(5):581–587.

    Article  CAS  PubMed  Google Scholar 

  28. Hasty P, Vijg J. Accelerating aging by mouse reverse genetics: a rational approach to understanding longevity. Aging Cell 2004;3(2):55– 65.

    Article  CAS  PubMed  Google Scholar 

  29. Hasty P, Campisi J, Hoeijmakers J, van Steeg H, Vijg J. Aging and genome maintenance: lessons from the mouse? Science 299:(5611)1355–1359.

    Article  CAS  PubMed  Google Scholar 

  30. Kuro-o M. Disease model: human aging. Trends Mol Med 2001;7(4):179–181.

    Article  CAS  PubMed  Google Scholar 

  31. Kipling D, Davis T, Ostler EL, Faragher RG. What can progeroid syndromes tell us about human aging? Science 305:(5689)1426–1431.

    Article  CAS  PubMed  Google Scholar 

  32. Yu CE, Oshima J, Fu YH, et al. Positional cloning of the Werner's syndrome gene. Science 1996; 272(5259):258–262.

    Article  CAS  PubMed  Google Scholar 

  33. Lombard DB, Beard C, Johnson B, et al. Mutations in the WRN gene in mice accelerate mortality in a p53-null background. Mol Cell Biol 2000;20(9): 3286–3291.

    Article  CAS  PubMed  Google Scholar 

  34. Du X, Shen J, Kugan N, et al. Telomere shortening exposes functions for the mouse werner and bloom syndrome genes. Mol Cell Biol 2004; 24(19):8437–8446.

    Article  CAS  PubMed  Google Scholar 

  35. Chang S, Multani AS, Cabrera NG, et al. Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nat Genet 2004;36(8):877– 882.

    Article  CAS  PubMed  Google Scholar 

  36. Mohaghegh P, Hickson ID. DNA helicase deficiencies associated with cancer predisposition and premature ageing disorders. Hum Mol Genet 2001;10(7):741–746.

    Article  CAS  PubMed  Google Scholar 

  37. Kitao S, Shimamoto A, Goto M, et al. Mutations in RECQL4 cause a subset of cases of Rothmund-Thomson syndrome. Nat Genet 1999;22(1):82– 84.

    Article  CAS  PubMed  Google Scholar 

  38. Hoki Y, Araki R, Fujimori A, et al. Growth retardation and skin abnormalities of the Recql4-deficient mouse. Hum Mol Genet 2003;12(18): 2293–2299.

    Article  CAS  PubMed  Google Scholar 

  39. Yang J, Murthy S, Winata T, et al. Recql4 haploin-sufficiency in mice leads to defects in osteoblast progenitors: implications for low bone mass phenotype. Biochem Biophys Res Commun 2006; 344(1):346–352.

    Article  CAS  PubMed  Google Scholar 

  40. Van Maldergem L, Siitonen HA, Jalkh N, et al. Revisiting the craniosynostosis-radial ray hypo-plasia association: Baller-Gerold syndrome caused by mutations in the RECQL4 gene. J Med Genet 2006;43(2):148–152.

    Article  PubMed  CAS  Google Scholar 

  41. Eriksson M, Brown WT, Gordon LB, et al. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 2003;423(6937):293–298.

    Article  CAS  PubMed  Google Scholar 

  42. De Sandre-Giovannoli A, Bernard R, Cau P, et al. Lamin a truncation in Hutchinson-Gilford proge-ria. Science 2003;300(5628):2055.

    Article  PubMed  Google Scholar 

  43. Mounkes LC, Kozlov S, Hernandez L, Sullivan T, Stewart CL. A progeroid syndrome in mice is caused by defects in A-type lamins. Nature 2003;423(6937):298–301.

    Article  CAS  PubMed  Google Scholar 

  44. Duque G, Rivas D. Age-related changes in lamin A/C expression in the osteoarticular system: lami-nopathies as a potential new aging mechanism. Mech Ageing Dev 2006;127(4):378–383.

    Article  CAS  PubMed  Google Scholar 

  45. Vogel H, Lim DS, Karsenty G, Finegold M, Hasty P. Deletion of Ku86 causes early onset of senescence in mice. Proc Natl Acad Sci U S A 1999; 96(19):10770–10775.

    Article  CAS  PubMed  Google Scholar 

  46. Sun LQ, Lee DW, Zhang Q, et al. Growth retardation and premature aging phenotypes in mice with disruption of the SNF2-like gene, PASG. Genes Dev 2004;18(9):1035–1046.

    Article  CAS  PubMed  Google Scholar 

  47. Trifunovic A, Wredenberg A, Falkenberg M, et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 2004; 429(6990):417–423.

    Article  CAS  PubMed  Google Scholar 

  48. Mostoslavsky R, Chua KF, Lombard DB, et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 2006; 124(2):315–329.

    Article  CAS  PubMed  Google Scholar 

  49. Hartwell L. Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell 1992;71(4):543–546.

    Article  CAS  PubMed  Google Scholar 

  50. Nurse P. Checkpoint pathways come of age. Cell 1997;91(7):865–867.

    Article  CAS  PubMed  Google Scholar 

  51. Rotman G, Shiloh Y. ATM: from gene to function. Hum Mol Genet 1998;7(10):1555–1563.

    Article  CAS  PubMed  Google Scholar 

  52. Lavin MF, Shiloh Y. The genetic defect in ataxia-telangiectasia. Annu Rev Immunol 1997;15:177– 202.

    Article  CAS  PubMed  Google Scholar 

  53. Barlow C, Hirotsune S, Paylor R, et al. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 1996;86(1):159–171.

    Article  CAS  PubMed  Google Scholar 

  54. Xu Y, Ashley T, Brainerd EE, Bronson RT, Meyn MS, Baltimore D. Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects, and thymic lymphoma. Genes Dev 1996;10(19):2411– 2422.

    Article  CAS  PubMed  Google Scholar 

  55. Elson A, Wang Y, Daugherty CJ, et al. Pleiotropic defects in ataxia-telangiectasia protein-deficient mice. Proc Natl Acad Sci U S A 1996;93(23): 13084–13089.

    Article  CAS  PubMed  Google Scholar 

  56. Ito K, Hirao A, Arai F, et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 2004;431(7011):997–1002.

    Article  CAS  PubMed  Google Scholar 

  57. Hishiya A, Ito M, Aburatani H, Motoyama N, Ikeda K, Watanabe K. Ataxia telangiectasia mutated (Atm) knockout mice as a model of osteopenia due to impaired bone formation. Bone 2005;37(4):497–503.

    Article  CAS  PubMed  Google Scholar 

  58. Tyner SD, Venkatachalam S, Choi J, et al. p53 mutant mice that display early ageing-associated phenotypes. Nature 2002;415(6867):45–53.

    Article  CAS  PubMed  Google Scholar 

  59. Maier B, Gluba W, Bernier B, et al. Modulation of mammalian life span by the short isoform of p53. Genes Dev 2004;18(3):306–319.

    Article  CAS  PubMed  Google Scholar 

  60. Lengner CJ, Steinman HA, Gagnon J, et al. Osteo-blast differentiation and skeletal development are regulated by Mdm2-p53 signaling. J Cell Biol 2006;172(6):909–921.

    Article  CAS  PubMed  Google Scholar 

  61. Wang X, Kua HY, Hu Y, et al. p53 functions as a negative regulator of osteoblastogenesis, osteo-blast-dependent osteoclastogenesis, and bone remodeling. J Cell Biol 2006;172(1):115–125.

    Article  CAS  PubMed  Google Scholar 

  62. Rasheed N, Wang X, Niu QT, Yeh J, Li B. Atm-deficient mice: an osteoporosis model with defective osteoblast differentiation and increased osteoclastogenesis. Hum Mol Genet 2006;15(12): 1938–1948.

    Article  CAS  PubMed  Google Scholar 

  63. Manolagas SC, Jilka RL. Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N Engl J Med 1995;332(5):305–311.

    Article  CAS  PubMed  Google Scholar 

  64. Davey RA, MacLean HE, McManus JF, Findlay DM, Zajac JD. Genetically modified animal models as tools for studying bone and mineral metabolism. J Bone Miner Res 2004;19(6):882–892.

    Article  PubMed  Google Scholar 

  65. Chien KR, Karsenty G. Longevity and lineages: toward the integrative biology of degenerative diseases in heart, muscle, and bone. Cell 2005; 120(4):533–544.

    Article  CAS  PubMed  Google Scholar 

  66. Karsenty G. The complexities of skeletal biology. Nature 2003;423(6937):316–318.

    Article  CAS  PubMed  Google Scholar 

  67. Karsenty G. The genetic transformation of bone biology. Genes Dev 1999;13(23):3037–3051.

    Article  CAS  PubMed  Google Scholar 

  68. Yeh ET, Reiser H, Benacerraf B, Rock KL. The expression, function, and ontogeny of a novel T cell-activating protein, TAP, in the thymus. J Immunol 1986;137(4):1232–1238.

    CAS  PubMed  Google Scholar 

  69. Stanford WL, Haque S, Alexander R, et al. Altered proliferative response by T lymphocytes of Ly-6A (Sca-1) null mice. J Exp Med 1997;186(5): 705–717.

    Article  CAS  PubMed  Google Scholar 

  70. Bonyadi M, Waldman SD, Liu D, Aubin JE, Grynpas MD, Stanford WL. Mesenchymal progenitor self-renewal deficiency leads to age-dependent osteoporosis in Sca-1/Ly-6A null mice. Proc Natl Acad Sci U S A 2003;100(10): 5840–5845.

    Article  CAS  PubMed  Google Scholar 

  71. Ito CY, Li CY, Bernstein A, Dick JE, Stanford WL. Hematopoietic stem cell and progenitor defects in Sca-1/Ly-6A-null mice. Blood 2003;101(2):517– 523.

    Article  CAS  PubMed  Google Scholar 

  72. Oreffo RO, Bord S, Triffitt JT. Skeletal progenitor cells and ageing human populations. Clin Sci (Lond) 1998;94(5):549–555.

    CAS  Google Scholar 

  73. Ogata N, Chikazu D, Kubota N, et al. Insulin receptor substrate-1 in osteoblast is indispensable for maintaining bone turnover. J Clin Invest 2000;105(7):935–943.

    Article  CAS  PubMed  Google Scholar 

  74. Gong Y, Slee RB, Fukai N, et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 2001;107(4):513–523.

    Article  CAS  PubMed  Google Scholar 

  75. Boyden LM, Mao J, Belsky J, et al. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 2002;346(20):1513–1521.

    Article  CAS  PubMed  Google Scholar 

  76. Kato M, Patel MS, Levasseur R, et al. Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascu-larization in mice deficient in Lrp5, a Wnt core-ceptor. J Cell Biol 2002;157(2):303–314.

    Article  CAS  PubMed  Google Scholar 

  77. Kulkarni NH, Onyia JE, Zeng Q, et al. Orally bio-available GSK-3alpha/beta dual inhibitor increases markers of cellular differentiation in vitro and bone mass in vivo. J Bone Miner Res 2006;21(6): 910–920.

    Article  CAS  PubMed  Google Scholar 

  78. Clement-Lacroix P, Ai M, Morvan F, et al. Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice. Proc Natl Acad Sci U S A 2005;102(48):17406–17411.

    Article  CAS  PubMed  Google Scholar 

  79. Bennett CN, Longo KA, Wright WS, et al. Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc Natl Acad Sci U S A 2005;102(9): 3324–3329.

    Article  CAS  PubMed  Google Scholar 

  80. Ross SE, Hemati N, Longo KA, et al. Inhibition of adipogenesis by Wnt signaling. Science 2000; 289(5481):950–953.

    Article  CAS  PubMed  Google Scholar 

  81. Gunther T, Poli C, Muller JM, et al. Fhl2 deficiency results in osteopenia due to decreased activity of osteoblasts. Embo J 2005;24(17):3049–3056.

    Article  PubMed  CAS  Google Scholar 

  82. Kharbanda S, Yuan ZM, Weichselbaum R, Kufe D. Functional role for the c-Abl protein tyrosine kinase in the cellular response to genotoxic stress. Biochim Biophys Acta 1997;1333(2):O1–O7.

    CAS  PubMed  Google Scholar 

  83. Hantschel O, Superti-Furga G. Regulation of the c-Abl and Bcr-Abl tyrosine kinases. Nat Rev Mol Cell Biol 2004;5(1):33–44.

    Article  CAS  PubMed  Google Scholar 

  84. Li B, Boast S, de los Santos K, et al. Mice deficient in Abl are osteoporotic and have defects in osteo-blast maturation. Nat Genet 2000;24(3):304–308.

    Article  CAS  PubMed  Google Scholar 

  85. Li B, Wang X, Rasheed N, et al. Distinct roles of c-Abl and Atm in oxidative stress response are mediated by protein kinase C delta. Genes Dev 2004;18(15):1824–1837.

    Article  CAS  PubMed  Google Scholar 

  86. Moskovitz J, Bar-Noy S, Williams WM, Requena J, Berlett BS, Stadtman ER. Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense and lifespan in mammals. Proc Natl Acad Sci U S A 2001;98(23):12920–12925.

    Article  CAS  PubMed  Google Scholar 

  87. Neumann CA, Krause DS, Carman CV, et al. Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression. Nature 2003;424(6948):561–565.

    Article  CAS  PubMed  Google Scholar 

  88. Reliene R, Goad ME, Schiestl RH. Developmental cell death in the liver and newborn lethality of Ku86 deficient mice suppressed by antioxidant N-acetyl-cysteine. DNA Repair (Amst) 2006; 5(11):1392–1397.

    Article  CAS  Google Scholar 

  89. Furukawa S, Fujita T, Shimabukuro M, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 2004;114(12): 1752–1761.

    CAS  PubMed  Google Scholar 

  90. Houstis N, Rosen ED, Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 2006;440(7086):944– 948.

    Article  CAS  PubMed  Google Scholar 

  91. Kuro-o M, Matsumura Y, Aizawa H, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 1997;390 (6655):45–51.

    Article  CAS  PubMed  Google Scholar 

  92. Kawaguchi H, Manabe N, Miyaura C, Chikuda H, Nakamura K, Kuro-o M. Independent impairment of osteoblast and osteoclast differentiation in klotho mouse exhibiting low-turnover osteope-nia. J Clin Invest 1999;104(3):229–237.

    Article  CAS  PubMed  Google Scholar 

  93. Tohyama O, Imura A, Iwano A, et al. Klotho is a novel beta-glucuronidase capable of hydrolyzing steroid beta-glucuronides. J Biol Chem 2004; 279(11):9777–9784.

    Article  CAS  PubMed  Google Scholar 

  94. Kurosu H, Ogawa Y, Miyoshi M, et al. Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem 2006;281(10):6120–6123.

    Article  CAS  PubMed  Google Scholar 

  95. Kurosu H, Yamamoto M, Clark JD, et al. Suppression of aging in mice by the hormone Klotho. Science 2005;309(5742):1829–1833.

    Article  CAS  PubMed  Google Scholar 

  96. Urakawa I, Yamazaki Y, Shimada T, et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 2006;444(7120):770– 774.

    Article  CAS  PubMed  Google Scholar 

  97. ADHR-Consortium. Autosomal dominant hypo-phosphataemic rickets is associated with mutations in FGF23. Nat Genet 2000;26(3):345–348.

    Article  CAS  Google Scholar 

  98. Razzaque MS, Sitara D, Taguchi T, St-Arnaud R, Lanske B. Premature aging-like phenotype in fibroblast growth factor 23 null mice is a vitamin D-mediated process. FASEB J 2006;20:720–722.

    CAS  PubMed  Google Scholar 

  99. Tsujikawa H, Kurotaki Y, Fujimori T, Fukuda K, Nabeshima Y. Klotho, a gene related to a syndrome resembling human premature aging, functions in a negative regulatory circuit of vitamin D endocrine system. Mol Endocrinol 2003;17(12):2393–2403.

    Article  CAS  PubMed  Google Scholar 

  100. Yoshida T, Fujimori T, Nabeshima Y. Mediation of unusually high concentrations of 1,25-dihydroxy-vitamin D in homozygous klotho mutant mice by increased expression of renal 1alpha-hydroxylase gene. Endocrinology 2002;143(2):683–689.

    Article  CAS  PubMed  Google Scholar 

  101. Liu S, Zhou J, Tang W, Jiang X, Rowe DW, Quarles LD. Pathogenic role of Fgf23 in Hyp mice. Am J Physiol Endocrinol Metab 2006;291(1):E38–E49.

    Article  CAS  PubMed  Google Scholar 

  102. Thompson DL, Sabbagh Y, Tenenhouse HS, et al. Ontogeny of Phex/PHEX protein expression in mouse embryo and subcellular localization in osteoblasts. J Bone Miner Res 2002;17(2):311– 320.

    Article  CAS  PubMed  Google Scholar 

  103. Westbroek I, De Rooij KE, Nijweide PJ. Osteocyte-specific monoclonal antibody MAb OB7.3 is directed against Phex protein. J Bone Miner Res 2002;17(5):845–853.

    Article  CAS  PubMed  Google Scholar 

  104. Miao D, Bai X, Panda D, McKee M, Karaplis A, Goltzman D. Osteomalacia in hyp mice is associated with abnormal phex expression and with altered bone matrix protein expression and deposition. Endocrinology 2001;142(2):926– 939.

    Article  CAS  PubMed  Google Scholar 

  105. Aguirre JI, Plotkin LI, Stewart SA, et al. Osteocyte apoptosis is induced by weightlessness in mice and precedes osteoclast recruitment and bone loss. J Bone Miner Res 2006;21(4):605–615.

    Article  PubMed  Google Scholar 

  106. Jilka RL, Weinstein RS, Bellido T, Roberson P, Parfitt AM, Manolagas SC. Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone. J Clin Invest 1999;104(4): 439–446.

    Article  CAS  PubMed  Google Scholar 

  107. Tomkinson A, Gevers EF, Wit JM, Reeve J, Noble BS. The role of estrogen in the control of rat osteo-cyte apoptosis. J Bone Miner Res 1998;13(8): 1243–1250.

    Article  CAS  PubMed  Google Scholar 

  108. Fu L, Patel MS, Bradley A, Wagner EF, Karsenty G. The molecular clock mediates leptin-regulated bone formation. Cell 2005;122(5):803–815.

    Article  CAS  PubMed  Google Scholar 

  109. Kondratov RV, Kondratova AA, Gorbacheva VY, Vykhovanets OV, Antoch MP. Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock. Genes Dev 2006;20(14):1868–1873.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Watanabe, K. (2009). Animal Models for Senile Osteoporosis. In: Duque, G., Kiel, D.P. (eds) Osteoporosis in Older Persons. Springer, London. https://doi.org/10.1007/978-1-84628-697-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-697-1_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-515-8

  • Online ISBN: 978-1-84628-697-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics