Skip to main content

Multivariate Statistical Process Control Schemes for Controlling a Mean

  • Reference work entry
Springer Handbook of Engineering Statistics

Part of the book series: Springer Handbooks ((SHB))

Abstract

The quality of products produced and services provided can only be improved by examining the process to identify causes of variation. Modern production processes can involve tens to hundreds of variables, and multivariate procedures play an essential role when evaluating their stability and the amount of variation produced by common causes. Our treatment emphasizes the detection of a change in level of a multivariate process.

After a brief introduction, in Sect. 18.1 we review several of the important univariate procedures for detecting a change in level among a sequence of independent random variables. These include Shewhartʼs X −bar chart, Pageʼs cumulative sum, Crosierʼs cumulative sum, and exponentially weighted moving-average schemes.

Multivariate schemes are examined in Sect. 18.2. In particular, we consider the multivariate T 2 chart and the related bivariate ellipse format chart, the cumulative sum of T chart, Crosierʼs multivariate scheme, and multivariate exponentially weighted moving-average schemes.

An application to a sheet metal assembly process is discussed in Sect. 18.3 and the various multivariate procedures are illustrated.

Comparisons are made between the various multivariate quality monitoring schemes in Sect. 18.4. A small simulation study compares average run lengths of the different procedures under some selected persistent shifts.

When the number of variables is large, it is often useful to base the monitoring procedures on principal components. Section 18.5 discussesthis approach. An example is also given using the sheet metal assembly data.

Finally, in Sect. 18.6, we warn against using the standard monitoring procedures without first checking for independence among the observations. Some calculations, involving first-order autoregressive dependence, demonstrate that dependence causes a substantial deviation from the nominal average run length.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ARL:

average run length

References

  1. W. A. Shewhart: Economic Control of Quality of Manufactured Product (Van Nostrand, New York 1931)

    Google Scholar 

  2. E. S. Page: Continuous inspection schemes, Biometrika 41, 100–115 (1954)

    MathSciNet  MATH  Google Scholar 

  3. R. B. Crosier: A new two-sided cumulative sum quality control scheme, Technometrics 28, 187–194 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. J. M. Lucas, M. S. Saccucci: Exponentially weighted moving average control schemes: properties and enhancements, Technometrics 32, 1–12 (1990)

    Article  MathSciNet  Google Scholar 

  5. D. C. Montgomery: Introduction to Statistical Quality Control, 4th edn. (Wiley, New York 2000)

    Google Scholar 

  6. Li, R. New Multivariate Schemes for Statistical Process Control, Dissertation, Department of Statistics, Univ. of Wisconsin (2004)

    Google Scholar 

  7. J. E. Jackson: Quality control methods for several related variables, Technometrics 1, 359–377 (1959)

    Article  MathSciNet  Google Scholar 

  8. J. E. Jackson: Multivariate quality control, Commun. Stat. A 14, 2657–2688 (1985)

    Article  MATH  Google Scholar 

  9. N. Doganaksoy, J. Fulton, W. T. Tucker: Identification of out of control quality characteristics in multivariate manufacturing environment, Commun. Stat. A 20, 2775–2790 (1991)

    Article  Google Scholar 

  10. N. D. Tracy, J. C. Young, R. L. Mason: Multivariate quality control charts for individual observations, J. Qual. Technol. 24, 88–95 (1992)

    Google Scholar 

  11. R. B. Crosier: Multivariate generalizations of cumulative sum quality-control schemes, Technometrics 30, 291–303 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. C. Fuchs, R. S. Kenett: Multivariate Quality Control: Theory and Applications (Marcel Dekker, New York 1998)

    Google Scholar 

  13. K. Yang, J. Trewn: Multivariate Statistical Methods in Quality Management (McGraw-Hill, New York 2004)

    Google Scholar 

  14. R. A. Johnson, D. W. Wichern: Applied Multivariate Statistical Analysis (Prentice Hall, Piscataway 2002)

    Google Scholar 

  15. C. A. Lowry, W. H. Woodall, C. W. Champ, S. E. Rigdon: A multivariate exponentially weighted moving average control chart, Technometrics 34, 46–53 (1992)

    Article  MATH  Google Scholar 

  16. D. Ceglarek, J. Shi: Dimensional variation reduction for automotive body assembly, Manuf. Rev. 8, 139–154 (1995)

    Google Scholar 

  17. J. J. Pignatiello, G. C. Runger: Comparisons of multivariate CUSUM charts, J. Qual. Technol. 22, 173–186 (1990)

    Google Scholar 

  18. C. A. Lowry, D. C. Montgomery: A review of multivariate control charts, IIE Trans. 27, 800–810 (1995)

    Article  Google Scholar 

  19. T. Kourti, J. F. MacGregor: Multivariate SPC methods for process and product monitoring, J. Qual. Technol. 28, 409–428 (1996)

    Google Scholar 

  20. R. A. Johnson, T. Langeland: A linear combinations test for detecting serial correlation in multivariate samples. In: Statistical Dependence, Topics, ed. by H. Block et al. (Inst. Math. Stat. Mon. 1991) pp. 299–313

    Google Scholar 

  21. R. A. Johnson, M. Bagshaw: The effect of serial correlation on the performance of CUSUM tests, Technometrics 16, 103–112 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Bagshaw, R. A. Johnson: Sequential procedures for detecting parameter changes in a time-series model, J. Am. Stat. Assoc. 72, 593–597 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  23. D. M. Hawkins, D. Olwell: Cumulative Sum Charts and Charting for Quality Improvement (Springer, New York 1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Richard Johnson or Ruojia Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Johnson, R., Li, R. (2006). Multivariate Statistical Process Control Schemes for Controlling a Mean. In: Pham, H. (eds) Springer Handbook of Engineering Statistics. Springer Handbooks. Springer, London. https://doi.org/10.1007/978-1-84628-288-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-288-1_18

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-806-0

  • Online ISBN: 978-1-84628-288-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics