Skip to main content

Endoplasmic Reticulum Stress and Adipose Tissue Function

  • Chapter
  • First Online:
Adipose Tissue and Adipokines in Health and Disease

Part of the book series: Nutrition and Health ((NH))

Abstract

White adipose tissue consists of adipocytes embedded in a connective tissue matrix and includes a well-organized vasculature and nerve supply. Though a principal feature of adipose tissue is to store and release energy, it also regulates cellular function in tissues/organs such as skeletal muscle, liver, and brain. This regulation occurs, at least in part, through endocrine-mediated mechanisms that involve the synthesis, processing, and secretion of biologically active proteins or adipokines. Impairments in energy storage, energy mobilization, and secretory function in white adipose tissue are a characteristic feature of obesity. Although the mechanisms leading to these impairments are complex, an increasing body of literature points to the involvement of the endoplasmic reticulum (ER), a subcellular organelle involved in lipid synthesis and protein processing. In this chapter the potential role of ER stress and the unfolded protein response (UPR) will be discussed in the context of adipose tissue biology and obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang K, Kaufman RJ. From endoplasmic reticulum stress to the inflammatory response. Nature. 2008;454:455–62.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Kaufman RJ. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev. 1999;13:1211–33.

    Article  PubMed  CAS  Google Scholar 

  3. Kaufman RJ. Orchestrating the unfolded protein response in health and disease. J Clin Invest. 2002;110(10):1389–98.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Schroder M, Kaufman RJ. The mammalian unfolded protein response. Annu Rev Biochem. 2005;74:739–89.

    Article  PubMed  Google Scholar 

  5. Rutkowski DT, Kaufman RJ. A trip to the ER: coping with stress. Trends Cell Biol. 2004;14(1):20–8.

    Article  PubMed  CAS  Google Scholar 

  6. Hollien J, Weissman JS. Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science. 2006;313:104–7.

    Article  PubMed  CAS  Google Scholar 

  7. Wu J, Kaufman RJ. From acute ER stress to physiological roles of the unfolded protein response. Cell Death Differ. 2006;13:374–84.

    Article  PubMed  CAS  Google Scholar 

  8. Boden G, Duan X, Homko C, Molina EJ, Song W, Perez O, et al. Increase in endoplasmic reticulum stress-related proteins and genes in adipose tissue of obese, insulin-resistant individuals. Diabetes. 2008;57(9):2438–44.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Sharma NK, Das SK, Mondal AK, Hackney OG, Chu WS, Kern PA, et al. Endoplasmic reticulum stress markers are associated with obesity in nondiabetic subjects. J Clin Endocrinol Metab. 2008;93(11):4532–41.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Gregor MF, Yang L, Fabbrini E, Mohammed BS, Eagon JC, Hotamisligil GS, et al. Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss. Diabetes. 2009;58(3):693–700.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Ozcan U, Cao Q, Yilmaz E, Lee A-H, Iwakoshi NN, Ozdelen E, et al. Endoplasmic reticulum stress links obesity, insulin action and type 2 diabetes. Science. 2004;306:457–61.

    Article  PubMed  Google Scholar 

  12. Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO, et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science. 2006;313(5790):1137–40.

    Article  PubMed  Google Scholar 

  13. Tsutsumi A, Motoshima H, Kondo T, Kawasaki S, Matsumura T, Hanatani S, et al. Caloric restriction decreases ER stress in liver and adipose tissue in ob/ob mice. Biochem Biophys Res Commun. 2011;404(1):339–44.

    Article  PubMed  CAS  Google Scholar 

  14. Lassenius MI, Pietilainen KH, Kaartinen K, Pussinen PJ, Syrjanen J, Forsblom C, et al. Bacterial endotoxin activity in human serum is associated with dyslipidemia, insulin resistance, obesity, and chronic inflammation. Diabetes Care. 2011;34(8):1809–15.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. McGarry JD. Glucose-fatty acid interactions in health and disease. Am J Clin Nutr. 1998;67 Suppl 3:500S–4.

    PubMed  CAS  Google Scholar 

  16. Eldor R, Raz I. Lipotoxicity versus adipotoxicity – the deleterious effects of adipose tissue on beta cells in the pathogenesis of type 2 diabetes. Diabetes Res Clin Pract. 2006;74 Suppl 2:S3–8.

    Article  CAS  Google Scholar 

  17. Roust LR, Jensen MD. Postprandial free fatty acid kinetics are abnormal in upper body obesity. Diabetes. 1993;42(11):1567–73.

    Article  PubMed  CAS  Google Scholar 

  18. Ye J. Emerging role of adipose tissue hypoxia in obesity and insulin resistance. Int J Obes (Lond). 2009;33(1):54–66.

    Article  CAS  Google Scholar 

  19. Alhusaini S, McGee K, Schisano B, Harte A, McTernan P, Kumar S, et al. Lipopolysaccharide, high glucose and saturated fatty acids induce endoplasmic reticulum stress in cultured primary human adipocytes: Salicylate alleviates this stress. Biochem Biophys Res Commun. 2010;397(3):472–8.

    Article  PubMed  CAS  Google Scholar 

  20. Jiao P, Ma J, Feng B, Zhang H, Alan Diehl J, Eugene Chin Y, et al. FFA-induced adipocyte inflammation and insulin resistance: involvement of ER stress and IKKbeta pathways. Obesity (Silver Spring). 2011;19(3):483–91.

    Article  CAS  Google Scholar 

  21. Hosogai N, Fukuhara A, Oshima K, Miyata Y, Tanaka S, Segawa K, et al. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes. 2007;56(4):901–11.

    Article  PubMed  CAS  Google Scholar 

  22. Helmlinger G, Yuan F, Dellian M, Jain RK. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med. 1997;3(2):177–82.

    Article  PubMed  CAS  Google Scholar 

  23. Rutkowski DT, Hegde RS. Regulation of basal cellular physiology by the homeostatic unfolded protein response. J Cell Biol. 2010;189(5):783–94.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Pagliassotti M. Inter-organ and -tissue communication via secreted protein in humans. In: Vivanco JM, Baluska F, editors. Secretions and exudates in biological systems. Heidelberg: Springer; 2012. p. 269–78.

    Chapter  Google Scholar 

  25. Galic S, Oakhill JS, Steinberg GR. Adipose tissue as an endocrine organ. Mol Cell Endocrinol. 2010;316(2):129–39.

    Article  PubMed  CAS  Google Scholar 

  26. Hara K, Horikoshi M, Yamauchi T, Yago H, Miyazaki O, Ebinuma H, et al. Measurement of the high-molecular weight form of adiponectin in plasma is useful for the prediction of insulin resistance and metabolic syndrome. Diabetes Care. 2006;29(6):1357–62.

    Article  PubMed  CAS  Google Scholar 

  27. Qiang L, Wang H, Farmer SR. Adiponectin secretion is regulated by SIRT1 and the endoplasmic reticulum oxidoreductase Ero1-L alpha. Mol Cell Biol. 2007;27(13):4698–707.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Wang ZV, Schraw TD, Kim JY, Khan T, Rajala MW, Follenzi A, et al. Secretion of the adipocyte-specific secretory protein adiponectin critically depends on thiol-mediated protein retention. Mol Cell Biol. 2007;27(10):3716–31.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Liu M, Zhou L, Xu A, Lam KS, Wetzel MD, Xiang R, et al. A disulfide-bond A oxidoreductase-like protein (DsbA-L) regulates adiponectin multimerization. Proc Natl Acad Sci U S A. 2008;105(47):18302–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Zhou L, Liu M, Zhang J, Chen H, Dong LQ, Liu F. DsbA-L alleviates endoplasmic reticulum stress-induced adiponectin downregulation. Diabetes. 2010;59(11):2809–16.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Koh EH, Park JY, Park HS, Jeon MJ, Ryu JW, Kim M, et al. Essential role of mitochondrial function in adiponectin synthesis in adipocytes. Diabetes. 2007;56(12):2973–81.

    Article  PubMed  CAS  Google Scholar 

  32. Promlek T, Ishiwata-Kimata Y, Shido M, Sakuramoto M, Kohno K, Kimata Y. Membrane aberrancy and unfolded proteins activate the endoplasmic reticulum stress sensor Ire1 in different ways. Mol Biol Cell. 2011;22(18):3520–32.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Hetz C, Glimcher LH. Fine-tuning of the unfolded protein response: assembling the IRE1alpha interactome. Mol Cell. 2009;35(5):551–61.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Li Y, Iida K, O'Neil J, Zhang P, Li S, Frank A, et al. PERK eIF2alpha kinase regulates neonatal growth by controlling the expression of circulating insulin-like growth factor-I derived from the liver. Endocrinology. 2003;144(8):3505–13.

    Article  PubMed  CAS  Google Scholar 

  35. Kazemi S, Mounir Z, Baltzis D, Raven JF, Wang S, Krishnamoorthy JL, et al. A novel function of eIF2alpha kinases as inducers of the phosphoinositide-3 kinase signaling pathway. Mol Biol Cell. 2007;18(9):3635–44.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Kim I, Xu W, Reed JC. Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov. 2008;7(12):1013–30.

    PubMed  CAS  Google Scholar 

  37. Wu S, Tan M, Hu Y, Wang JL, Scheuner D, Kaufman RJ. Ultraviolet light activates NFkappaB through translational inhibition of IkappaBalpha synthesis. J Biol Chem. 2004;279(33):34898–902.

    Article  PubMed  CAS  Google Scholar 

  38. Pahl HL, Baeuerle PA. A novel signal transduction pathway from the endoplasmic reticulum to the nucleus is mediated by transcription factor NF-kappa B. EMBO J. 1995;14(11):2580–8.

    PubMed Central  PubMed  CAS  Google Scholar 

  39. Cullinan SB, Zhang D, Hannink M, Arvisais E, Kaufman RJ, Diehl JA. Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol Cell Biol. 2003;23:7198–209.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Cullinan SB, Diehl JA. Coordination of ER and oxidative stress signaling: The PERK/Nrf2 signaling pathway. Int J Biochem Cell Biol. 2006;38(3):317–32.

    Article  PubMed  CAS  Google Scholar 

  41. Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol. 2007;47:89–116.

    Article  PubMed  CAS  Google Scholar 

  42. Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science. 2000;287:664–6.

    Article  PubMed  CAS  Google Scholar 

  43. Hu P, Han Z, Couvillon AD, Kaufman RJ, Exton JH. Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1alpha-mediated NF-kB activation and down-regulation of TRAF2 expression. Mol Cell Biol. 2006;26(8):3071–84.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Nguyen DT, Kebache S, Fazel A, Wong HN, Jenna S, Emadali A, et al. Nck-dependent activation of extracellular signal-regulated kinase-1 and regulation of cell survival during endoplasmic reticulum stress. Mol Biol Cell. 2004;15(9):4248–60.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Bommiasamy H, Back SH, Fagone P, Lee K, Meshinchi S, Vink E, et al. ATF6alpha induces XBP1-independent expansion of the endoplasmic reticulum. J Cell Sci. 2009;122(Pt 10):1626–36.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Sriburi R, Jackowski S, Mori K, Brewer JW. XBP1: a link between the unfolded protein response, lipid biosynthesis, and biogenesis of the endoplasmic reticulum. J Cell Biol. 2004;167:35–41.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Wang FM, Chen YJ, Ouyang HJ. Regulation of unfolded protein response modulator XBP1s by acetylation and deacetylation. Biochem J. 2010;433(1):245–52.

    Article  Google Scholar 

  48. Chen H, Qi L. SUMO modification regulates the transcriptional activity of XBP1. Biochem J. 2010;429(1):95–102.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Csordas G, Renken C, Varnai P, Walter L, Weaver D, Buttle KF, et al. Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol. 2006;174(7):915–21.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Bravo R, Vicencio JM, Parra V, Troncoso R, Munoz JP, Bui M, et al. Increased ER-mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress. J Cell Sci. 2011;124(Pt 13):2143–52.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  51. Wang X, Eno CO, Altman BJ, Zhu Y, Zhao G, Olberding KE, et al. ER stress modulates cellular metabolism. Biochem J. 2011;435(1):285–96.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  52. Burkart A, Shi X, Chouinard M, Corvera S. Adenylate kinase 2 links mitochondrial energy metabolism to the induction of the unfolded protein response. J Biol Chem. 2011;286(6):4081–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Anderson EJ, Lustig ME, Boyle KE, Woodlief TL, Kane DA, Lin CT, et al. Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J Clin Invest. 2009;119:573–81.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science. 2005;307(5708):384–7.

    Article  PubMed  CAS  Google Scholar 

  55. Hotamisligil GS. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell. 2010;140(6):900–17.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  56. Gjymishka A, Palii SS, Shan J, Kilberg MS. Despite increased ATF4 binding at the C/EBP-ATF composite site following activation of the unfolded protein response, system A transporter 2 (SNAT2) transcription activity is repressed in HepG2 cells. J Biol Chem. 2008;283(41):27736–47.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  57. Seo J, Fortuno 3rd ES, Suh JM, Stenesen D, Tang W, Parks EJ, et al. Atf4 regulates obesity, glucose homeostasis, and energy expenditure. Diabetes. 2009;58(11):2565–73.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  58. Ni M, Lee AS. ER chaperones in mammalian development and human diseases. FEBS Lett. 2007;581:3641–51.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. Ye R, Jung DY, Jun JY, Li J, Luo S, Ko HJ, et al. Grp78 heterozygosity promotes adaptive unfolded protein response and attenuates diet-induced obesity and insulin resistance. Diabetes. 2010;59(1):6–16.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest. 2005;115:1343–51.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. Bergman RN, Ader M. Free fatty acids and pathogenesis of type 2 diabetes mellitus. Trends Endocrinol Metab. 2000;11(9):351–6.

    Article  PubMed  CAS  Google Scholar 

  62. Jo H, Shim J, Lee JH, Lee J, Kim JB. IRE-1 and HSP-4 contribute to energy homeostasis via fasting-induced lipases in C. elegans. Cell Metab. 2009;9(5):440–8.

    Article  PubMed  CAS  Google Scholar 

  63. Zhou QG, Zhou M, Hou FF, Peng X. Asymmetrical dimethylarginine triggers lipolysis and inflammatory response via induction of endoplasmic reticulum stress in cultured adipocytes. Am J Physiol Endocrinol Metab. 2009;296(4):E869–78.

    Article  PubMed  CAS  Google Scholar 

  64. Xu L, Spinas GA, Niessen M. ER stress in adipocytes inhibits insulin signaling, represses lipolysis, and alters the secretion of adipokines without inhibiting glucose transport. Horm Metab Res. 2010;42(9):643–51.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Pagliassotti Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pagliassotti, M., Moran, G., Estrada, A., Foster, M.T. (2014). Endoplasmic Reticulum Stress and Adipose Tissue Function. In: Fantuzzi, G., Braunschweig, C. (eds) Adipose Tissue and Adipokines in Health and Disease. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-770-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-770-9_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-769-3

  • Online ISBN: 978-1-62703-770-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics