Skip to main content

Blood-Based Tumor Markers for Prostate Cancer

  • Chapter
  • First Online:
Prostate Cancer Diagnosis

Abstract

Although the wide availability of prostate-specific antigen (PSA) has revolutionized prostate cancer (PCa) screening, resulting in a decrease in PCa metastasis and death, the ubiquitous use of PSA screening has also led to overdetection and overtreatment (Schroder et al. N Engl J Med 360(13): 1320–8, 2009). Since all prostate epithelial cells synthesize PSA, an elevated PSA can reflect the presence of cancer but can also be caused by benign prostatic hyperplasia (BPH), infection, and/or chronic inflammation. Therefore, there has been a concerted effort to discover and validate novel PCa biomarkers. This chapter discusses (1) the challenges of PCa biomarker research, the types of PCa biomarkers, and the statistical considerations for biomarker discovery and validation; (2) the isoforms of PSA and their clinical applications; (3) several promising blood-based biomarkers for PCa diagnosis and/or prognostication (i.e., human kallikrein-related peptidase 2, urokinase plasminogen activator, transforming growth factor-beta 1, interleukin-6, endoglin, and prostate cancer specific autoantibodies and alpha-methylacyl-CoA racemase); and (4) the benefit of and need for combining biomarkers into different panels for each disease state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schroder FH, et al. Screening and prostate-cancer mortality in a randomized European study. N Engl J Med. 2009;360(13):1320–8.

    Article  PubMed  Google Scholar 

  2. Shariat SF, et al. Beyond prostate-specific antigen: new serologic biomarkers for improved diagnosis and management of prostate cancer. Rev Urol. 2004;6(2): 58–72.

    PubMed  Google Scholar 

  3. Shariat SF, Karakiewicz PI. Perspectives on prostate cancer biomarkers. Eur Urol. 2008;54(1):8–10.

    Article  PubMed  Google Scholar 

  4. Shariat SF, et al. Tumor markers in prostate cancer I: blood-based markers. Acta Oncol. 2011;50 (Suppl 1): 61–75.

    Article  PubMed  Google Scholar 

  5. Atkinson AJ, et al. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69(3):89–95.

    Article  Google Scholar 

  6. Bensalah K, Montorsi F, Shariat SF. Challenges of cancer biomarker profiling. Eur Urol. 2007;52(6): 1601–9.

    Article  PubMed  Google Scholar 

  7. Bensalah K, et al. New circulating biomarkers for prostate cancer. Prostate Cancer Prostatic Dis. 2008;11(2):112–20.

    Article  PubMed  CAS  Google Scholar 

  8. Verma M, Srivastava S. New cancer biomarkers deriving from NCI early detection research. Recent Results Cancer Res. 2003;163:72–84. discussion 264–6.

    Article  PubMed  CAS  Google Scholar 

  9. Winget MD, et al. Development of common data elements: the experience of and recommendations from the early detection research network. Int J Med Inform. 2003;70(1):41–8.

    Article  PubMed  Google Scholar 

  10. Shariat SF, et al. An updated catalog of prostate cancer predictive tools. Cancer. 2008;113(11):3075–99.

    Article  PubMed  Google Scholar 

  11. Shariat SF, et al. New blood-based biomarkers for the diagnosis, staging and prognosis of prostate cancer. BJU Int. 2008;101(6):675–83.

    Article  PubMed  CAS  Google Scholar 

  12. Shariat SF, et al. Plasminogen activation inhibitor-1 improves the predictive accuracy of prostate cancer nomograms. J Urol. 2007;178(4 Pt 1):1229–36. ­discussion 1236–7.

    Article  PubMed  CAS  Google Scholar 

  13. Kattan MW. Judging new markers by their ability to improve predictive accuracy. J Natl Cancer Inst. 2003;95(9):634–5.

    Article  PubMed  CAS  Google Scholar 

  14. Vickers AJ, Kattan MW, Daniel S. Method for evaluating prediction models that apply the results of randomized trials to individual patients. Trials. 2007;8:14.

    Article  PubMed  Google Scholar 

  15. Kattan MW, et al. The addition of interleukin-6 soluble receptor and transforming growth factor beta1 improves a preoperative nomogram for predicting biochemical progression in patients with clinically localized prostate cancer. J Clin Oncol. 2003;21(19): 3573–9.

    Article  PubMed  CAS  Google Scholar 

  16. Shariat SF, et al. Improved prediction of disease relapse after radical prostatectomy through a panel of preoperative blood-based biomarkers. Clin Cancer Res. 2008;14(12):3785–91.

    Article  PubMed  CAS  Google Scholar 

  17. Vickers AJ, et al. A panel of kallikrein markers can reduce unnecessary biopsy for prostate cancer: data from the European Randomized Study of prostate cancer screening in Goteborg, Sweden. BMC Med. 2008;6:19.

    Article  PubMed  Google Scholar 

  18. Vickers AJ, et al. Systematic review of statistical methods used in molecular marker studies in cancer. Cancer. 2008;112(8):1862–8.

    Article  PubMed  Google Scholar 

  19. Thompson IM, et al. Operating characteristics of prostate-specific antigen in men with an initial PSA level of 3.0 ng/ml or lower. JAMA. 2005;294(1):66–70.

    Article  PubMed  CAS  Google Scholar 

  20. Shariat SF, et al. Multiple biomarkers improve prediction of bladder cancer recurrence and mortality in patients undergoing cystectomy. Cancer. 2008;112(2): 315–25.

    Article  PubMed  Google Scholar 

  21. Vickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluating prediction models. Med Decis Making. 2006;26(6):565–74.

    Article  PubMed  Google Scholar 

  22. Vickers AJ, et al. Extensions to decision curve analysis, a novel method for evaluating diagnostic tests, prediction models and molecular markers. BMC Med Inform Decis Mak. 2008;8:53.

    Article  PubMed  Google Scholar 

  23. Vickers AJ. Decision analysis for the evaluation of diagnostic tests, prediction models and molecular markers. Am Stat. 2008;62(4):314–20.

    Article  PubMed  Google Scholar 

  24. Elkin EB, Vickers AJ, Kattan MW. Primer: using decision analysis to improve clinical decision making in urology. Nat Clin Pract Urol. 2006;3(8):439–48.

    Article  PubMed  Google Scholar 

  25. Lilja H, Ulmert D, Vickers AJ. Prostate-specific antigen and prostate cancer: prediction, detection and monitoring. Nat Rev Cancer. 2008;8(4):268–78.

    Article  PubMed  CAS  Google Scholar 

  26. Schroder FH, et al. Early detection of prostate cancer in 2007. Part 1: PSA and PSA kinetics. Eur Urol. 2008;53(3):468–77.

    Article  PubMed  Google Scholar 

  27. Shariat SF, Karam JA, Roehrborn CG. Blood biomarkers for prostate cancer detection and prognosis. Future Oncol. 2007;3(4):449–61.

    Article  PubMed  CAS  Google Scholar 

  28. Shariat SF, et al. Inventory of prostate cancer predictive tools. Curr Opin Urol. 2008;18(3):279–96.

    Article  PubMed  Google Scholar 

  29. Lilja H. Significance of different molecular forms of serum PSA. The free, noncomplexed form of PSA versus that complexed to alpha 1-antichymotrypsin (Review). Urol Clin North Am. 1993;20(4):681–6.

    PubMed  CAS  Google Scholar 

  30. Shariat SF, et al. Pre-operative percent free PSA predicts clinical outcomes in patients treated with radical prostatectomy with total PSA levels below 10 ng/ml. Eur Urol. 2006;49(2):293–302.

    Article  PubMed  Google Scholar 

  31. Catalona WJ, et al. Comparison of percent free PSA, PSA density, and age-specific PSA cutoffs for prostate cancer detection and staging. Urology. 2000;56(2): 255–60.

    Article  PubMed  CAS  Google Scholar 

  32. Mikolajczyk SD, et al. Free prostate-specific antigen in serum is becoming more complex. Urology. 2002;59(6):797–802.

    Article  PubMed  Google Scholar 

  33. Catalona WJ, et al. Use of the percentage of free prostate-specific antigen to enhance differentiation of prostate cancer from benign prostatic disease: a prospective multicenter clinical trial. JAMA. 1998;279(19):1542–7.

    Article  PubMed  CAS  Google Scholar 

  34. Woodrum DL, et al. Interpretation of free prostate specific antigen clinical research studies for the detection of prostate cancer. J Urol. 1998;159(1):5–12.

    Article  PubMed  CAS  Google Scholar 

  35. Canto EI, et al. Effects of systematic 12-core biopsy on the performance of percent free prostate specific antigen for prostate cancer detection. J Urol. 2004;172(3):900–4.

    Article  PubMed  Google Scholar 

  36. Lee R, et al. A meta-analysis of the performance characteristics of the free prostate-specific antigen test. Urology. 2006;67(4):762–8.

    Article  PubMed  Google Scholar 

  37. Catalona WJ, Smith DS, Ornstein DK. Prostate cancer detection in men with serum PSA concentrations of 2.6 to 4.0 ng/mL and benign prostate examination. Enhancement of specificity with free PSA measurements. JAMA. 1997;277(18):1452–5.

    Article  PubMed  CAS  Google Scholar 

  38. Rowe EW, et al. Prostate cancer detection in men with a ‘normal’ total prostate-specific antigen (PSA) level using percentage free PSA: a prospective screening study. BJU Int. 2005;95(9):1249–52.

    Article  PubMed  Google Scholar 

  39. Pepe P, et al. Prevalence and clinical significance of prostate cancer among 12,682 men with normal digital rectal examination, low PSA levels (< or =4 ng/ml) and percent free PSA cutoff values of 15 and 20%. Urol Int. 2007;78(4):308–12.

    Article  PubMed  CAS  Google Scholar 

  40. Graefen M, et al. Percent free prostate specific antigen is not an independent predictor of organ confinement or prostate specific antigen recurrence in unscreened patients with localized prostate cancer treated with radical prostatectomy. J Urol. 2002;167(3):1306–9.

    Article  PubMed  Google Scholar 

  41. Mikolajczyk SD, et al. A truncated precursor form of prostate-specific antigen is a more specific serum marker of prostate cancer. Cancer Res. 2001;61(18): 6958–63.

    PubMed  CAS  Google Scholar 

  42. Sokoll LJ, et al. Proenzyme psa for the early detection of prostate cancer in the 2.5–4.0 ng/ml total psa range: preliminary analysis. Urology. 2003;61(2):274–6.

    Article  PubMed  Google Scholar 

  43. Catalona WJ, et al. Serum pro-prostate specific ­antigen preferentially detects aggressive prostate cancers in men with 2 to 4 ng/ml prostate specific antigen. J Urol. 2004;171(6 Pt 1):2239–44.

    Article  PubMed  Google Scholar 

  44. Catalona WJ, et al. Serum pro prostate specific antigen improves cancer detection compared to free and complexed prostate specific antigen in men with prostate specific antigen 2 to 4 ng/ml. J Urol. 2003;170(6 Pt 1):2181–5.

    Article  PubMed  CAS  Google Scholar 

  45. Stephan C, et al. A [−2]proPSA-based artificial neural network significantly improves differentiation between prostate cancer and benign prostatic diseases. Prostate. 2009;69(2):198–207.

    Article  PubMed  CAS  Google Scholar 

  46. Makarov DV, et al. Pro-prostate-specific antigen measurements in serum and tissue are associated with treatment necessity among men enrolled in expectant management for prostate cancer. Clin Cancer Res. 2009;15(23):7316–21.

    Article  PubMed  CAS  Google Scholar 

  47. Sokoll LJ, et al. A prospective, multicenter, National Cancer Institute early detection research network study of [−2]proPSA: improving prostate cancer detection and correlating with cancer aggressiveness. Cancer Epidemiol Biomarkers Prev. 2010;19(5): 1193–200.

    Article  PubMed  Google Scholar 

  48. Semjonow A, et al. Pre-analytical in-vitro stability of [−2]proPSA in blood and serum. Clin Biochem. 2010;43(10–11):926–8.

    Article  PubMed  CAS  Google Scholar 

  49. Mikolajczyk SD, et al. “BPSA,” a specific molecular form of free prostate-specific antigen, is found predominantly in the transition zone of patients with nodular benign prostatic hyperplasia. Urology. 2000;55(1):41–5.

    Article  PubMed  CAS  Google Scholar 

  50. Canto EI, et al. Serum BPSA outperforms both total PSA and free PSA as a predictor of prostatic enlargement in men without prostate cancer. Urology. 2004;63(5):905–10. discussion 910–1.

    Article  PubMed  Google Scholar 

  51. Stephan C, et al. Benign prostatic hyperplasia-associated free prostate-specific antigen improves detection of prostate cancer in an artificial neural network. Urology. 2009;74(4):873–7.

    Article  PubMed  Google Scholar 

  52. Nurmikko P, et al. Discrimination of prostate cancer from benign disease by plasma measurement of intact, free prostate-specific antigen lacking an internal cleavage site at Lys145-Lys146. Clin Chem. 2001;47(8):1415–23.

    PubMed  CAS  Google Scholar 

  53. Steuber T, et al. Association of free-prostate specific antigen subfractions and human glandular kallikrein 2 with volume of benign and malignant prostatic tissue. Prostate. 2005;63(1):13–8.

    Article  PubMed  CAS  Google Scholar 

  54. Yousef GM, Diamandis EP. The new human tissue kallikrein gene family: structure, function, and association to disease. Endocr Rev. 2001;22(2):184–204.

    Article  PubMed  CAS  Google Scholar 

  55. Nam RK, et al. Serum human glandular kallikrein-2 protease levels predict the presence of prostate cancer among men with elevated prostate-specific antigen. J Clin Oncol. 2000;18(5):1036–42.

    PubMed  CAS  Google Scholar 

  56. Becker C, et al. Clinical value of human glandular kallikrein 2 and free and total prostate-specific antigen in serum from a population of men with prostate-specific antigen levels 3.0 ng/mL or greater. Urology. 2000;55(5):694–9.

    Article  PubMed  CAS  Google Scholar 

  57. Becker C, et al. Discrimination of men with prostate cancer from those with benign disease by measurements of human glandular kallikrein 2 (HK2) in serum. J Urol. 2000;163(1):311–6.

    Article  PubMed  CAS  Google Scholar 

  58. Haese A, et al. Human glandular kallikrein 2 levels in serum for discrimination of pathologically organ-confined from locally-advanced prostate cancer in total PSA-levels below 10 ng/ml. Prostate. 2001;49(2): 101–9.

    Article  PubMed  CAS  Google Scholar 

  59. Kwiatkowski MK, et al. In prostatism patients the ratio of human glandular kallikrein to free PSA improves the discrimination between prostate cancer and benign hyperplasia within the diagnostic “gray zone” of total PSA 4 to 10 ng/mL. Urology. 1998;52(3):360–5.

    Article  PubMed  CAS  Google Scholar 

  60. Recker F, et al. The importance of human glandular kallikrein and its correlation with different prostate specific antigen serum forms in the detection of prostate carcinoma. Cancer. 1998;83(12):2540–7.

    Article  PubMed  CAS  Google Scholar 

  61. Kurek R, et al. Prognostic value of combined “triple”-reverse transcription-PCR analysis for prostate-specific antigen, human kallikrein 2, and prostate-specific membrane antigen mRNA in peripheral blood and lymph nodes of prostate cancer patients. Clin Cancer Res. 2004;10(17):5808–14.

    Article  PubMed  CAS  Google Scholar 

  62. Duffy MJ. Urokinase-type plasminogen activator: a potent marker of metastatic potential in human cancers. Biochem Soc Trans. 2002;30(2):207–10.

    Article  PubMed  CAS  Google Scholar 

  63. Gupta A, et al. Predictive value of the differential expression of the urokinase plasminogen activation axis in radical prostatectomy patients. Eur Urol. 2009;55(5):1124–33.

    Article  PubMed  CAS  Google Scholar 

  64. Steuber T, et al. Free PSA isoforms and intact and cleaved forms of urokinase plasminogen activator receptor in serum improve selection of patients for prostate cancer biopsy. Int J Cancer. 2007;120(7): 1499–504.

    Article  PubMed  CAS  Google Scholar 

  65. Hienert G, et al. Urokinase-type plasminogen activator as a marker for the formation of distant metastases in prostatic carcinomas. J Urol. 1988;140(6): 1466–9.

    PubMed  CAS  Google Scholar 

  66. Miyake H, et al. Elevation of serum levels of urokinase-type plasminogen activator and its receptor is associated with disease progression and prognosis in patients with prostate cancer. Prostate. 1999;39(2): 123–9.

    Article  PubMed  CAS  Google Scholar 

  67. Shariat SF, et al. Association of the circulating levels of the urokinase system of plasminogen activation with the presence of prostate cancer and invasion, progression, and metastasis. J Clin Oncol. 2007;25(4):349–55.

    Article  PubMed  CAS  Google Scholar 

  68. Shariat SF, et al. Preoperative plasma levels of transforming growth factor beta(1) (TGF-beta(1)) strongly predict progression in patients undergoing radical prostatectomy. J Clin Oncol. 2001;19(11): 2856–64.

    PubMed  CAS  Google Scholar 

  69. Truong LD, et al. Association of transforming growth factor-beta 1 with prostate cancer: an immunohistochemical study. Hum Pathol. 1993;24(1):4–9.

    Article  PubMed  CAS  Google Scholar 

  70. Shariat SF, et al. Association of pre- and postoperative plasma levels of transforming growth factor beta(1) and interleukin 6 and its soluble receptor with prostate cancer progression. Clin Cancer Res. 2004;10(6): 1992–9.

    Article  PubMed  CAS  Google Scholar 

  71. Shariat SF, et al. Tissue expression of transforming growth factor-beta1 and its receptors: correlation with pathologic features and biochemical progression in patients undergoing radical prostatectomy. Urology. 2004;63(6):1191–7.

    Article  PubMed  Google Scholar 

  72. Shariat SF, et al. Preoperative plasma levels of transforming growth factor beta(1) strongly predict clinical outcome in patients with bladder carcinoma. Cancer. 2001;92(12):2985–92.

    Article  PubMed  CAS  Google Scholar 

  73. Ivanovic V, et al. Elevated plasma levels of TGF-beta 1 in patients with invasive prostate cancer. Nat Med. 1995;1(4):282–4.

    Article  PubMed  CAS  Google Scholar 

  74. Hobisch A, et al. Interleukin-6 regulates prostate-specific protein expression in prostate carcinoma cells by activation of the androgen receptor. Cancer Res. 1998;58(20):4640–5.

    PubMed  CAS  Google Scholar 

  75. Giri D, Ozen M, Ittmann M. Interleukin-6 is an autocrine growth factor in human prostate cancer. Am J Pathol. 2001;159(6):2159–65.

    Article  PubMed  CAS  Google Scholar 

  76. Michalaki V, et al. Serum levels of IL-6 and TNF-alpha correlate with clinicopathological features and patient survival in patients with prostate cancer. Br J Cancer. 2004;90(12):2312–6.

    PubMed  CAS  Google Scholar 

  77. Nakashima J, et al. Serum interleukin 6 as a prognostic factor in patients with prostate cancer. Clin Cancer Res. 2000;6(7):2702–6.

    PubMed  CAS  Google Scholar 

  78. Stark JR, et al. Circulating prediagnostic interleukin-6 and C-reactive protein and prostate cancer incidence and mortality. Int J Cancer. 2009;124(11):2683–9.

    Article  PubMed  CAS  Google Scholar 

  79. Cheifetz S, et al. Endoglin is a component of the transforming growth factor-beta receptor system in human endothelial cells. J Biol Chem. 1992;267(27): 19027–30.

    PubMed  CAS  Google Scholar 

  80. Wikstrom P, et al. Endoglin (CD105) is expressed on immature blood vessels and is a marker for survival in prostate cancer. Prostate. 2002;51(4):268–75.

    Article  PubMed  CAS  Google Scholar 

  81. Fujita K, et al. Endoglin (CD105) as a urinary and serum marker of prostate cancer. Int J Cancer. 2009;124(3):664–9.

    Article  PubMed  CAS  Google Scholar 

  82. Karam JA, et al. Use of preoperative plasma endoglin for prediction of lymph node metastasis in patients with clinically localized prostate cancer. Clin Cancer Res. 2008;14(5):1418–22.

    Article  PubMed  CAS  Google Scholar 

  83. Svatek RS, et al. Preoperative plasma endoglin levels predict biochemical progression after radical prostatectomy. Clin Cancer Res. 2008;14(11):3362–6.

    Article  PubMed  CAS  Google Scholar 

  84. Rubin MA, et al. Alpha-Methylacyl coenzyme A racemase as a tissue biomarker for prostate cancer. JAMA. 2002;287(13):1662–70.

    Article  PubMed  CAS  Google Scholar 

  85. Jiang Z, et al. Alpha-methylacyl-CoA racemase: a multi-institutional study of a new prostate cancer marker. Histopathology. 2004;45(3):218–25.

    Article  PubMed  CAS  Google Scholar 

  86. Sreekumar A, et al. Humoral immune response to alpha-methylacyl-CoA racemase and prostate cancer. J Natl Cancer Inst. 2004;96(11):834–43.

    Article  PubMed  CAS  Google Scholar 

  87. Cardillo MR, et al. Can p503s, p504s and p510s gene expression in peripheral-blood be useful as a marker of prostatic cancer? BMC Cancer. 2005;5:111.

    Article  PubMed  Google Scholar 

  88. Bradley SV, et al. Serum antibodies to huntingtin interacting protein-1: a new blood test for prostate cancer. Cancer Res. 2005;65(10):4126–33.

    Article  PubMed  CAS  Google Scholar 

  89. Wang X, et al. Autoantibody signatures in prostate cancer. N Engl J Med. 2005;353(12):1224–35.

    Article  PubMed  CAS  Google Scholar 

  90. Prior C, et al. Use of a combination of biomarkers in serum and urine to improve detection of prostate cancer. World J Urol. 2010;28(6):681–6.

    Article  PubMed  CAS  Google Scholar 

  91. Cao DL, et al. A multiplex model of combining gene-based, protein-based, and metabolite-based with positive and negative markers in urine for the early diagnosis of prostate cancer. Prostate. 2011;71(7):700–10.

    Google Scholar 

  92. Svatek RS, et al. Pre-treatment biomarker levels improve the accuracy of post-prostatectomy nomogram for prediction of biochemical recurrence. Prostate. 2009;69(8):886–94.

    Article  PubMed  CAS  Google Scholar 

  93. Vickers A, et al. Reducing unnecessary biopsy during prostate cancer screening using a four-kallikrein panel: an independent replication. J Clin Oncol. 2010;28(15):2493–8.

    Article  PubMed  Google Scholar 

  94. Benchikh A, et al. A panel of kallikrein markers can predict outcome of prostate biopsy following clinical work-up: an independent validation study from the European Randomized Study of prostate cancer screening, France. BMC Cancer. 2010;10:635.

    Article  PubMed  Google Scholar 

  95. Vickers AJ, et al. Impact of recent screening on predicting the outcome of prostate cancer biopsy in men with elevated prostate-specific antigen: data from the European Randomized Study of prostate cancer screening in Gothenburg, Sweden. Cancer. 2010;116(11):2612–20.

    PubMed  Google Scholar 

  96. Vickers AJ, et al. A four-kallikrein panel predicts prostate cancer in men with recent screening: data from the European Randomized Study of screening for prostate cancer, Rotterdam. Clin Cancer Res. 2010;16(12):3232–9.

    Article  PubMed  CAS  Google Scholar 

  97. Gupta A, et al. A four-kallikrein panel for the prediction of repeat prostate biopsy: data from the European Randomized Study of prostate cancer screening in Rotterdam, Netherlands. Br J Cancer. 2010;103(5):708–14

    Google Scholar 

  98. Shariat SF, et al. Plasma levels of interleukin-6 and its soluble receptor are associated with prostate cancer progression and metastasis. Urology. 2001;58(6):1008–15.

    Article  PubMed  CAS  Google Scholar 

  99. Shariat SF, et al. Association of preoperative plasma levels of vascular endothelial growth factor and soluble vascular cell adhesion molecule-1 with lymph node status and biochemical progression after radical prostatectomy. J Clin Oncol. 2004;22(9):1655–63.

    Article  PubMed  CAS  Google Scholar 

  100. Shariat SF, et al. External validation of a biomarker-based preoperative nomogram predicts biochemical recurrence after radical prostatectomy. J Clin Oncol. 2008;26(9):1526–31.

    Article  PubMed  CAS  Google Scholar 

  101. Shariat SF, et al. Detection of clinically significant, occult prostate cancer metastases in lymph nodes using a splice variant-specific rt-PCR assay for human glandular kallikrein. J Clin Oncol. 2003;21(7):1223–31.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lily C. Wang M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wang, L.C., Scherr, D.S., Shariat, S.F. (2013). Blood-Based Tumor Markers for Prostate Cancer. In: Jones, J. (eds) Prostate Cancer Diagnosis. Current Clinical Urology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-188-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-188-2_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-187-5

  • Online ISBN: 978-1-62703-188-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics