Skip to main content

Microvascular Changes in the Diabetic Foot

  • Chapter
  • First Online:
Diabetes and Peripheral Vascular Disease

Part of the book series: Contemporary Diabetes ((CDI))

  • 2421 Accesses

Abstract

The microcirculation—arterioles, venules, and capillaries—is critical for gas exchange, delivery of nutrients, and removal of waste products at the tissue level. Perfusion of the microcirculation is tightly controlled and highly regulated. Diabetes has a profound effect on the entire cardiovascular system and the microcirculation is particularly impacted. Diabetes induces basement membrane thickening impairing diffusion. Capillary perfusion is ultimately reduced producing local tissue ischemia despite normal pedal pulses. Diabetes disrupts the nerve–axon reflex, increases oxidative stress, and results in endothelial dysfunction. These effects of diabetes on the microcirculation have important clinical significance for practitioners caring for patients with diabetes. Understanding the effects of diabetes on the microcirculation impacts preventative care, diagnosis of the complications of diabetes, managing wounds, and ultimately has implications for the surgical treatment of complications of diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mahy IR, Tooke JE, Shore AC. Capillary pressure during and after incremental venous pressure elevation in man. J Physiol. 1995;485(Pt 1):213–9.

    PubMed  CAS  Google Scholar 

  2. Taylor AE. Capillary fluid filtration. Starling forces and lymph flow. Circ Res. 1981;49(3):557–75.

    Article  PubMed  CAS  Google Scholar 

  3. Majno G. Maude Abbott Lecture – 1991. The capillary then and now: an overview of capillary pathology. Mod Pathol. 1992;5(1):9–22.

    PubMed  CAS  Google Scholar 

  4. Goldenberg S, et al. Nonatheromatous peripheral vascular disease of the lower extremity in diabetes mellitus. Diabetes. 1959;8(4):261–73.

    PubMed  CAS  Google Scholar 

  5. Strandness Jr DE, Priest RE, Gibbons GE. Combined clinical and pathologic study of diabetic and nondiabetic peripheral arterial disease. Diabetes. 1964;13:366–72.

    PubMed  Google Scholar 

  6. Conrad MC. Large and small artery occlusion in diabetics and nondiabetics with severe vascular disease. Circulation. 1967;36(1):83–91.

    Article  PubMed  CAS  Google Scholar 

  7. Parving HH, et al. Hemodynamic factors in the genesis of diabetic microangiopathy. Metabolism. 1983;32(9):943–9.

    Article  PubMed  CAS  Google Scholar 

  8. Zatz R, Brenner BM. Pathogenesis of diabetic microangiopathy. The hemodynamic view. Am J Med. 1986;80(3):443–53.

    Article  PubMed  CAS  Google Scholar 

  9. Tooke JE. Microvascular haemodynamics in diabetes mellitus. Clin Sci (Lond). 1986;70(2):119–25.

    CAS  Google Scholar 

  10. Tooke JE. Microvascular function in human diabetes. A physiological perspective. Diabetes. 1995;44(7):721–6.

    Article  PubMed  CAS  Google Scholar 

  11. Schramm JC, Dinh T, Veves A. Microvascular changes in the diabetic foot. Int J Low Extrem Wounds. 2006;5(3):149–59.

    Article  PubMed  Google Scholar 

  12. Baum O, et al. Basement membrane remodeling in skeletal muscles of patients with limb ischemia involves regulation of matrix metalloproteinases and tissue inhibitor of matrix metalloproteinases. J Vasc Res. 2007;44(3):202–13.

    Article  PubMed  CAS  Google Scholar 

  13. Archer AG, Roberts VC, Watkins PJ. Blood flow patterns in painful diabetic neuropathy. Diabetologia. 1984;27(6):563–7.

    Article  PubMed  CAS  Google Scholar 

  14. Sandeman DD, Shore AC, Tooke JE. Relation of skin capillary pressure in patients with insulin-dependent diabetes mellitus to complications and metabolic control. N Engl J Med. 1992;327(11):760–4.

    Article  PubMed  CAS  Google Scholar 

  15. Sandeman DD, et al. Microvascular vasodilatation in feet of newly diagnosed non-insulin dependent diabetic patients. BMJ. 1991;302(6785):1122–3.

    Article  PubMed  CAS  Google Scholar 

  16. Jorneskog G, Fagrell B. Discrepancy in skin capillary circulation between fingers and toes in patients with type 1 diabetes. Int J Microcirc Clin Exp. 1996;16(6):313–9.

    Article  PubMed  CAS  Google Scholar 

  17. Tibirica E, et al. Impairment of skin capillary recruitment precedes chronic complications in patients with type 1 diabetes. Rev Diabet Stud. 2007;4(2):85–8.

    Article  PubMed  Google Scholar 

  18. Rayman G, et al. Microvascular response to tissue injury and capillary ultrastructure in the foot skin of type I diabetic patients. Clin Sci (Lond). 1995;89(5):467–74.

    CAS  Google Scholar 

  19. Jorneskog G, Brismar K, Fagrell B. Pronounced skin capillary ischemia in the feet of diabetic patients with bad metabolic control. Diabetologia. 1998;41(4):410–5.

    Article  PubMed  CAS  Google Scholar 

  20. Purewal TS, et al. Lower limb venous pressure in diabetic neuropathy. Diabetes Care. 1995;18(3):377–81.

    Article  PubMed  CAS  Google Scholar 

  21. Boulton AJ, Scarpello JH, Ward JD. Venous oxygenation in the diabetic neuropathic foot: evidence of arteriovenous shunting? Diabetologia. 1982;22(1):6–8.

    Article  PubMed  CAS  Google Scholar 

  22. Flynn MD, Tooke JE. Diabetic neuropathy and the microcirculation. Diabet Med. 1995;12(4):298–301.

    Article  PubMed  CAS  Google Scholar 

  23. Flynn MD, Tooke JE. Aetiology of diabetic foot ulceration: a role for the microcirculation? Diabet Med. 1992;9(4):320–9.

    Article  PubMed  CAS  Google Scholar 

  24. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980;288(5789):373–6.

    Article  PubMed  CAS  Google Scholar 

  25. Palmer RM, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 1988;333(6174):664–6.

    Article  PubMed  CAS  Google Scholar 

  26. Veves A, et al. Endothelial dysfunction and the expression of endothelial nitric oxide synthetase in diabetic neuropathy, vascular disease, and foot ulceration. Diabetes. 1998;47(3):457–63.

    Article  PubMed  CAS  Google Scholar 

  27. Nabel EG, Selwyn AP, Ganz P. Large coronary arteries in humans are responsive to changing blood flow: an endothelium-dependent mechanism that fails in patients with atherosclerosis. J Am Coll Cardiol. 1990;16(2):349–56.

    Article  PubMed  CAS  Google Scholar 

  28. Healy B. Endothelial cell dysfunction: an emerging endocrinopathy linked to coronary disease. J Am Coll Cardiol. 1990;16(2):357–8.

    Article  PubMed  CAS  Google Scholar 

  29. Vita JA, et al. Coronary vasomotor response to acetylcholine relates to risk factors for coronary artery disease. Circulation. 1990;81(2):491–7.

    Article  PubMed  CAS  Google Scholar 

  30. Akbari CM, et al. Endothelium-dependent vasodilatation is impaired in both microcirculation and macrocirculation during acute hyperglycemia. J Vasc Surg. 1998;28(4):687–94.

    Article  PubMed  CAS  Google Scholar 

  31. Hamdy O, et al. Contribution of nerve-axon reflex-related vasodilation to the total skin vasodilation in diabetic patients with and without neuropathy. Diabetes Care. 2001;24(2):344–9.

    Article  PubMed  CAS  Google Scholar 

  32. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058–70.

    Article  PubMed  CAS  Google Scholar 

  33. Kaiser N, et al. Differential regulation of glucose transport and transporters by glucose in vascular endothelial and smooth muscle cells. Diabetes. 1993;42(1):80–9.

    Article  PubMed  CAS  Google Scholar 

  34. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54(6):1615–25.

    Article  PubMed  CAS  Google Scholar 

  35. Niwa T, et al. Immunohistochemical detection of imidazolone, a novel advanced glycation end product, in kidneys and aortas of diabetic patients. J Clin Invest. 1997;99(6):1272–80.

    Article  PubMed  CAS  Google Scholar 

  36. Schmidt AM, et al. Advanced glycation endproducts interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice. A potential mechanism for the accelerated vasculopathy of diabetes. J Clin Invest. 1995;96(3):1395–403.

    Article  PubMed  CAS  Google Scholar 

  37. Mellor H, Parker PJ. The extended protein kinase C superfamily. Biochem J. 1998;332(Pt 2):281–92.

    PubMed  CAS  Google Scholar 

  38. Geraldes P, et al. Activation of PKC-delta and SHP-1 by hyperglycemia causes vascular cell apoptosis and diabetic retinopathy. Nat Med. 2009;15(11):1298–306.

    Article  PubMed  CAS  Google Scholar 

  39. Ryer EJ, et al. Protein kinase C delta induces apoptosis of vascular smooth muscle cells through induction of the tumor suppressor p53 by both p38-dependent and p38-independent mechanisms. J Biol Chem. 2005;280(42):35310–7.

    Article  PubMed  CAS  Google Scholar 

  40. Koya D, et al. Characterization of protein kinase C beta isoform activation on the gene expression of transforming growth factor-beta, extracellular matrix components, and prostanoids in the glomeruli of diabetic rats. J Clin Invest. 1997;100(1):115–26.

    Article  PubMed  CAS  Google Scholar 

  41. Vague P, et al. C-peptide, Na+, K(+)-ATPase, and diabetes. Exp Diabesity Res. 2004;5(1):37–50.

    Article  PubMed  CAS  Google Scholar 

  42. Williams B, et al. Glucose-induced protein kinase C activation regulates vascular permeability factor mRNA expression and peptide production by human vascular smooth muscle cells in vitro. Diabetes. 1997;46(9):1497–503.

    Article  PubMed  CAS  Google Scholar 

  43. Du XL, et al. Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc Natl Acad Sci USA. 2000;97(22):12222–6.

    Article  PubMed  CAS  Google Scholar 

  44. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–20.

    Article  PubMed  CAS  Google Scholar 

  45. American Diabetes Association. Standards of medical care in diabetes – 2011. Diabetes Care. 2011;34 Suppl 1:S11–61.

    Article  Google Scholar 

  46. Flynn MD, et al. The effect of insulin infusion on capillary blood flow in the diabetic neuropathic foot. Diabet Med. 1992;9(7):630–4.

    Article  PubMed  CAS  Google Scholar 

  47. Greenman RL, et al. Early changes in the skin microcirculation and muscle metabolism of the diabetic foot. Lancet. 2005;366(9498):1711–7.

    Article  PubMed  CAS  Google Scholar 

  48. Pham HT, Economides PA, Veves A. The role of endothelial function on the foot. Microcirculation and wound healing in patients with diabetes. Clin Podiatr Med Surg. 1998;15(1):85–93.

    PubMed  CAS  Google Scholar 

  49. Arora S, et al. Cutaneous microcirculation in the neuropathic diabetic foot improves significantly but not completely after successful lower extremity revascularization. J Vasc Surg. 2002;35(3):501–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas S. Monahan M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Monahan, T.S. (2012). Microvascular Changes in the Diabetic Foot. In: Shrikhande, G., McKinsey, J. (eds) Diabetes and Peripheral Vascular Disease. Contemporary Diabetes. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-158-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-158-5_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-157-8

  • Online ISBN: 978-1-62703-158-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics