Skip to main content

Evolution in Digital Audio Technology

  • Chapter
Evolutionary Computer Music

Abstract

Replicating musical instruments is a classic problem in computer music.Asystematic collection of instrument designs for each of the main synthesis methods has long been the El Dorado of the computer music community. Here is what James Moorer, the pioneering computer music researcher at Stanford University and later director of the audio project at Lucasfilm, had to say about it (Roads 1982):

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arfib, D. (1979). Digital synthesis of complex spectra by means of multiplication of non-linear distorted sine waves. Journal of the Audio Engineering Society, 27(10): 757–779.

    Google Scholar 

  • Atal, B. and Hanauer, S. (1971). Speech analysis and synthesis by linear prediction of the speech wave. Journal of the Acoustical Society of America, 50(2): 637–655.

    Article  Google Scholar 

  • Beauchamp, J.W. (1969). A computer system for time-variant harmonic analysis and synthesis of musical tones, In H. von Foerster and J.W. Beauchamp (Eds.), Music By Computers. John Wiley & Sons, NY.

    Google Scholar 

  • Beauchamp, J.W. (1979). Brass-tone synthesis by spectrum evolution matching with nonlinear functions, Computer Music Journal, 3(2): 35–43. Revised and updated version In C. Roads and J. Strawn (Eds.), Foundations of Computer Music, MIT Press, Cambridge, MA: pp. 95–113.

    Article  Google Scholar 

  • Beauchamp, J.W. (1982). Synthesis by amplitude and ‘brightness’ matching of analyzed musical instrument tones.Journal of the Audio Engineering Society, 30(6): 396–406.

    Google Scholar 

  • Beauchamp, J.W. and Horner, A. (1992). Extended nonlinear waveshaping analysis/synthesis techniques, In Proceedings of the 1992 International Computer Music Conference, San Jose, CA, pp. 2–5.

    Google Scholar 

  • Beauchamp, J.W. and Horner, A. (1998). Spectral modeling and timbre hybridization programs for computer music. Organised Sound, 2(3): 253–258.

    Article  Google Scholar 

  • Bowcott, P. (1989). Cellular automation as a means of high level compositional control of granular synthesis. In Proceedings of the 1989 International Computer Music Conference, Columbus, OH, pp. 55–57.

    Google Scholar 

  • Bowcott, P. (1990). High level control of granular synthesis using the concepts of inheritance and social interaction. In Proceedings of the 1990 International Computer Music Conference, Columbus, OH, pp. 50–52.

    Google Scholar 

  • Cann, R. (1979–1980). An analysis/synthesis tutorial, Computer Music Journal, 3(3): 6–11; 3(4): 9–13; 4(1): 36–42.

    Article  Google Scholar 

  • Carlos, W. (1987). Tuning: At the crossroads. Computer Music Journal, 11(1): 29–43.

    Article  Google Scholar 

  • Chalmers, J. (1993). Divisions of the Tetrachord. Hanover, NH: Frog Peak Music.

    Google Scholar 

  • Chamberlin, H. (1980). Advanced real-timbre music synthesis techniques. Byte Magazine, April: 70–94 and 180–196.

    Google Scholar 

  • Chan, S.K. and Horner, A. (1996). Discrete summation synthesis of musical instrument tones using genetic algorithms. Journal of the Audio Engineering Society 44(7): 581–592.

    Google Scholar 

  • Cheung, N.M. and Horner, A. (1996). Group synthesis with genetic algorithms. Journal of the Audio Engineering Society, 44(3): 130–147.

    Google Scholar 

  • Cheung, N.M., Trautmann, S. and Horner, A. (1998b). Head-related transfer function modeling in 3-d sound systems with genetic algorithms. Journal of the Audio Engineering Society, 46(6): 531–539.

    Google Scholar 

  • Chowning, J. (1973). The synthesis of complex audio spectra by means of frequency modulation. Journal of the Audio Engineering Society, 21(7): 526–534.

    Google Scholar 

  • Chowning, J. (1980). Computer synthesis of the singing voice, Sound Generation in Wind, Strings, Computers. Stockholm: The Royal Swedish Academy of Music.

    Google Scholar 

  • Chu, C.H.H. (1990). A genetic algorithm approach to the configuration of stack filters. In Proceedings of the 3rd International Conference on Genetic Algorithms and their Applications. Arlington, VA, pp. 219–224.

    Google Scholar 

  • Cook, P. (1995). Integration of physical modeling for synthesis and animation. In Proceedings of the 1995 International Computer Music Conference. Banff, Canada, pp. 525–528.

    Google Scholar 

  • Delprat, N., Guillemain, P. and Kronland-Martinet, R. (1990). Parameter estimation for non-linear resynthesis methods with the help of a time-frequency analysis of natural sounds. In Proceedings of the 1990 International Computer Music Conference. Glasgow, pp. 88–90.

    Google Scholar 

  • Delprat, N. (1997). Global frequency modulation law extraction from the gabor transform of a signal: A first study of the interacting components case. IEEE Transactions on Speech and Audio Processing, 5(1): pp. 64–71.

    Article  Google Scholar 

  • Dodge, C. (1989). On speech songs. In M. Mathews and J. Pierce (Eds.), Current Directions in Computer Music Research., Cambridge, MA, MIT Press, pp. 9–17.

    Google Scholar 

  • Dodge, C. and Jerse, T. (1997). Computer Music. Schirmer Books, NY.

    Google Scholar 

  • Doty, D. (1993). The Just Intonation Primer. Other Music, San Francisco, p. 38.

    Google Scholar 

  • Flanagan, J.L. (1972). Speech Analysis, Synthesis, and Perception. Springer-Verlag, NY.

    Google Scholar 

  • Fornari, J., Manzolli, J., Maia, A. and Damiani, F. (2001a). The Evolutionary Sound Synthesis Method. ACM Multimedia, Ottawa, Ont, Canada, September 2001.

    Google Scholar 

  • Fornari, J., Manzolli, J., Maia, A. and Damiani, F. (2001b). Waveform synthesis using evolutionary computation. In Proceedings of the V Brazilian Symposium on Computer Music. Fortaleza, Brazil.

    Google Scholar 

  • Fornari, J., Manzolli, J., Maia, A. and Damiani, F. (2001c). The Evolutionary Sound Synthesis Method. SCI Conference. Orlando, FL.

    Google Scholar 

  • Fujinaga, I. and Vantomme, J. (1994). Genetic algorithms as a method for granular synthesis regulation. In Proceedings of the 1994 International Computer Music Conference. Aarhus, Denmark, pp. 138–141.

    Google Scholar 

  • Fujinaga, I. (1996). Exemplar-based learning in adaptive optical music recognition system. In Proceedings of the 1996 International Computer Music Conference, Hong Kong, pp. 55–56.

    Google Scholar 

  • Fujinaga, I. (1998). Machine recognition of timbre using steady-state of acoustic musical instruments. In Proceedings of the 1998 International Computer Music Conference. Ann Arbor, MI, pp. 207–210.

    Google Scholar 

  • Fraser, A. and Fujinaga, I. (1999). Toward real-time recognition of acoustic musical instruments. In Proceedings of the 1999 International Computer Music Conference. Beijing, pp. 175–177.

    Google Scholar 

  • Fujinaga, I. and MacMillan, K. (2000). Realtime recognition of orchestral instruments. In Proceedings of the 2000 International Computer Music Conference. Berlin, pp. 241–243.

    Google Scholar 

  • Garcia, R. (2000). Towards the Automatic Generation of Sound Synthesis Techniques: Preparatory Steps. 109th Convention. Audio Engineering Society. Los Angeles, CA, Preprint 5186.

    Google Scholar 

  • Garcia, R. (2001). Automatic Generation of Sound Synthesis Techniques. M.S. Thesis. Cambridge, MA: Media Lab, MIT.

    Google Scholar 

  • Garcia, R. (2005). http://www.ragomusic.com/research/ml/.

    Google Scholar 

  • Grey, J. (1975). An Exploration of Musical Timbre. Ph.D. Dissertation. Stanford, Department of Music, Stanford University.

    Google Scholar 

  • Grey, J. and Moorer, J. (1977). Perceptual evaluation of synthesized musical instrument tones. Journal of the Acoustical Society of America, 62: 454–462.

    Article  Google Scholar 

  • Hall, D. (1980). Musical Acoustics: An Introduction. Wordsworth Publishing, Belmont, CA.

    Google Scholar 

  • Hamman, M. (1991). Mapping complex systems using granular synthesis. In Proceedings of the 1991 International Computer Music Conference. Montréal, Canada, pp. 475–478.

    Google Scholar 

  • Herrera-Boyer, P., Peeters, G. and Dubnov, S. (2003). Automatic classification of musical instrument sounds. Journal of New Music Research, 32(1): 3–21.

    Article  Google Scholar 

  • Horner, A., Beauchamp, J.W. and Haken, L. (1993a). Methods for multiple wavetable synthesis of musical instrument tones. Journal of the Audio Engineering Society, 41(5): 336–356.

    Google Scholar 

  • Horner, A., Beauchamp, J.W. and Haken, L. (1993b). Machine tongues XVI: Genetic algorithms and their application to fm matching synthesis. Computer Music Journal, 17(4): 17–29.Horner, A., Beauchamp, J.W. and Packard, N. (1993). Timbre breeding. In Proceedings of the 1993 International Computer Music Conference. Tokyo, pp. 396–398.

    Article  Google Scholar 

  • Horner, A. (1995). Wavetable matching synthesis of dynamic instruments with genetic algorithms. Journal of the Audio Engineering Society, 43(11): 916–931.

    Google Scholar 

  • Horner, A., Cheung, N.M. and Beauchamp, J.W. (1995). Genetic algorithm optimization of additive synthesis envelope breakpoints and group synthesis parameters. In Proceedings of the 1995 International Computer Music Conference. Banff, Canada, pp. 215–222.

    Google Scholar 

  • Horner, A. (1996a). Computation and memory tradeoffs with multiple wavetable interpolation. Journal of the Audio Engineering Society, 44(6): 481–496.

    Google Scholar 

  • Horner, A. (1996b). Double modulator fm matching of instrument tones. Computer Music Journal, 20(2): 57–71.

    Article  Google Scholar 

  • Horner, A. and Ayers, L. (1996). Common tone adaptive tuning using genetic algorithms. Journal of the Acoustical Society of America 100(1): 630–640.

    Article  Google Scholar 

  • Horner, A. and Beauchamp, J.W. (1996). Piecewise linear approximation of additive synthesis envelopes: A comparison of various methods. Computer Music Journal, 20(2): 72–95.

    Article  Google Scholar 

  • Horner, A. (1997). A comparison of wavetable and fm parameter spaces. Computer Music Journal, 21(4): pp. 55–85.

    Article  Google Scholar 

  • Horner, A. (1998). Nested modulator and feedback fm matching of instrument tones. IEEE Transactions on Speech and Audio Processing, 6(4): 398–409.

    Article  Google Scholar 

  • Horner, A. and Ayers, L. (1998). Modeling acoustic wind instruments with contiguous group synthesis. Journal of the Audio Engineering Society, 46(10): 868–879.

    Google Scholar 

  • Horner, A. (1999). Fake horns: Experiments in taped auditions. The Horn Call: Journal of the International Horn Society, 30(1): 61–65.

    MathSciNet  Google Scholar 

  • Horner, A. (2000). Low peak amplitudes for wavetable synthesis. IEEE Transactions on Speech and Audio Processing, 8(4): 467–470.

    Article  Google Scholar 

  • Horner, A. (2001). A simplified wavetable matching method using combinatorial basis spectra selection. Journal of the Audio Engineering Society, 49(11): 1060–1066.

    Google Scholar 

  • Horner, A. and Ayers, L. (2002). Cooking with Csound Part 1: Woodwind and Brass Recipes. Madison Wisconsin, A-R Editions, Computer Music and Digital Audio Series.

    Google Scholar 

  • Horner, A. and Wun, C.W. (2005). Low peak amplitudes for group additive synthesis. Journal of the Audio Engineering Society, 53(6): 475–484.

    Google Scholar 

  • Johnson, C. (2003). Exploring sound-space with interactive genetic algorithms. Leonardo, 36(1): 51–54.

    Article  Google Scholar 

  • Jones, D.L. and Parks, T. (1988). Generation and combination of grains for music synthesis. Computer Music Journal, 12(2): 27–34.

    Article  Google Scholar 

  • Justice, J. (1979). Analytic signal processing in music computation. IEEE Transactions on Acoustics, Speech, and Signal Processing, 27(6): 670–684.

    Article  Google Scholar 

  • Kistler, D. and Wightman, F. (1992). A model of head-related transfer functions based on principal components analysis and minimum-phase reconstruction. Journal of the Acoustical Society of America, 91: 1637–1647.

    Article  Google Scholar 

  • Kleczkowski, P. (1989). Group additive synthesis. Computer Music Journal, 13(1): 12–20.

    Article  MathSciNet  Google Scholar 

  • Lansky, P. and Steiglitz, K. (1981). Synthesis of timbral families by warped linear prediction. Computer Music Journal, 5(3): 45–49.

    Article  Google Scholar 

  • Lansky, P. (1989). Compositional applications of linear predictive coding. In M. Mathews and J. Pierce (Eds.), Current Directions in Computer Music Research. Cambridge, MA, MIT Press, pp. 5–8.

    Google Scholar 

  • LeBrun, M. (1979). Digital waveshaping synthesis. Journal of the Audio Engineering Society, 27(4): 250–266.

    Google Scholar 

  • Lee, K. and Horner, A. (1999). Modeling piano tones with group synthesis. Journal of the Audio Engineering Society, 47(3): 101–111.

    MATH  Google Scholar 

  • Lim, S.M. and Tan, B.T.G. (1999). Performance of the genetic annealing algorithm in DFM synthesis of dynamic musical sound samples. Journal of the Audio Engineering Society, 47(5): 339–354.

    Google Scholar 

  • Lindley, M. (1984). Temperaments. In S. Sadie (Ed.), The New Grove Dictionary of Musical Instruments. Macmillan, London.

    Google Scholar 

  • Lloyd, L. and Boyle, H. (1979). Intervals, Scales and Temperaments. St. Martins Press, NY.

    Google Scholar 

  • Magnus, C. (2004). Evolving electroacoustic music: The application of genetic algorithms to time-domain waveforms. In Proceedings of the 2004 International Computer Music Conference. Miami, pp. 173–176.

    Google Scholar 

  • Maher, R. and Beauchamp, J.W. (1990). An investigation of vocal vibrato for synthesis. Applied Acoustics, 30: 219–245.

    Article  Google Scholar 

  • Markel, J. and Gray, A. (1976). Linear Prediction of Speech. Springer, NY.

    MATH  Google Scholar 

  • Martens, W. (1987). Principal components analysis and re-synthesis of spectral cues to perceived direction. In Proceedings of the 1987 International Computer Music Conference. Urbana, IL, pp. 274–281.

    Google Scholar 

  • Massie, D. and Stonick, V. (1992). The musical intrigue of pole-zero pairs. In Proceedings of the 1992 International Computer Music Conference. San Jose, CA, pp. 22–25.

    Google Scholar 

  • Mitsuhashi, Y. (1982). Musical sound synthesis by forward differences. Journal of the Audio Engineering Society, 30(1/2): 2–9.

    Google Scholar 

  • Mohr, J. (2002). Music Analysis/Synthesis by Optimized Multiple Wavetable Interpolation. Ph.D. Dissertation. Edmonton, Alberta, Canada, Department of Computer Science, University of Alberta.

    Google Scholar 

  • Mohr, J. and Li, X. (2005a). Optimized multiple wavetable interpolation. WSEAS Transactions on Information Science and Applications, 2(2): 265–273.

    Google Scholar 

  • Mohr, J. and Li, X. (2005b). Wavetable interpolation of multiple instrument tones. In Proceedings of the 2005 International Computer Music Conference. Barcelona, Spain, pp. 741–744.

    Google Scholar 

  • Moorer, J.A. (1976). The synthesis of complex audio by means of discrete summation formulas. Journal of the Audio Engineering Society, 24(11): 717–727.

    Google Scholar 

  • Moorer, J.A. (1977). Signal processing aspects of computer music—A survey. Computer Music Journal, 1(1): 4–37.

    Google Scholar 

  • Moorer, J.A., Grey, J. and Snell, J. (1977). “Lexicon of analyzed tones—Part I: A violin tone. Computer Music Journal, 1(2): 39–45.

    Google Scholar 

  • Moorer, J.A., Grey, J. and Strawn, J. (1977). “Lexicon of analyzed tones—Part II: Clarinet and Oboe tones. Computer Music Journal, 1(3): 12–29.

    Article  Google Scholar 

  • Moorer, J.A., Grey, J. and Strawn, J. (1978). Lexicon of analyzed tones—Part III: The trumpet. Computer Music Journal, 2(2): 23–31.

    Article  Google Scholar 

  • Moorer, J.A. (1979). The use of linear prediction of speech in computer music applications. Journal of the Audio Engineering Society, 27(3): 134–140.

    Google Scholar 

  • Morrill, D. (1977). Trumpet algorithms for computer composition. Computer Music Journal, 1(1): 46–52.

    MathSciNet  Google Scholar 

  • Mrozek, E. and Wakefield, G. (1996). Perceptual matching of low order models to room transfer functions. In Proceedings of the 1996 International Computer Music Conference. Hong Kong, pp. 111–113.

    Google Scholar 

  • Nagashima, Y. (1992). Real-time control system for pseudo granulation. In Proceedings of the 1992 International Computer Music Conference. San Jose, CA, pp. 404–405.

    Google Scholar 

  • Ng, A. and Horner, A. (2000). Computation and memory tradeoffs in wavetable-filter matching of musical instrument tones. Journal of the Audio Engineering Society, 48(10): 930–939.

    Google Scholar 

  • Ng, A. and Horner, A. (2002). Iterative combinatorial basis spectra in wavetable-matching. Journal of the Audio Engineering Society, 50(12): 1054–1063.

    Google Scholar 

  • Oates, S. and Eaglestone, B. (1997). Analytic methods for group additive synthesis. Computer Music Journal, 21(2): 21–39.

    Article  Google Scholar 

  • Orton, R., Hunt, A. and Kirk, R. (1991). Graphical control of granular synthesis. In Proceedings of the 1991 International Computer Music Conference. Montréal, Canada, pp. 416–418.

    Google Scholar 

  • Partch, H. (1974). Genesis of a Music. Da Capo Press, NY.

    Google Scholar 

  • Payne, R. (1987). A microcomputer based analysis/resynthesis scheme for processing sampled sounds using FM. In Proceedings of the 1987 International Computer Music Conference. Urbana, IL, pp. 282–289.

    Google Scholar 

  • Polansky, L. (1987). Paratactical tuning: An agenda for the use of computer in experimental intonation. Computer Music Journal, 11(1): 61–68.

    Article  Google Scholar 

  • Risset, J. and Mathews, M. (1969). Analysis of musical instrument tones. Physics Today, 22(2): 23–30.

    Article  Google Scholar 

  • Roads, C. (1978). Automated granular synthesis of sound. Computer Music Journal, 2(2): 61–62.

    Article  Google Scholar 

  • Roads, C. (1982). A conversation with James A. Moorer. Computer Music Journal, 6(4): 10–21.

    Google Scholar 

  • Roads, C. (1985). Granular synthesis of sound. In C. Roads and J. Strawn (Eds.), Foundations of Computer Music. MIT Press, Cambridge, MA, pp. 145–159.

    Google Scholar 

  • Roads, C. (1991). Asynchronous granular synthesis. In G DePoli, A. Piccialli and C. Roads (Eds.), Representations of Musical Signals. MIT Press, Cambridge, MA, pp. 143–186.

    Google Scholar 

  • Roads, C. (1996). The Computer Music Tutorial. MIT Press, Cambridge, MA.

    Google Scholar 

  • Schatter, G., Züger, E. and Nitschke, C. (2005). A synaesthetic approach for synthesizer interface based on genetic algorithms and fuzzy sets. In Proceedings of the 2005 International Computer Music Conference. Barcelona, pp. 664–667.

    Google Scholar 

  • Schottstaedt, B. (1977). The simulation of natural instrument tones using frequency modulation with a complex modulating wave. Computer Music Journal, 1(4): 46–50.

    Google Scholar 

  • Serra, M.-H., Rubine, D. and Dannenberg, R. (1990). Analysis and synthesis of tones by spectral interpolation. Journal of the Audio Engineering Society, 38(3): 111–128.

    Google Scholar 

  • Sethares, W. (1994). Adaptive tunings for musical scales. Journal of the Acoustical Society of America, 96(1): 10–18.

    Article  Google Scholar 

  • Smith, J.O. (1983). Techniques for Digital Filter Design and System Identification with Application to the Violin. Report No. STAN-M-14. Ph.D. Dissertation. Stanford, CA: CCRMA, Dept. of Music, Stanford University.

    Google Scholar 

  • So, K.F. and Horner, A. (2002). Wavetable matching of inharmonic string tones. Journal of the Audio Engineering Society, 50(1/2): 46–56.

    Google Scholar 

  • So, K.F. and A. Horner (2004). Wavetable matching of pitched inharmonic instrument tones. Journal of the Audio Engineering Society, 52(5): 516–529.

    Google Scholar 

  • Stapleton, J. and Bass, S. (1988). Synthesis of musical tones based on the Karhunen-Loüve transform. IEEE Transactions on Acoustics, Speech, and Signal Processing, 36(3): 305–319.

    Article  Google Scholar 

  • Strawn, J. 1980. Approximation and syntactic analysis of amplitude and frequency functions for digital sound synthesis. Computer Music Journal, 4(3): 3–24.

    Article  Google Scholar 

  • Takala, T., Hahn, J., Gritz, L., Greigel, J. and Lee, J.W. (1993). Using physically-based models and genetic algorithms for functional composition of sound signals, synchronized to animated motion. In Proceedings of the 1993 International Computer Music Conference. Tokyo, pp. 180–183.

    Google Scholar 

  • Tan, B.T.G., Gan, S.L., Lim, S.M. and Tang, S.H. (1994). Real-time implementation of double frequency modulation (DFM) synthesis. Journal of the Audio Engineering Society, 42(11): 918–926.

    Google Scholar 

  • Tan, B.T.G. and Lim, S.M. (1996). Automated parameter optimization for double frequency modulation synthesis using the genetic annealing algorithm. Journal of the Audio Engineering Society, 44(1/2): 3–15.

    Google Scholar 

  • Tomisawa, N. (1981). Tone production method for an electronic music instrument. U.S. Patent 4,249,447.

    Google Scholar 

  • Truax, B. (1988). Real-time granular synthesis with a digital processing computer. Computer Music Journal, 12(2): 14–26.

    Article  Google Scholar 

  • Truax, B. (1989). Composing with real-time granular sound. Perspectives of New Music, 28(2): 121–135.

    MathSciNet  Google Scholar 

  • Truax, B. (1993). Time-shifting and transposition of sampled sound with a real-time granulation technique. In Proceedings of the 1993 International Computer Music Conference.Tokyo, pp. 82–85.

    Google Scholar 

  • Vuori, J. and Välimäki, V. (1993). Parameter estimation of non-linear physical models by simulated evolution—application to the flute model. In Proceedings of the 1993 International Computer Music Conference. Tokyo, pp. 402–405.

    Google Scholar 

  • Waschka, R. and Ferreira, T. (1988). Rapid event deployment in a midi environment. Interface, 17: 211–222.

    Google Scholar 

  • Wun, C.W. and Horner, A. (2001). Perceptual wavetable matching synthesis of musical instrument tones. Journal of the Audio Engineering Society, 49(4): 250–262.

    Google Scholar 

  • Wun, C.W., Horner, A. and Ayers, L. (2003). Perceptual wavetable matching for synthesis of musical instrument tones. In Proceedings of the 2003 International Computer Music Conference. Singapore, pp. 251–258.

    Google Scholar 

  • Wun, C.W., Horner, A. and Ayers, L. (2004). A comparison between local search and genetic algorithm methods for wavetable matching. In Proceedings of the 2004 International Computer Music Conference. Miami, pp. 386–389.

    Google Scholar 

  • Wun, C.W. and Horner, A. (2005a). A comparison between local search and genetic algorithm methods for wavetable matching. Journal of the Audio Engineering Society, 53(4): 314–325.

    Google Scholar 

  • Wun, C.W. and Horner, A. (2005b). Evaluation of iterative methods for wavetable matching. Journal of the Audio Engineering Society, 53(9): 826–835.

    Google Scholar 

  • Xenakis, I. (1971). Formalized Music. Indiana University Press, Bloomington, IN.

    Google Scholar 

  • Yuen, J., Chan S.K. and Horner, A. (1996). Discrete summation synthesis and hybrid sampling-wavetable matching with genetic algorithms. In Proceedings of the 1996 International Computer Music Conference. Hong Kong, pp. 49–51.

    Google Scholar 

  • Yuen, J. and Horner, A. (1997). Hybrid sampling-wavetable synthesis with genetic algorithms. Journal of the Audio Engineering Society, 45(5): 316–330.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

HORNER, A. (2007). Evolution in Digital Audio Technology. In: Miranda, E.R., Biles, J.A. (eds) Evolutionary Computer Music. Springer, London. https://doi.org/10.1007/978-1-84628-600-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-600-1_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-599-8

  • Online ISBN: 978-1-84628-600-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics