Skip to main content

Human Milk Oligosaccharides: Role in Infant Health

  • Chapter
  • First Online:
Nutrition in Infancy

Part of the book series: Nutrition and Health ((NH))

Abstract

Human breast milk is widely considered the optimal nutrition for the newborn infant. Aside from providing the neonate with the nutritional needs for growth and development, breast milk also contains a plethora of bioactive factors that promote health and offer protection from infections. Human milk oligosaccharides (HMO), unconjugated, complex carbohydrates, are present in human milk at 10–20 g/L, a concentration only surpassed by lactose (Lac) and lipids, and often higher than that of total protein. Bovine milk, the basis of most infant formula, is a scarce source of oligosaccharides, which are also structurally different and less complex. High abundance and structural complexity of HMO are unique to human milk, raising questions about their biological roles and potential benefits for the human infant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2′ FL:

2′-Fucosyllactose

3′ SL:

3′-Sialyllactose

3FL:

3-Fucosyllactose

6′ SL:

6′-Sialyllactose

BMO:

Bovine milk oligosaccharides

DSLNT:

Disialyllacto-N-tetraose

FOS:

Fructooligosaccharides

Fruc:

Fructose

Fuc:

Fucose

Gal:

Galactose

Glc:

Glucose

GlcNAc:

N-acetylglucosamine

GOS:

Galactooligosaccharides

HMO:

Human milk oligosaccharides

Lac:

Lactose

LNFP1,2:

Lacto-N-fucopentaose 1,2

LNnT:

Lacto-N-neotetraose

LNT:

Lacto-N-tetraose

NEC:

Necrotizing enterocolitis

Neu5Ac:

N-actetylneuraminic acid

Neu5Gc:

N-glycolylneuraminic acid

PNC:

Platelet-neutrophil complex

Sia:

Sialic acid

References

  1. Bode L. Human milk oligosaccharides: prebiotics and beyond. Nutr Rev. 2009;67 Suppl 2:S183–91.

    Article  PubMed  Google Scholar 

  2. Chichlowski M, German JB, Lebrilla CB, Mills DA. The influence of milk oligosaccharides on microbiota of infants: opportunities for formulas. Annu Rev Food Sci Technol. 2011;2:331–51.

    Article  PubMed  CAS  Google Scholar 

  3. Thurl S, Henker J, Siegel M, Tovar K, Sawatzki G. Detection of four human milk groups with respect to Lewis blood group dependent oligosaccharides. Glycoconj J. 1997;14:795–9.

    Article  PubMed  CAS  Google Scholar 

  4. Chaturvedi P, Warren CD, Altaye M, Morrow AL, Ruiz-Palacios G, Pickering LK, et al. Fucosylated human milk oligosaccharides vary between individuals and over the course of lactation. Glycobiology. 2001;11:365–72.

    Article  PubMed  CAS  Google Scholar 

  5. Thurl S, Munzert M, Henker J, Boehm G, Muller-Werner B, Jelinek J, et al. Variation of human milk oligosaccharides in relation to milk groups and lactational periods. Br J Nutr. 2010;104:1261–71.

    Article  PubMed  CAS  Google Scholar 

  6. Martin-Sosa S, Martin MJ, Garcia-Pardo LA, Hueso P. Sialyloligosaccharides in human and bovine milk and in infant formulas: variations with the progression of lactation. J Dairy Sci. 2003;86:52–9.

    Article  PubMed  CAS  Google Scholar 

  7. Chaturvedi P, Warren CD, Buescher CR, Pickering LK, Newburg DS. Survival of human milk oligosaccharides in the intestine of infants. Adv Exp Med Biol. 2001;501:315–23.

    Article  PubMed  CAS  Google Scholar 

  8. Engfer MB, Stahl B, Finke B, Sawatzki G, Daniel H. Human milk oligosaccharides are resistant to enzymatic hydrolysis in the upper gastrointestinal tract. Am J Clin Nutr. 2000;71:1589–96.

    PubMed  CAS  Google Scholar 

  9. Gnoth MJ, Kunz C, Kinne-Saffran E, Rudloff S. Human milk oligosaccharides are minimally digested in vitro. J Nutr. 2000;130:3014–20.

    PubMed  CAS  Google Scholar 

  10. Albrecht S, Schols HA, van Zoeren D, van Lingen RA, Groot Jebbink LJ, van den Heuvel EG, et al. Oligosaccharides in feces of breast- and formula-fed babies. Carbohydr Res. 2011;346:2173–81.

    Article  PubMed  CAS  Google Scholar 

  11. Albrecht S, Schols HA, van den Heuvel EG, Voragen AG, Gruppen H. Occurrence of oligosaccharides in feces of breast-fed babies in their first six months of life and the corresponding breast milk. Carbohydr Res. 2011;29:2540–50.

    Article  Google Scholar 

  12. Rudloff S, Pohlentz G, Diekmann L, Egge H, Kunz C. Urinary excretion of lactose and oligosaccharides in preterm infants fed human milk or infant formula. Acta Paediatr. 1996;85:598–603.

    Article  PubMed  CAS  Google Scholar 

  13. Rudloff S, Pohlentz G, Borsch C, Lentze MJ, Kunz C. Urinary excretion of in vivo 13C-labelled milk oligosaccharides in breastfed infants. Br J Nutr. 2012;107(7):1–7.

    Article  Google Scholar 

  14. Gnoth MJ, Rudloff S, Kunz C, Kinne RK. Investigations of the in vitro transport of human milk oligosaccharides by a Caco-2 monolayer using a novel high performance liquid chromatography-mass spectrometry technique. J Biol Chem. 2001;276:34363–70.

    Article  PubMed  CAS  Google Scholar 

  15. Moro E. Morphologische und bakteriologische Untersuchungen über die Darmbakterien des Säuglings: die Bakterienflora des normalen Frauenmilchstuhls. Jahrbuch Kinderh. 1900;61:686–734.

    Google Scholar 

  16. György PNR, Rose CS. Bifidus factor I. A variant of Lactobacillus bifidus requiring a special growth factor. Arch Biochem Biophys. 1954;48:193–201.

    Article  PubMed  Google Scholar 

  17. Morelli L. Postnatal development of intestinal microflora as influenced by infant nutrition. J Nutr. 2008;138:1791S–5.

    PubMed  CAS  Google Scholar 

  18. LoCascio RG, Ninonuevo MR, Freeman SL, Sela DA, Grimm R, Lebrilla CB, et al. Glycoprofiling of bifidobacterial consumption of human milk oligosaccharides demonstrates strain specific, preferential consumption of small chain glycans secreted in early human lactation. J Agric Food Chem. 2007;55:8914–9.

    Article  PubMed  CAS  Google Scholar 

  19. Fushinobu S. Unique sugar metabolic pathways of bifidobacteria. Biosci Biotechnol Biochem. 2010;74:2374–84.

    Article  PubMed  CAS  Google Scholar 

  20. Ward RE, Ninonuevo M, Mills DA, Lebrilla CB, German JB. In vitro fermentation of breast milk oligosaccharides by Bifidobacterium infantis and Lactobacillus gasseri. Appl Environ Microbiol. 2006;72:4497–9.

    Article  PubMed  CAS  Google Scholar 

  21. Sela DA, Chapman J, Adeuya A, Kim JH, Chen F, Whitehead TR, et al. The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc Natl Acad Sci U S A. 2008;105:18964–9.

    Article  PubMed  CAS  Google Scholar 

  22. Yoshida E, Sakurama H, Kiyohara M, Nakajima M, Kitaoka M, Ashida H, et al. Bifidobacterium longum subsp. infantis uses two different {beta}-galactosidases for selectively degrading type-1 and type-2 human milk oligosaccharides. Glycobiology. 2012;22(3):361–8.

    Article  PubMed  CAS  Google Scholar 

  23. Marcobal A, Barboza M, Sonnenburg ED, Pudlo N, Martens EC, Desai P, et al. Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization pathways. Cell Host Microbe. 2011;10(5):507–14.

    Article  PubMed  CAS  Google Scholar 

  24. Schwab C, Ganzle M. Lactic acid bacteria fermentation of human milk oligosaccharide components, human milk oligosaccharides and galactooligosaccharides. FEMS Microbiol Lett. 2011;315:141–8.

    Article  PubMed  CAS  Google Scholar 

  25. Coppa GV, Gabrielli O, Zampini L, Galeazzi T, Ficcadenti A, Padella L, et al. Oligosaccharides in 4 different milk groups, Bifidobacteria, and Ruminococcus obeum. J Pediatr Gastroenterol Nutr. 2011;53:80–7.

    Article  PubMed  CAS  Google Scholar 

  26. Hanson LA. Session 1: feeding and infant development breast-feeding and immune function. Proc Nutr Soc. 2007;66:384–96.

    Article  PubMed  CAS  Google Scholar 

  27. Coppa GV, Zampini L, Galeazzi T, Facinelli B, Ferrante L, Capretti R, et al. Human milk oligosaccharides inhibit the adhesion to Caco-2 cells of diarrheal pathogens: Escherichia coli, Vibrio cholerae, and Salmonella fyris. Pediatr Res. 2006;59:377–82.

    Article  PubMed  CAS  Google Scholar 

  28. Ruiz-Palacios GM, Cervantes LE, Ramos P, Chavez-Munguia B, Newburg DS. Campylobacter jejuni binds intestinal H(O) antigen (Fuc alpha 1, 2Gal beta 1, 4GlcNAc), and fucosyloligosaccharides of human milk inhibit its binding and infection. J Biol Chem. 2003;278:14112–20.

    Article  PubMed  CAS  Google Scholar 

  29. Morrow AL, Ruiz-Palacios GM, Altaye M, Jiang X, Guerrero ML, Meinzen-Derr JK, et al. Human milk oligosaccharide blood group epitopes and innate immune protection against campylobacter and calicivirus diarrhea in breastfed infants. Adv Exp Med Biol. 2004;554:443–6.

    PubMed  CAS  Google Scholar 

  30. Idanpaan-Heikkila I, Simon PM, Zopf D, Vullo T, Cahill P, Sokol K, et al. Oligosaccharides interfere with the establishment and progression of experimental pneumococcal pneumonia. J Infect Dis. 1997;176:704–12.

    Article  PubMed  CAS  Google Scholar 

  31. Bode L. Recent advances on structure, metabolism, and function of human milk oligosaccharides. J Nutr. 2006;136:2127–30.

    PubMed  CAS  Google Scholar 

  32. Hong P, Ninonuevo MR, Lee B, Lebrilla C, Bode L. Human milk oligosaccharides reduce HIV-1-gp120 binding to dendritic cell-specific ICAM3-grabbing non-integrin (DC-SIGN). Br J Nutr. 2009;101:482–6.

    Article  PubMed  CAS  Google Scholar 

  33. Jantscher-Krenn E, Lauwaet T, Bliss LA, Reed SL, Gillin FD, Bode L. Human milk oligosaccharides reduce Entamoeba histolytica attachment and cytotoxicity in vitro. Br J Nutr. 2012;23:1–8.

    Google Scholar 

  34. Angeloni S, Ridet JL, Kusy N, Gao H, Crevoisier F, Guinchard S, et al. Glycoprofiling with micro-arrays of glycoconjugates and lectins. Glycobiology. 2005;15:31–41.

    Article  PubMed  CAS  Google Scholar 

  35. Kuntz S, Rudloff S, Kunz C. Oligosaccharides from human milk influence growth-related characteristics of intestinally transformed and non-transformed intestinal cells. Br J Nutr. 2008;99:462–71.

    Article  PubMed  CAS  Google Scholar 

  36. Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell. 1994;76:301–14.

    Article  PubMed  CAS  Google Scholar 

  37. Peters MJ, Dixon G, Kotowicz KT, Hatch DJ, Heyderman RS, Klein NJ. Circulating platelet-neutrophil complexes represent a subpopulation of activated neutrophils primed for adhesion, phagocytosis and intracellular killing. Br J Haematol. 1999;106:391–9.

    Article  PubMed  CAS  Google Scholar 

  38. Bode L, Kunz C, Muhly-Reinholz M, Mayer K, Seeger W, Rudloff S. Inhibition of monocyte, lymphocyte, and neutrophil adhesion to endothelial cells by human milk oligosaccharides. Thromb Haemost. 2004;92:1402–10.

    PubMed  CAS  Google Scholar 

  39. Bode L, Rudloff S, Kunz C, Strobel S, Klein N. Human milk oligosaccharides reduce platelet-neutrophil complex formation leading to a decrease in neutrophil beta 2 integrin expression. J Leukoc Biol. 2004;76:820–6.

    Article  PubMed  CAS  Google Scholar 

  40. de Kivit SKA, Garssen J, Willemsen LE. Glycan recognition at the interface of the intestinal immune system: target for immune modulation via dietary components. Eur J Pharmacol. 2011;668:S124–32.

    Article  PubMed  Google Scholar 

  41. Atochina O, Da’dara AA, Walker M, Harn DA. The immunomodulatory glycan LNFPIII initiates alternative activation of murine macrophages in vivo. Immunology. 2008;125:111–21.

    Article  PubMed  CAS  Google Scholar 

  42. Atochina O, Harn D. Prevention of psoriasis-like lesions development in fsn/fsn mice by helminth glycans. Exp Dermatol. 2006;15:461–8.

    Article  PubMed  CAS  Google Scholar 

  43. Eiwegger T, Stahl B, Haidl P, Schmitt J, Boehm G, Dehlink E, et al. Prebiotic oligosaccharides: in vitro evidence for gastrointestinal epithelial transfer and immunomodulatory properties. Pediatr Allergy Immunol. 2010;21:1179–88.

    Article  PubMed  Google Scholar 

  44. Eiwegger T, Stahl B, Schmitt J, Boehm G, Gerstmayr M, Pichler J, et al. Human milk-derived oligosaccharides and plant-derived oligosaccharides stimulate cytokine production of cord blood T-cells in vitro. Pediatr Res. 2004;56:536–40.

    Article  PubMed  CAS  Google Scholar 

  45. Jantscher-Krenn E, Zherebtsov M, Nissan C, Goth K, Guner YS, Naidu N, et al. The human milk oligosaccharide disialyllacto-N-tetraose prevents necrotising enterocolitis in neonatal rats. Gut. 2012 Oct;61(10):1417–25. Epub 2011 Dec 3.

    Google Scholar 

  46. Anderson JW, Johnstone BM, Remley DT. Breast-feeding and cognitive development: a meta-analysis. Am J Clin Nutr. 1999;70:525–35.

    PubMed  CAS  Google Scholar 

  47. Wang B, McVeagh P, Petocz P, Brand-Miller J. Brain ganglioside and glycoprotein sialic acid in breastfed compared with formula-fed infants. Am J Clin Nutr. 2003;78:1024–9.

    PubMed  CAS  Google Scholar 

  48. Morgan BL, Winick M. Effects of administration of N-acetylneuraminic acid (NANA) on brain NANA content and behavior. J Nutr. 1980;110:416–24.

    PubMed  CAS  Google Scholar 

  49. Wang B, Yu B, Karim M, Hu H, Sun Y, McGreevy P, et al. Dietary sialic acid supplementation improves learning and memory in piglets. Am J Clin Nutr. 2007;85:561–9.

    PubMed  CAS  Google Scholar 

  50. Duncan PI, Raymond F, Fuerholz A, Sprenger N. Sialic acid utilisation and synthesis in the neonatal rat revisited. PLoS One. 2009;4:e8241.

    Article  PubMed  Google Scholar 

  51. Knol J, Scholtens P, Kafka C, Steenbakkers J, Gro S, Helm K, et al. Colon microflora in infants fed formula with galacto- and fructo-oligosaccharides: more like breast-fed infants. J Pediatr Gastroenterol Nutr. 2005;40:36–42.

    Article  PubMed  CAS  Google Scholar 

  52. Rijnierse A, Jeurink PV, van Esch BC, Garssen J, Knippels LM. Food-derived oligosaccharides exhibit pharmaceutical properties. Eur J Pharmacol. 2011;668 Suppl 1:S117–23.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Bode .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jantscher-Krenn, E., Bode, L. (2013). Human Milk Oligosaccharides: Role in Infant Health. In: Watson, R., Grimble, G., Preedy, V., Zibadi, S. (eds) Nutrition in Infancy. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-224-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-224-7_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-223-0

  • Online ISBN: 978-1-62703-224-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics