Skip to main content

Tool Design, Tool Wear and Tool Life

  • Chapter
Machining Dynamics

Abstract

Metal cutting is a process of removing material from a workpiece in the form of chips using single- or multi-point cutting tools with a clearly defined geometry. To some extent, the performance of a cutting tool determines the cutting behaviour and the process capability. In order to design high-performance cutting tools, it is important to clearly understand the tool-workpiece interfaces and the mechanism of surface generation in machining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Yan, K. Syoji, T. Kuriyagawa and H. Suzuki. (2002). Ductile regime turning at large tool feed. Journal of Materials Processing Technology, 121, 363–372.

    Article  Google Scholar 

  2. D. Keen. (1971). Some observations on the wear of diamond tools used in piston machining. Wear, 17, 195–208.

    Article  Google Scholar 

  3. R. Wada, H. Kodama, K. Nakamura, Y. Mizutani, Y. Shimura and N. Takenaka. (1980). Wear characteristics of single crystal diamond tool. Annals of the CIRP, 29 (1), 47–52.

    Article  Google Scholar 

  4. C.J. Wong. (1981). Fracture and wear of diamond cutting tools. Transactions of the ASME: Journal of Engineering Materials and Technology, 103, 341–345.

    Article  Google Scholar 

  5. N. Ikawa and S. Shimada. (1982). Microfracture of diamond as fine tool material. Annals of the CIRP, 31 (1), 71–74.

    Article  Google Scholar 

  6. P.N. Blake and R. O. Scattergood. (1990). Ductile regime machining of germanium and silicon. Journal of American Ceramics Society, 73 (4), 949–957.

    Article  Google Scholar 

  7. J. Yan, M. Yoshino, T. Kuriyagawa, T. Shirakashi, K. Syoji and R. Komanduri. (2001). On the Ductile Machining of Silicon for Micro Electro–mechanical Systems (MEMS), Opto–electronic and Optical Applications, Materials Science and Engineering, A, 297, 1–2, 230–234.

    Google Scholar 

  8. N. Ikawa, R. R. Donaldson, R. Komanduri, W. Konig, P. A. McKeown, T. Moriwaki and I. F. Stowers. (1991). Ultraprecision metal cutting – the past, the present and the future, Annals of the CIRP, 40 (2), 587–600.

    Article  Google Scholar 

  9. J. Yan, J. Tamaki, K. Syoji, T. Kuriyagawa. (2004). Single–point diamond turning of caf2 for nanometric surface. International Journal of Advanced Manufacturing Technology, 24 (9–10), 640–646.

    Google Scholar 

  10. J. Yan, K. Maekawa, J. Tamaki and T. Kuriyagawa. (2005). Micro grooving on single–crystal germanium for infrared Fresnel lenses. Journal of Micromechanics and Microengineering, 15, 1925–1931.

    Article  Google Scholar 

  11. J. P. Davim and A. M. Baptista. (2000). Relationship between cutting force and PCD cutting tool wear in machining silicon carbide reinforced aluminium. Journal of Materials Processing Technology, 103 (3), 417–423.

    Article  Google Scholar 

  12. J. A. Arsecularatne, L.C. Zhang and C. Montross. (2006). Wear and tool life of tungsten carbide, PCBN and PCD cutting tools. International Journal of Machine Tools and Manufacturing, 46 (5), 482–491.

    Article  Google Scholar 

  13. J. M. Oomen and J. Eisses. (1992). Wear of monocrystalline diamond tools during ultraprecision machining of nonferrous metals. Precision Engineering, 14 (4), 206–218.

    Article  Google Scholar 

  14. E. Paul, C. J. Evans, A. Mangamelli, M.L. McGlauflin and R.S. Polvani. (1996). Chemical aspects of tool wear in single point diamond turning. Precision Engineering, 18 (1), 4–19.

    Article  Google Scholar 

  15. J. Yan, K. Syoji and J. Tamaki. (2003). Some observations on the wear of diamond tools in ultra–precision cutting of single–crystal silicon, Wear, 255 (7–12), 1380–1387.

    Article  Google Scholar 

  16. M.C. Shaw. (1986). Metal Cutting Principles, Clarendon Press, Oxford.

    Google Scholar 

  17. K. Cheng, X. Luo, R. Ward and R. Holt. (2003). Modeling and simulation of the tool wear in nanometric cutting. Wear, 255 (7–12), 1427–1432.

    Article  Google Scholar 

  18. F. W. Taylor. (1907). On the art of cutting metals, Transactions of the ASME, 28, 31–58.

    Google Scholar 

  19. O. W. Boston: Metal Processing, Wiley, New York, 1941.

    Google Scholar 

  20. R. Y. Chiou and S. Y. Liang. (1998). Chatter stability of a slender cutting tool in turning with tool wear effect. International Journal of Machine Tools and Manufacturing, 38 (4), 315–327.

    Article  Google Scholar 

  21. M. S. Fofana, K. C. Ee and I. S. Jawahir. (2003). Machining stability in turning operation when cutting with a progressively worn tool insert. Wear, 255 (7–12), 1395–1403.

    Article  Google Scholar 

  22. B. E. Clancy and Y. C. Shin. (2002). A comprehensive chatter prediction model for face turning operation including tool wear effect. International Journal of Machine Tools and Manufacturing, 42 (9), 1035–1044.

    Article  Google Scholar 

  23. Y. S. Chiou, E. S. Chung and S. Y. Liang. (1995). Analysis of tool wear effect on chatter stability in turning. International Journal of Mechanical Science, 37 (4), 391–404.

    Article  Google Scholar 

  24. R. Y. Chiou and S. Y. Liang. (2000). Analysis of acoustic emission in chatter vibration with tool wear effect in turning. International Journal of Machine Tools and Manufacturing, 40 (7), 927–941.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer London

About this chapter

Cite this chapter

Yan, J., Murakami, Y., Davim, J. (2009). Tool Design, Tool Wear and Tool Life. In: Cheng, K. (eds) Machining Dynamics. Springer Series in Advanced Manufacturing. Springer, London. https://doi.org/10.1007/978-1-84628-368-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-368-0_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-367-3

  • Online ISBN: 978-1-84628-368-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics