Skip to main content

New Horizons in Molecular Imaging of Prostate Cancer

  • Chapter
  • First Online:
Imaging and Focal Therapy of Early Prostate Cancer

Part of the book series: Current Clinical Urology ((CCU))

  • 1398 Accesses

Abstract

Prostate cancer is the most common malignancy among American men. Traditionally, imaging plays a relatively minor role in the management of organ confined prostate cancer. However, with the advent of novel imaging techniques including contrast-enhanced TRUS with microbubbles, magnetic resonance imaging (MRI) with functional pulse sequences, and positron emission tomography–computed tomography (PET/CT) with novel tracers, imaging has recently become more important in detection of prostate cancer. Accurately localizing prostate cancers may enable focal therapy of the lesion in the near future, thus reducing the impact of prostate cancer treatment. This chapter reviews the novel functional and molecular imaging techniques used in the management of localized prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Cancer Society. Cancer facts & figures 2011. Atlanta: American Cancer Society; 2011.

    Google Scholar 

  2. Levine MA, Ittman M, Melamed J, Lepor H. Two consecutive sets of transrectal ultrasound guided sextant biopsies of the prostate for the detection of prostate cancer. J Urol. 1998;159:471–5.

    Article  PubMed  CAS  Google Scholar 

  3. Svetec D, McCabe K, Peretsman S, et al. Prostate rebiopsy is a poor surrogate of treatment efficacy in localized prostate cancer. J Urol. 1998;159:1606–8.

    Article  PubMed  CAS  Google Scholar 

  4. Taymoorian K, Thomas A, Slowinski T, et al. Transrectal broadband-Doppler sonography with intravenous contrast medium administration for prostate imaging and biopsy in men with an elevated PSA value and previous negative biopsies. Anticancer Res. 2007;27:4315–20.

    PubMed  Google Scholar 

  5. Mitterberger M, Horninger W, Pelzer A, Strasser H, Bartsch G, Moser P, Halpern EJ, Gradl J, Aigner F, Pallwein L, Frauscher F. A prospective randomized trial comparing contrast-enhanced targeted versus systematic ultrasound guided biopsies: impact on prostate cancer detection. Prostate. 2007;67:1537–42.

    Article  PubMed  Google Scholar 

  6. Heijmink SW, Barentsz JO. Contrast-enhanced versus systematic transrectal ultrasound-guided prostate cancer detection: an overview of techniques and a systematic review. Eur J Radiol. 2007;63:310–6.

    Article  PubMed  Google Scholar 

  7. Akin O, Sala E, Moskowitz CS, et al. Transition zone prostate cancers: Features, detection, localization, and staging at endorectal MR imaging. Radiology. 2006;239:784–92.

    Article  PubMed  Google Scholar 

  8. Wang L, Mullerad M, Chen HN, et al. Prostate cancer: Incremental value of endorectal MR imaging findings for prediction of extracapsular extension. Radiology. 2004;232:133–9.

    Article  PubMed  Google Scholar 

  9. Claus FG, Hricak H, Hattery RR. Pretreatment evaluation of prostate cancer: Role of MR imaging and H-1 MR spectroscopy. Radiographics. 2004;24:S167–80.

    Article  PubMed  Google Scholar 

  10. Sala E, Akin O, Moskowitz CS, et al. Endorectal MR imaging in the evaluation of seminal vesicle invasion: diagnostic accuracy and multivariate feature analysis. Radiology. 2006;238:929–37.

    Article  PubMed  Google Scholar 

  11. Scheidler J, Hricak H, Vigneron DB, et al. Prostate cancer: localization with three-dimensional proton MR spectroscopic imaging–clinicopathologic study. Radiology. 1999;213:473–80.

    PubMed  CAS  Google Scholar 

  12. Ekici S, Ozen H, Agildere M, et al. A comparison of transrectal ultrasonography and endorectal magnetic resonance imaging in the local staging of prostatic carcinoma. BJU Int. 1999;83:796–800.

    Article  PubMed  CAS  Google Scholar 

  13. Wefer AE, Hricak H, Vigneron DB, et al. Sextant localization of prostate cancer: comparison of sextant biopsy, magnetic resonance imaging and magnetic resonance spectroscopic imaging with step section histology. J Urol. 2000;164:400–4.

    Article  PubMed  CAS  Google Scholar 

  14. Ikonen S, Kivisaari L, Tervahartiala P, et al. Prostatic MR imaging Accuracy in differentiating cancer from other prostatic disorders. Acta Radiol. 2001;42:348–54.

    PubMed  CAS  Google Scholar 

  15. Akin O, Agildere AM, Ersoy H, Ozen H, Tekin I, Ayhan A. Local staging of prostate cancer with endorectal surface coil MR imaging in a mid-field magnetic system. Clin Imaging. 2003;27:47–51.

    Article  PubMed  Google Scholar 

  16. Kwek JW, Thng CH, Tan PH, et al. Phased-array magnetic resonance imaging of the prostate with correlation to radical prostatectomy specimens: local experience. Asian J Surg. 2004;27:219–24.

    Article  PubMed  Google Scholar 

  17. Nakashima J, Tanimoto A, Imai Y, et al. Endorectal MRI for prediction of tumor site, tumor size, and local extension of prostate cancer. Urology. 2004;64:101–5.

    Article  PubMed  Google Scholar 

  18. Yamaguchi T, Lee J, Uemura H, et al. Prostate cancer: a comparative study of 11C-choline PET and MR imaging combined with proton MR spectroscopy. Eur J Nucl Med Mol Imaging. 2005;32:742–8.

    Article  PubMed  CAS  Google Scholar 

  19. Cirillo S, Petracchini M, Scotti L, et al. Endorectal magnetic resonance imaging at 1.5 Tesla to assess local recurrence following radical prostatectomy using T2-weighted and contrast-enhanced imaging. Eur Radiol. 2009;19:761–9.

    Article  PubMed  Google Scholar 

  20. Sala E, Eberhardt SC, Akin O, et al. Endorectal MR imaging before salvage prostatectomy: tumor localization and staging. Radiology. 2006;238:176–83.

    Article  PubMed  Google Scholar 

  21. Tan JS, Thng CH, Tan PH, et al. Local experience of endorectal magnetic resonance imaging of prostate with correlation to radical prostatectomy specimens. Ann Acad Med Singapore. 2008;37:40–3.

    PubMed  Google Scholar 

  22. Fütterer JJ, Engelbrecht MR, Huisman HJ, et al. Staging prostate cancer with dynamic contrast-enhanced endorectal MR imaging prior to radical prostatectomy: experienced versus less experienced readers. Radiology. 2005;237:541–9.

    Article  PubMed  Google Scholar 

  23. Bloch BN, Furman-Haran E, Helbich TH, et al. Prostate cancer: accurate determination of extracapsular extension with high-spatial-resolution dynamic contrast-enhanced and T2-weighted MR imaging–initial results. Radiology. 2007;245:176–85.

    Article  PubMed  Google Scholar 

  24. Weinreb JC, Blume JD, Coakley FV, Wheeler TM, Cormack JB, Sotto CK, Cho H, Kawashima A, Tempany-Afdhal CM, Macura KJ, Rosen M, Gerst SR, Kurhanewicz J. Prostate cancer: sextant localization at MR imaging and MR spectroscopic imaging before prostatectomy–results of ACRIN prospective multi-institutional clinicopathologic study. Radiology. 2009;251:122–33.

    Article  PubMed  Google Scholar 

  25. Turkbey B, Pinto PA, Mani H, et al. Prostate cancer: value of multiparametric MR imaging at 3 T for detection–histopathologic correlation. Radiology. 2010;255(1):89–99.

    Article  PubMed  Google Scholar 

  26. Harisinghani MG, et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med. 2003;348:2491–9.

    Article  PubMed  Google Scholar 

  27. Harisinghani MG, et al. Ferumoxtran-10-enhanced MR lymphangiography: does contrast-enhanced imaging alone suffice for accurate lymph node characterization? AJR Am J Roentgenol. 2006;186:144–8.

    Article  PubMed  Google Scholar 

  28. Heesakkers RA, Jager GJ, Hövels AM, de Hoop B, van den Bosch HC, Raat F, Witjes JA, Mulders PF, van der Kaa CH, Barentsz JO. Prostate cancer: detection of lymph node metastases outside the routine surgical area with ferumoxtran-10-enhanced MR imaging. Radiology. 2009;251:408–14.

    Article  PubMed  Google Scholar 

  29. Bellin MF, Roy C, Kinkel K, Thoumas D, Zaim S, Vanel D, Tuchmann C, Richard F, Jacqmin D, Delcourt A, Challier E, Lebret T, Cluzel P. Lymph node metastases: safety and effectiveness of MR imaging with ultrasmall superparamagnetic iron oxide particles–initial clinical experience. Radiology. 1998;207:799–808.

    PubMed  CAS  Google Scholar 

  30. Harisinghani M, Ross RW, Guimaraes AR, Weissleder R. Utility of a new bolus-injectable nanoparticle for clinical cancer staging. Neoplasia. 2007;9:1160–5.

    Article  PubMed  CAS  Google Scholar 

  31. Gibbs P, Pickles MD, Turnbull LW. Diffusion imaging of the prostate at 3.0 tesla. Invest Radiol. 2006;41:185–8.

    Article  PubMed  Google Scholar 

  32. Tamada T, et al. Prostate cancer: relationships between postbiopsy hemorrhage and tumor detectability at MR diagnosis. Radiology. 2008;248:531–9.

    Article  PubMed  Google Scholar 

  33. Kim CK, Park BK, Lee HM, Kwon GY. Value of diffusion-weighted imaging for the prediction of prostate cancer location at 3 T using a phased-array coil: preliminary results. Invest Radiol. 2007;42:842–7.

    Article  PubMed  Google Scholar 

  34. Miao H, Fukatsu H, Ishigaki T. Prostate cancer detection with 3-T MRI: comparison of diffusion-weighted and T2-weighted imaging. Eur J Radiol. 2007;61:297–302.

    Article  PubMed  Google Scholar 

  35. Haider MA, et al. Combined T2-weighted and diffusion-weighted MRI for localization of prostate cancer. AJR Am J Roentgenol. 2007;189:323–8.

    Article  PubMed  Google Scholar 

  36. Kozlowski P, et al. Combined diffusion-weighted and dynamic contrast-enhanced MRI for prostate cancer diagnosis–correlation with biopsy and histopathology. J Magn Reson Imaging. 2006;24:108–13.

    Article  PubMed  Google Scholar 

  37. Reinsberg SA, et al. Combined use of diffusion-weighted MRI and 1 H MR spectroscopy to increase accuracy in prostate cancer detection. AJR Am J Roentgenol. 2007;188:91–8.

    Article  PubMed  Google Scholar 

  38. Mazaheri Y, et al. Prostate cancer: identification with combined diffusion-weighted MR imaging and 3D 1 H MR spectroscopic imaging–correlation with pathologic findings. Radiology. 2008;246:480–8.

    Article  PubMed  Google Scholar 

  39. Woodfield CA, Tung GA, Grand DJ, et al. Diffusion-weighted MRI of peripheral zone prostate cancer: comparison of tumor apparent diffusion coefficient with Gleason score and percentage of tumor on core biopsy. AJR Am J Roentgenol. 2010;194:316–22.

    Article  Google Scholar 

  40. Turkbey B, Shah V, Pang Y, et al. Is apparent diffusion coefficient associated with clinical risk scores for prostate cancers that are visible on 3-T MR images. Radiology. 2010;258:488–95.

    Article  PubMed  Google Scholar 

  41. Tamada T, Sone T, Toshimitsu S, et al. Age-related and zonal anatomical changes of apparent diffusion coefficient values in normal human prostatic tissues. J Magn Reson Imaging. 2008;27:552–6.

    Article  PubMed  Google Scholar 

  42. Kitajima K, Kaji Y, Kuroda K, Sugimura K. High b-value diffusion-weighted imaging in normal and malignant peripheral zone tissue of the prostate: effect of signal-to-noise ratio. Magn Reson Med Sci. 2008;7:93–9.

    Article  PubMed  Google Scholar 

  43. Somford DM, Fütterer JJ, Hambrock T, Barentsz JO. Diffusion and perfusion MR imaging of the prostate. Magn Reson Imaging Clin North Am. 2008;16:685–95.

    Article  Google Scholar 

  44. Ackerstaff E, Pflug BR, Nelson JB, Bhujwalla ZM. Detection of increased choline compounds with proton nuclear magnetic resonance spectroscopy subsequent to malignant transformation of human prostatic epithelial cells. Cancer Res. 2001;61:3599–603.

    PubMed  CAS  Google Scholar 

  45. Ramirez de Molina A, Rodriguez-Gonzalez A, Gutierrez R, et al. Overexpression of choline kinase is a frequent feature in human tumor-derived cell lines and in lung, prostate, and colorectal human cancers. Biochem Biophys Res Commun. 2002;296:580–3.

    Article  PubMed  CAS  Google Scholar 

  46. Costello LC, Franklin RB, Feng P. Mitochondrial function, zinc, and intermediary metabolism relationships in normal prostate and prostate cancer. Mitochondrion. 2005;5:143–53.

    Article  PubMed  CAS  Google Scholar 

  47. Costello LC, Franklin RB, Liu Y, Kennedy MC. Zinc causes a shift toward citrate at equilibrium of the m-aconitase reaction of prostate mitochondria. J Inorganic Biochem. 2000;78:161–5.

    Article  CAS  Google Scholar 

  48. Shukla-Dave A, et al. Detection of prostate cancer with MR spectroscopic imaging: an expanded paradigm incorporating polyamines. Radiology. 2007;245:499–506.

    Article  PubMed  Google Scholar 

  49. Wetter A, et al. Combined MRI and MR spectroscopy of the prostate before radical prostatectomy. AJR Am J Roentgenol. 2006;187:724–30.

    Article  PubMed  Google Scholar 

  50. Casciani E, et al. Contribution of the MR spectroscopic imaging in the diagnosis of prostate cancer in the peripheral zone. Abdom Imaging. 2007;32:796–802.

    Article  PubMed  Google Scholar 

  51. Weis J, et al. Two-dimensional spectroscopic imaging for pretreatment evaluation of prostate cancer: comparison with the step-section histology after radical prostatectomy. Magn Reson Imaging. 2009;27:87–93.

    Article  PubMed  Google Scholar 

  52. Coakley FV, et al. Prostate cancer tumor volume: measurement with endorectal MR and MR spectroscopic imaging. Radiology. 2002;223:91–7.

    Article  PubMed  Google Scholar 

  53. Yu KK, et al. Prostate cancer: prediction of extracapsular extension with endorectal MR imaging and three-dimensional proton MR spectroscopic imaging. Radiology. 1999;213:481–8.

    PubMed  CAS  Google Scholar 

  54. Joseph T, et al. Pretreatment endorectal magnetic resonance imaging and magnetic resonance spectroscopic imaging features of prostate cancer as predictors of response to external beam radiotherapy. Int J Radiat Oncol Biol Phys. 2008. 10.1016/j.ijrobp.2008.04.056.

    Google Scholar 

  55. Kurhanewicz J, et al. Three-dimensional H-1 MR spectroscopic imaging of the in situ human prostate with high (0.24-0.7-cm3) spatial resolution. Radiology. 1996;198:795–805.

    PubMed  CAS  Google Scholar 

  56. Zakian KL, Sircar K, Hricak H, et al. Correlation of proton MR spectroscopic imaging with gleason score based on step-section pathologic analysis after radical prostatectomy. Radiology. 2005;234:804–14.

    Article  PubMed  Google Scholar 

  57. Tofts PS, Brix G, Buckley DL, et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging. 1999;10:223–32.

    Article  PubMed  CAS  Google Scholar 

  58. Concato J, et al. Molecular markers and mortality in prostate cancer. BJU Int. 2007;100:1259–63.

    Article  PubMed  Google Scholar 

  59. Franiel T, Ludemann L, Rudolph B, et al. Evaluation of normal prostate tissue, chronic prostatitis, and prostate cancer by quantitative perfusion analysis using a dynamic contrast-enhance inversion-prepares dual-contrast gradient echo sequence. Invest Radiol. 2008;43(7):481–7.

    Google Scholar 

  60. Ocak I, et al. Dynamic contrast-enhanced MRI of prostate cancer at 3 T: a study of pharmacokinetic parameters. AJR Am J Roentgenol. 2007;189:849.

    Article  PubMed  Google Scholar 

  61. Kim JK, et al. Wash-in rate on the basis of dynamic contrast-enhanced MRI: usefulness for prostate cancer detection and localization. J Magn Reson Imaging. 2005;22:639–46.

    Article  PubMed  CAS  Google Scholar 

  62. Villers A, et al. Dynamic contrast enhanced, pelvic phased array magnetic resonance imaging of localized prostate cancer for predicting tumor volume: ­correlation with radical prostatectomy findings. J Urol. 2006;176:2432–7.

    Article  PubMed  Google Scholar 

  63. Cheikh AB, et al. Evaluation of T2-weighted and dynamic contrast-enhanced MRI in localizing prostate cancer before repeat biopsy. Eur Radiol. 2008. 10.1007/s00330-008-1190-8.

    Google Scholar 

  64. Ogura K, et al. Dynamic endorectal magnetic resonance imaging for local staging and detection of neurovascular bundle involvement of prostate cancer: correlation with histopathologic results. Urology. 2001;57:721–6.

    Article  PubMed  CAS  Google Scholar 

  65. Hoffmann EJ, Phelps ME, Mullani NA, Higgins CS, Ter-Pogossian MM. Design and performance characteristics of a whole-body positron transaxial tomograph. J Nucl Med. 1976;17(6):493–502.

    PubMed  CAS  Google Scholar 

  66. Macheda ML, Rogers S, Bets JD. Molecular and cellular regulation of glucose transport (GLUT) proteins in cancer. J Cell Physiol. 2005;202:654–62.

    Article  PubMed  CAS  Google Scholar 

  67. Takahashi N, Inoue T, Lee J, Yamaguchi T, Shizukuishi K. The roles of PeT and PeT/CT in the diagnosis and management of prostate cancer. Oncology. 2007;72:226–33.

    Article  PubMed  Google Scholar 

  68. Mathews D, Oz OK. Positron emission tomography in prostate and renal cell carcinoma. Curr Opin Urol. 2002;12:381–5.

    Article  PubMed  Google Scholar 

  69. Effert PJ, Bares R, Handt S, Wolff JM, Büll U, Jakse G. Metabolic imaging of untreated prostate cancer by positron emission tomography with 18fluorine-labeled deoxyglucose. J Urol. 1996;155(3):994–8.

    Article  PubMed  CAS  Google Scholar 

  70. Hofer C, et al. Fluorine-18-fluorodeoxyglucose positron emission tomography is useless for the detection of local recurrence after radical prostatectomy. Eur Urol. 1999;36:31–5.

    Article  PubMed  CAS  Google Scholar 

  71. Liu IJ, et al. Fluorodeoxyglucose positron emission tomography studies in diagnosis and staging of clinically organ-confined prostate cancer. Urology. 2001;57:108–11.

    Article  PubMed  CAS  Google Scholar 

  72. Fricke E, Machtens S, Hofmann M, van den Hoff J, Bergh S, Brunkhorst T, Meyer GJ, Karstens JH, Knapp WH, Boerner AR. Positron emission tomography with 11C-acetate and 18F-FDG in prostate cancer patients. Eur J Nucl Med Mol Imaging. 2003;30(4):607–11.

    Article  PubMed  CAS  Google Scholar 

  73. Oyama N, Akino H, Suzuki Y, et al. The increased accumulation of (18F)fluorodeoxyglucose in untreated prostate cancer. Jpn J Clin Oncol. 1999;29:623–9.

    Article  PubMed  CAS  Google Scholar 

  74. Chang CH, Wu HC, Tsai JJ, Shen YY, Changlai SP, Kao A. Detecting metastatic pelvic lymph nodes by 18F-2-deoxyglucose positron emission tomography in patients with prostate-specific antigen relapse after treatment for localized prostate cancer. Urol Int. 2003;70(4):311–5.

    Article  PubMed  Google Scholar 

  75. Shreve PD, Grossman HB, Gross MD, Wahl RL. Metastatic prostate cancer: initial findings of PET with 2-deoxy-2-[F-18]fluoro-D-glucose. Radiology. 1996;199(3):751–6.

    PubMed  CAS  Google Scholar 

  76. Morris MJ, Akhurst T, Larson SM, Ditullio M, Chu E, Siedlecki K, Verbel D, Heller G, Kelly WK, Slovin S, Schwartz L, Scher HI. Fluorodeoxyglucose positron emission tomography as an outcome measure for castrate metastatic prostate cancer treated with antimicrotubule chemotherapy. Clin Cancer Res. 2005 1;11(9):3210–6.

    Article  PubMed  CAS  Google Scholar 

  77. Zeisel SH. Choline: an essential nutrient for humans. Nutrition. 2000;16:669–71.

    Article  PubMed  CAS  Google Scholar 

  78. Kwee SA, Coel MN, Ly BH, Lim J. (18)F-choline PET/CT imaging of RECIST measurable lesions in hormone refractory prostate cancer. Ann Nucl Med. 2009;23(6):541–8.

    Article  PubMed  CAS  Google Scholar 

  79. Rinnab L, Mottaghy FM, Blumstein NM, Reske SN, Hautmann RE, Hohl K, Möller P, Wiegel T, Kuefer R, Gschwend JE. Evaluation of [11C]-choline positron-emission/computed tomography in patients with increasing prostate-specific antigen levels after primary treatment for prostate cancer. BJU Int. 2007;100:786–93.

    Article  PubMed  CAS  Google Scholar 

  80. Sutinen E, Nurmi M, Roivainen A, Varpula M, Tolvanen T, Lehikoinen P, Minn H. Kinetics of [(11)C]choline uptake in prostate cancer: a PET study. Eur J Nucl Med Mol Imaging. 2004;31(3):317–24.

    Article  PubMed  CAS  Google Scholar 

  81. Reske SN, Blumstein NM, Neumaier B, Gottfried HW, Finsterbusch F, Kocot D, Möller P, Glatting G, Perner S. Imaging prostate cancer with 11C-choline PET/CT. J Nucl Med. 2006;47(8):1249–54.

    PubMed  CAS  Google Scholar 

  82. Lord M, Ratib O, Vallée JP. 18F-Fluorocholine integrated PET/MRI for the initial staging of prostate cancer. Eur J Nucl Med Mol Imaging. 2011;38(12):2288.

    Article  PubMed  Google Scholar 

  83. Yoshimoto M, Waki A, Yonekura Y, et al. Characterization of acetate metabolism in tumor cells in relation to cell proliferation: acetate metabolism in tumor cells. Nucl Med Biol. 2001;28:117–22.

    Article  PubMed  CAS  Google Scholar 

  84. Shreve P, Chiao PC, Humes HD, Schwaiger M, Gross MD. Carbon-11-acetate PET imaging in renal disease. J Nucl Med. 1995;36:1595–601.

    PubMed  CAS  Google Scholar 

  85. Oyama N, Akino H, Kanamaru H, Suzuki Y, Muramoto S, Yonekura Y, Sadato N, Yamamoto K, Okada K. 11C-acetate PET imaging of prostate cancer. J Nucl Med. 2002;43(2):181–6.

    PubMed  CAS  Google Scholar 

  86. Kato T, Tsukamoto E, Kuge Y, Takei T, Shiga T, Shinohara N, Katoh C, Nakada K, Tamaki N. Accumulation of [11C]acetate in normal prostate and benign prostatic hyperplasia: comparison with prostate cancer. Eur J Nucl Med Mol Imaging. 2002;29(11):1492–5.

    Article  PubMed  CAS  Google Scholar 

  87. Jambor I, Borra R, Kemppainen J, et al. Functional imaging of localized prostate cancer aggressiveness using 11C-acetate PET/CT and 1 H-MR spectroscopy. J Nucl Med. 2010;51(11):1676–83.

    Article  PubMed  CAS  Google Scholar 

  88. Mena E, Turkbey B, Mani H, et al. 11C-Acetate PET/CT imaging in localized prostate cancer: a study with MRI and histopathologic correlation. J Nucl Med. 2012;53(4):538–45.

    Article  PubMed  CAS  Google Scholar 

  89. Lindhe O, Sun A, Ulin J, et al. [18F]fluoroacetate is not a functional analogue of [11C]acetate in normal physiology. Eur J Nucl Med Mol Imaging. 2009;36:1453–9.

    Article  PubMed  CAS  Google Scholar 

  90. Nuñez R, Macapinlac HA, Yeung HW, Akhurst T, Cai S, Osman I, Gonen M, Riedel E, Scher HI, Larson SM. Combined 18F-FDG and 11C-methionine PET scans in patients with newly progressive metastatic prostate cancer. J Nucl Med. 2002;43:46–55.

    PubMed  Google Scholar 

  91. Dehdashti F, Picus J, Michalski JM, Dence CS, Siegel BA, Katzenellenbogen JA, Welch MJ. Positron tomographic assessment of androgen receptors in prostatic carcinoma. Eur J Nucl Med Mol Imaging. 2005;32:344–50.

    Article  PubMed  Google Scholar 

  92. Larson SM, Morris M, Gunther I. Tumor localization of 16beta18F-fluoro-5alpha-dihydrotestosterone versus 18F-FDG in patients with progressive, metastatic Prostate cancer. J Nucl Med. 2004;45:366–73.

    PubMed  CAS  Google Scholar 

  93. Schuster DM, Votaw JR, Nieh PT, et al. Initial experience with the radiotracer anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid with PET/CT in prostate carcinoma. J Nucl Med. 2007;48:56–63.

    PubMed  CAS  Google Scholar 

  94. Oka S, Hattori R, Kurosaki F, Toyama M, Williams LA, Yu W, Votaw JR, Yoshida Y, Goodman MM, Ito O. A preliminary study of anti-1-amino-3-18F-fluorocyclobutyl-1-carboxylic acid for the detection of prostate cancer. J Nucl Med. 2007;48:46–55.

    PubMed  CAS  Google Scholar 

  95. Schuster DM, Savir-Baruch B, Nieh PT, et al. Detection of recurrent prostate carcinoma with anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid PET/CT and 111In-capromab pendetide SPECT/CT. Radiology. 2011;259(3):852–61.

    Article  PubMed  Google Scholar 

  96. Turkbey B, Mena E, Adler S, et al. GE-148 (18F) Injection PET/CT imaging and multiparametric MRI for detection of localized prostate cancer using customized mri-based specimen molds (supplement to JNM 2011;52:430P SNM 2011 Annual Meeting).

    Google Scholar 

  97. Savir-Baruch B, Schuster DM, Jarkas N, et al. Pilot evaluation of anti-1-amino-2-[(18)F] fluorocyclopentane-1-carboxylic acid (anti-2-[(18)F] FACPC) PET-CT in recurrent prostate carcinoma. Mol Imaging Biol. 2011;13(6):1272–7.

    Article  PubMed  Google Scholar 

  98. Babaian RJ, Murray JL, Lamki LM, et al. Radioimmunological imaging of metastatic prostatic cancer with 111indium-labeled monoclonal antibody PAY 276. J Urol. 1987;137:439–43.

    PubMed  CAS  Google Scholar 

  99. Haseman MK, Rosenthal SA, Polascik TJ. Capromab pendetide imaging of prostate cancer. Cancer Biother Radiopharm. 2000;15:131–40.

    Article  PubMed  CAS  Google Scholar 

  100. Freeman LM, Krynyckyi BR, Li Y, et al. The role of (111) In Capromab Pendetide (Prosta-ScintR) immunoscintigraphy in the management of prostate cancer. Q J Nucl Med. 2002;46:131–7.

    PubMed  CAS  Google Scholar 

  101. Israeli RS, Powell CT, Corr JG, Fair WR, Heston WD. Expression of the prostate-specific membrane antigen. Cancer Res. 1994;54:1807–11.

    PubMed  CAS  Google Scholar 

  102. Hoffman TJ, Gali H, Smith CJ, Sieckman GL, Hayes DL, Owen NK, Volkert WA. Novel series of 111In-labeled bombesin analogs as potential radiopharmaceuticals for specific targeting of gastrin-releasing peptide receptors expressed on human prostate cancer cells. J Nucl Med. 2003;44:823–31.

    PubMed  CAS  Google Scholar 

  103. Oyen WJ, Witjes JA, Corstens FH. Nuclear medicine techniques for the diagnosis and therapy of prostate carcinoma. Eur Urol. 2001;40:294–9.

    Article  PubMed  CAS  Google Scholar 

  104. Nargund V, Al Hashmi D, Kumar P, Gordon S, Otitie U, Ellison D, Carroll M, Baithun S, Britton KE. Imaging with radiolabelled monoclonal antibody (MUJ591) to prostate-specific membrane antigen in staging of clinically localized prostatic carcinoma: comparison with clinical, surgical and histological staging. BJU Int. 2005;95:1232–6.

    Article  PubMed  Google Scholar 

  105. Foss CA, Mease RC, Fan H, Wang Y, Ravert HT, Dannals RF, Olszewski RT, Heston WD, Kozikowski AP, Pomper MG. Radiolabeled small-molecule ligands for prostate-specific membrane antigen: in vivo imaging in experimental models of prostate cancer. Clin Cancer Res. 2005;11:4022–8.

    Article  PubMed  CAS  Google Scholar 

  106. Mease RC, Dusich CL, Foss CA, Ravert HT, Dannals RF, Seidel J, Prideaux A, Fox JJ, Sgouros G, Kozikowski AP, Pomper MG. N-[N-[(S)-1,3-Dicarboxypropyl]carbamoyl]-4-[18F]fluorobenzyl-L-cysteine, [18F]DCFBC: a new imaging probe for prostate cancer. Clin Cancer Res. 2008;14:3036–43.

    Article  PubMed  CAS  Google Scholar 

  107. Cho SY, Mease RC, Holt D, et al. Initial clinical assessment of DCFBC-PET for metastatic prostate cancer (supplement to JNM 2011;52:12P-13P SNM 2011 Annual Meeting).

    Google Scholar 

  108. Schafer NG, Valencia R, Borkowski S, et al. Comparison of BAY 86–4367, a new F-18 labeled bombesin analog with F-18-ethyl-choline in recurrent and primary prostate cancer (supplement to JNM 2011;52:12P SNM 2011 Annual Meeting).

    Google Scholar 

  109. Garcia-Parra R, Wood D, Shah RB, Siddiqui J, Hussain H, Park H, Desmond T, Meyer C, Piert M. Investigation on tumor hypoxia in resectable primary prostate cancer as demonstrated by (18)F-FAZA PET/CT utilizing multimodality fusion techniques. Eur Urol. 2011;38(10):1816–23.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter L. Choyke M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Turkbey, B., Choyke, P.L. (2013). New Horizons in Molecular Imaging of Prostate Cancer. In: Polascik, T. (eds) Imaging and Focal Therapy of Early Prostate Cancer. Current Clinical Urology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-182-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-182-0_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-181-3

  • Online ISBN: 978-1-62703-182-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics