Skip to main content

Molecular Analysis in Pediatric Renal Tumors

  • Chapter
  • First Online:
Pediatric Neoplasia

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

  • 893 Accesses

Abstract

Although the incidence of pediatric cancers has increased steadily over the last 35 years, the incidence of pediatric kidney tumors has not changed in the same time period. Pediatric kidney tumors represent approximately 5% of cancer diagnoses among children and adolescents below the age of 20 (http://seer.cancer.gov/, Fig. 10.1). However, the incidence is age dependent so that malignant kidney tumors account for 9.7% of the total among children younger than 5 years of age, 5.4% in children 5–9 years of age, 1.1% in children 10–14 years of age, and 0.6% in adolescents 15–19 years of age. Of the approximately 550 children and adolescents diagnosed with renal tumors each year, approximately 500 are Wilms tumor (WT). The remaining includes variants of renal cell carcinoma (RCC), clear cell sarcoma of the kidney, rhabdoid tumor of the kidney, congenital mesoblastic nephroma (CMN), as well as other rare tumors (Histopathology 54:516–528, 2009). Because the incidence of WT and other pediatric renal tumors is very much agedependent, age at diagnosis perhaps provides the best clinical clue to the diagnosis. For example, some tumors occur almost entirely in infancy (e.g., CMN) whereas others occur almost exclusively in adolescence (e.g., RCC). Indeed, RCC accounts for about 5% of pediatric renal tumors but comprises the majority of tumors by late adolescence (Cancer Incidence and Survival among Children and Adolescents: United States SEER Program 1975–1995, National Cancer Institute, SEER Program, 1999) (Fig. 10.2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sebire NJ, Vujanic GM. Paediatric renal tumours: recent developments, new entities and pathological features. Histopathology. 2009;54:516–28.

    Article  PubMed  Google Scholar 

  2. Bernstein L, Linet M, Smith MA, Olshan AF. Renal tumors. In: Ries LAG, Smith M, Gurney JG, Linet M, Tamra T, Young JL, Bunin GR, editors. Cancer incidence and survival among children and adolescents: United States SEER Program 1975–1995 National Cancer Institute, SEER Program. Bethesda, MD: NIH; 1999.

    Google Scholar 

  3. Blakely ML, Shamberger RC, Norkool P, Beckwith JB, Green DM, Ritchey ML. Outcome of children with cystic partially differentiated nephroblastoma treated with or without chemotherapy. J Pediatr Surg. 2003;38:897–900.

    Article  PubMed  Google Scholar 

  4. Beckwith JB, Zuppan CE, Browning NG, Moksness J, Breslow NE. Histological analysis of aggressiveness and responsiveness in Wilms’ tumor. Med Pediatr Oncol. 1996;27:422–8.

    Article  PubMed  CAS  Google Scholar 

  5. Dome JS, Cotton CA, Perlman EJ, et al. Treatment of anaplastic histology Wilms’ tumor: results from the fifth National Wilms’ Tumor Study. J Clin Oncol. 2006;24:2352–8.

    Article  PubMed  Google Scholar 

  6. Vujanic GM, Harms D, Sandstedt B, Weirich A, de Kraker J, Delemarre JF. New definitions of focal and diffuse anaplasia in Wilms tumor: the International Society of Paediatric Oncology (SIOP) experience. Med Pediatr Oncol. 1999;32:317–23.

    Article  PubMed  CAS  Google Scholar 

  7. Faria P, Beckwith JB, Mishra K, et al. Focal versus diffuse anaplasia in Wilms tumor—new definitions with prognostic significance: a report from the National Wilms Tumor Study Group. Am J Surg Pathol. 1996;20:909–20.

    Article  PubMed  CAS  Google Scholar 

  8. Beckwith JB, Kiviat NB, Bonadio JF. Nephrogenic rests, nephroblastomatosis, and the pathogenesis of Wilms’ tumor. Pediatr Pathol. 1990;10:1–36.

    Article  PubMed  CAS  Google Scholar 

  9. Pizzo PAPDG. Principles and practice of pediatric oncology. 6th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2011.

    Google Scholar 

  10. Choufani S, Shuman C, Weksberg R. Beckwith-Wiedemann syndrome. Am J Med Genet C Semin Med Genet. 2010;154C:343–54.

    Article  PubMed  CAS  Google Scholar 

  11. Cerrato F, Vernucci M, Pedone PV, et al. The 5′ end of the KCNQ1OT1 gene is hypomethylated in the Beckwith-Wiedemann syndrome. Hum Genet. 2002;111:105–7.

    Article  PubMed  Google Scholar 

  12. Bliek J, Maas SM, Ruijter JM, et al. Increased tumour risk for BWS patients correlates with aberrant H19 and not KCNQ1OT1 methylation: occurrence of KCNQ1OT1 hypomethylation in familial cases of BWS. Hum Mol Genet. 2001;10:467–76.

    Article  PubMed  CAS  Google Scholar 

  13. Weksberg R, Nishikawa J, Caluseriu O, et al. Tumor development in the Beckwith-Wiedemann syndrome is associated with a variety of constitutional molecular 11p15 alterations including imprinting defects of KCNQ1OT1. Hum Mol Genet. 2001;10:2989–3000.

    Article  PubMed  CAS  Google Scholar 

  14. Shuman C, Smith AC, Steele L, et al. Constitutional UPD for chromosome 11p15 in individuals with isolated hemihyperplasia is associated with high tumor risk and occurs following assisted reproductive technologies. Am J Med Genet A. 2006;140:1497–503.

    PubMed  Google Scholar 

  15. Royer-Pokora B, Graf N. Wilms tumors arising at young age: a genetic basis to distinguish subgroups for individualized therapy. J Clin Oncol. 2011;29:e485–6. Author reply e7–8.

    Article  PubMed  Google Scholar 

  16. Gronskov K, Olsen JH, Sand A, et al. Population-based risk estimates of Wilms tumor in sporadic aniridia. A comprehensive mutation screening procedure of PAX6 identifies 80% of mutations in aniridia. Hum Genet. 2001;109:11–8.

    Article  PubMed  CAS  Google Scholar 

  17. Scott RH, Walker L, Olsen OE, et al. Surveillance for Wilms tumour in at-risk children: pragmatic recommendations for best practice. Arch Dis Child. 2006;91:995–9.

    Article  PubMed  CAS  Google Scholar 

  18. Green DM, Breslow NE, Beckwith JB, Norkool P. Screening of children with hemihypertrophy, aniridia, and Beckwith-Wiedemann syndrome in patients with Wilms tumor: a report from the National Wilms Tumor Study. Med Pediatr Oncol. 1993;21:188–92.

    Article  PubMed  CAS  Google Scholar 

  19. Paulino AC, Thakkar B, Henderson WG. Metachronous bilateral Wilms’ tumor: the importance of time interval to the development of a second tumor. Cancer. 1998;82:415–20.

    Article  PubMed  CAS  Google Scholar 

  20. Coppes MJ, Arnold M, Beckwith JB, et al. Factors affecting the risk of contralateral Wilms tumor development: a report from the National Wilms Tumor Study Group. Cancer. 1999; 85:1616–25.

    Article  PubMed  CAS  Google Scholar 

  21. Rivera MN, Kim WJ, Wells J, et al. An X chromosome gene, WTX, is commonly inactivated in Wilms tumor. Science. 2007;315:642–5.

    Article  PubMed  CAS  Google Scholar 

  22. Rivera MN, Kim WJ, Wells J, et al. The tumor suppressor WTX shuttles to the nucleus and modulates WT1 activity. Proc Natl Acad Sci U S A. 2009;106:8338–43.

    Article  PubMed  CAS  Google Scholar 

  23. Su MC, Huang WC, Lien HC. Beta-catenin expression and mutation in adult and pediatric Wilms’ tumors. APMIS. 2008;116:771–8.

    Article  PubMed  CAS  Google Scholar 

  24. Major MB, Camp ND, Berndt JD, et al. Wilms tumor suppressor WTX negatively regulates WNT/beta-catenin signaling. Science. 2007;316:1043–6.

    Article  PubMed  CAS  Google Scholar 

  25. Cancer NR. Converging on beta-catenin in Wilms tumor. Science. 2007;316:988–9.

    Article  Google Scholar 

  26. Koesters R, Ridder R, Kopp-Schneider A, et al. Mutational activation of the beta-catenin proto-oncogene is a common event in the development of Wilms’ tumors. Cancer Res. 1999;59:3880–2.

    PubMed  CAS  Google Scholar 

  27. Ruteshouser EC, Robinson SM, Huff V. Wilms tumor genetics: mutations in WT1, WTX, and CTNNB1 account for only about one-third of tumors. Genes Chromosomes Cancer. 2008; 47:461–70.

    Article  PubMed  CAS  Google Scholar 

  28. Grundy PE, Breslow NE, Li S, et al. Loss of heterozygosity for chromosomes 1p and 16q is an adverse prognostic factor in favorable-histology Wilms tumor: a report from the National Wilms Tumor Study Group. J Clin Oncol. 2005;23:7312–21.

    Article  PubMed  CAS  Google Scholar 

  29. Breslow N, Churchill G, Beckwith JB, et al. Prognosis for Wilms’ tumor patients with nonmetastatic disease at diagnosis—results of the second National Wilms’ Tumor Study. J Clin Oncol. 1985;3:521–31.

    PubMed  CAS  Google Scholar 

  30. Burger D, Moorman-Voestermans CG, Mildenberger H, et al. The advantages of preoperative therapy in Wilms’ tumour. A summarised report on clinical trials conducted by the International Society of Paediatric Oncology (SIOP). Z Kinderchir. 1985;40:170–5.

    PubMed  CAS  Google Scholar 

  31. Gommersall LM, Arya M, Mushtaq I, Duffy P. Current challenges in Wilms’ tumor management. Nat Clin Pract Oncol. 2005;2:298–304. Quiz 1 p following 24.

    Article  PubMed  Google Scholar 

  32. van den Heuvel-Eibrink MM, Grundy P, Graf N, et al. Characteristics and survival of 750 children diagnosed with a renal tumor in the first seven months of life: a collaborative study by the SIOP/GPOH/SFOP, NWTSG, and UKCCSG Wilms tumor study groups. Pediatr Blood Cancer. 2008;50:1130–4.

    Article  PubMed  Google Scholar 

  33. Vujanic GM, Kelsey A, Mitchell C, Shannon RS, Gornall P. The role of biopsy in the diagnosis of renal tumors of childhood: results of the UKCCSG Wilms tumor study 3. Med Pediatr Oncol. 2003;40:18–22.

    Article  PubMed  Google Scholar 

  34. Shet T, Viswanathan S. The cytological diagnosis of paediatric renal tumours. J Clin Pathol. 2009;62:961–9.

    Article  PubMed  CAS  Google Scholar 

  35. Shamberger RC, Anderson JR, Breslow NE, et al. Long-term outcomes for infants with very low risk Wilms tumor treated with surgery alone in National Wilms Tumor Study-5. Ann Surg. 2010;251:555–8.

    Article  PubMed  Google Scholar 

  36. Sredni ST, Gadd S, Huang CC, et al. Subsets of very low risk Wilms tumor show distinctive gene expression, histologic, and clinical features. Clin Cancer Res. 2009;15:6800–9.

    Article  PubMed  CAS  Google Scholar 

  37. Perlman EJ, Grundy PE, Anderson JR, et al. WT1 mutation and 11P15 loss of heterozygosity predict relapse in very low-risk Wilms tumors treated with surgery alone: a children’s oncology group study. J Clin Oncol. 2011;29:698–703.

    Article  PubMed  CAS  Google Scholar 

  38. Bruder E, Passera O, Harms D, et al. Morphologic and molecular characterization of renal cell carcinoma in children and young adults. Am J Surg Pathol. 2004;28:1117–32.

    Article  PubMed  Google Scholar 

  39. Selle B, Furtwangler R, Graf N, Kaatsch P, Bruder E, Leuschner I. Population-based study of renal cell carcinoma in children in Germany, 1980–2005: more frequently localized tumors and underlying disorders compared with adult counterparts. Cancer. 2006;107:2906–14.

    Article  PubMed  Google Scholar 

  40. Eble JN. Pathology and genetics of tumours of the urinary system and male genital organs. Lyon: IARC Press, Oxford; 2004.

    Google Scholar 

  41. Perlman EJ. Pediatric renal cell carcinoma. Surg Pathol Clin. 2010;3:641–51.

    Article  PubMed  Google Scholar 

  42. Argani P, Antonescu CR, Couturier J, et al. PRCC-TFE3 renal carcinomas: morphologic, immunohistochemical, ultrastructural, and molecular analysis of an entity associated with the t(X;1)(p11.2;q21). Am J Surg Pathol. 2002;26:1553–66.

    Article  PubMed  Google Scholar 

  43. Argani P, Antonescu CR, Illei PB, et al. Primary renal neoplasms with the ASPL-TFE3 gene fusion of alveolar soft part sarcoma: a distinctive tumor entity previously included among renal cell carcinomas of children and adolescents. Am J Pathol. 2001;159:179–92.

    Article  PubMed  CAS  Google Scholar 

  44. Argani P, Hawkins A, Griffin CA, et al. A distinctive pediatric renal neoplasm characterized by epithelioid morphology, basement membrane production, focal HMB45 immunoreactivity, and t(6;11)(p21.1;q12) chromosome translocation. Am J Pathol. 2001;158:2089–96.

    Article  PubMed  CAS  Google Scholar 

  45. Argani P, Lae M, Hutchinson B, et al. Renal carcinomas with the t(6;11)(p21;q12): clinicopathologic features and demonstration of the specific alpha-TFEB gene fusion by immunohistochemistry, RT-PCR, and DNA PCR. Am J Surg Pathol. 2005;29:230–40.

    Article  PubMed  Google Scholar 

  46. Malouf GG, Camparo P, Molinie V, et al. Transcription factor E3 and transcription factor EB renal cell carcinomas: clinical features, biological behavior and prognostic factors. J Urol. 2011;185:24–9.

    Article  PubMed  CAS  Google Scholar 

  47. Argani P, Lal P, Hutchinson B, Lui MY, Reuter VE, Ladanyi M. Aberrant nuclear immunoreactivity for TFE3 in neoplasms with TFE3 gene fusions: a sensitive and specific immunohistochemical assay. Am J Surg Pathol. 2003;27:750–61.

    Article  PubMed  Google Scholar 

  48. Argani P, Aulmann S, Karanjawala Z, Fraser RB, Ladanyi M, Rodriguez MM. Melanotic Xp11 translocation renal cancers: a distinctive neoplasm with overlapping features of PEComa, carcinoma, and melanoma. Am J Surg Pathol. 2009;33:609–19.

    Article  PubMed  Google Scholar 

  49. Argani P, Perlman EJ, Breslow NE, et al. Clear cell sarcoma of the kidney: a review of 351 cases from the National Wilms Tumor Study Group Pathology Center. Am J Surg Pathol. 2000;24:4–18.

    Article  PubMed  CAS  Google Scholar 

  50. Seibel NL, Li S, Breslow NE, et al. Effect of duration of treatment on treatment outcome for patients with clear-cell sarcoma of the kidney: a report from the National Wilms’ Tumor Study Group. J Clin Oncol. 2004;22:468–73.

    Article  PubMed  Google Scholar 

  51. Radulescu VC, Gerrard M, Moertel C, et al. Treatment of recurrent clear cell sarcoma of the kidney with brain metastasis. Pediatr Blood Cancer. 2008;50:246–9.

    Article  PubMed  Google Scholar 

  52. Marsden HB, Lawler W, Kumar PM. Bone metastasizing renal tumor of childhood: morphological and clinical features, and differences from Wilms’ tumor. Cancer. 1978;42:1922–8.

    Article  PubMed  CAS  Google Scholar 

  53. Beckwith JB, Larson E. Case 7. Clear cell sarcoma of kidney. Pediatr Pathol. 1989;9:211–8.

    Article  PubMed  CAS  Google Scholar 

  54. Schuster AE, Schneider DT, Fritsch MK, Grundy P, Perlman EJ. Genetic and genetic expression analyses of clear cell sarcoma of the kidney. Lab Invest. 2003;83:1293–9.

    Article  PubMed  CAS  Google Scholar 

  55. Palmer NF, Sutow W. Clinical aspects of the rhabdoid tumor of the kidney: a report of the National Wilms’ Tumor Study Group. Med Pediatr Oncol. 1983;11:242–5.

    Article  PubMed  CAS  Google Scholar 

  56. Amar AM, Tomlinson G, Green DM, Breslow NE, de Alarcon PA. Clinical presentation of rhabdoid tumors of the kidney. J Pediatr Hematol Oncol. 2001;23:105–8.

    Article  PubMed  CAS  Google Scholar 

  57. Vujanic GM, Sandstedt B, Harms D, Boccon-Gibod L, Delemarre JF. Rhabdoid tumour of the kidney: a clinicopathological study of 22 patients from the International Society of Paediatric Oncology (SIOP) nephroblastoma file. Histopathology. 1996;28:333–40.

    Article  PubMed  CAS  Google Scholar 

  58. Versteege I, Sevenet N, Lange J, et al. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature. 1998;394:203–6.

    Article  PubMed  CAS  Google Scholar 

  59. Biegel JA, Zhou JY, Rorke LB, Stenstrom C, Wainwright LM, Fogelgren B. Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. Cancer Res. 1999; 59:74–9.

    PubMed  CAS  Google Scholar 

  60. Biegel JA. Molecular genetics of atypical teratoid/rhabdoid tumor. Neurosurg Focus. 2006;20:E11.

    Article  PubMed  Google Scholar 

  61. Pettinato G, Manivel JC, Wick MR, Dehner LP. Classical and cellular (atypical) congenital mesoblastic nephroma: a clinicopathologic, ultrastructural, immunohistochemical, and flow cytometric study. Hum Pathol. 1989;20:682–90.

    Article  PubMed  CAS  Google Scholar 

  62. Knezevich SR, Garnett MJ, Pysher TJ, Beckwith JB, Grundy PE, Sorensen PH. ETV6-NTRK3 gene fusions and trisomy 11 establish a histogenetic link between mesoblastic nephroma and congenital fibrosarcoma. Cancer Res. 1998;58:5046–8.

    PubMed  CAS  Google Scholar 

  63. Dubus P, Coindre JM, Groppi A, et al. The detection of Tel-TrkC chimeric transcripts is more specific than TrkC immunoreactivity for the diagnosis of congenital fibrosarcoma. J Pathol. 2001;193:88–94.

    Article  PubMed  CAS  Google Scholar 

  64. Knezevich SR, McFadden DE, Tao W, Lim JF, Sorensen PH. A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet. 1998;18:184–7.

    Article  PubMed  CAS  Google Scholar 

  65. Furtwaengler R, Reinhard H, Leuschner I, et al. Mesoblastic nephroma—a report from the Gesellschaft fur Padiatrische Onkologie und Hamatologie (GPOH). Cancer. 2006;106: 2275–83.

    Article  PubMed  Google Scholar 

  66. Yang K, Lui WO, Xie Y, et al. Co-existence of SYT-SSX1 and SYT-SSX2 fusions in synovial sarcomas. Oncogene. 2002;21:4181–90.

    Article  PubMed  CAS  Google Scholar 

  67. Crew AJ, Clark J, Fisher C, et al. Fusion of SYT to two genes, SSX1 and SSX2, encoding proteins with homology to the Kruppel-associated box in human synovial sarcoma. EMBO J. 1995;14:2333–40.

    PubMed  CAS  Google Scholar 

  68. Panagopoulos I, Mertens F, Isaksson M, et al. Clinical impact of molecular and cytogenetic findings in synovial sarcoma. Genes Chromosomes Cancer. 2001;31:362–72.

    Article  PubMed  CAS  Google Scholar 

  69. Agus V, Tamborini E, Mezzelani A, Pierotti MA, Pilotti S. Re: a novel fusion gene, SYT-SSX4, in synovial sarcoma. J Natl Cancer Inst. 2001;93:1347–9.

    Article  PubMed  CAS  Google Scholar 

  70. Bijwaard KE, Fetsch JF, Przygodzki R, Taubenberger JK, Lichy JH. Detection of SYT-SSX fusion transcripts in archival synovial sarcomas by real-time reverse transcriptase-polymerase chain reaction. J Mol Diagn. 2002;4:59–64.

    Article  PubMed  CAS  Google Scholar 

  71. Storlazzi CT, Mertens F, Mandahl N, et al. A novel fusion gene, SS18L1/SSX1, in synovial sarcoma. Genes Chromosomes Cancer. 2003;37:195–200.

    Article  PubMed  CAS  Google Scholar 

  72. Bernstein M, Kovar H, Paulussen M, et al. Ewing’s sarcoma family of tumors: current management. Oncologist. 2006;11:503–19.

    Article  PubMed  CAS  Google Scholar 

  73. Gerald WL, Rosai J, Ladanyi M. Characterization of the genomic breakpoint and chimeric transcripts in the EWS-WT1 gene fusion of desmoplastic small round cell tumor. Proc Natl Acad Sci U S A. 1995;92:1028–32.

    Article  PubMed  CAS  Google Scholar 

  74. Antonescu CR, Gerald WL, Magid MS, Ladanyi M. Molecular variants of the EWS-WT1 gene fusion in desmoplastic small round cell tumor. Diagn Mol Pathol. 1998;7:24–8.

    Article  PubMed  CAS  Google Scholar 

  75. Murphy AJ, Bishop K, Pereira C, et al. A new molecular variant of desmoplastic small round cell tumor: significance of WT1 immunostaining in this entity. Hum Pathol. 2008;39:1763–70.

    Article  PubMed  CAS  Google Scholar 

  76. Coleman JA, Russo P. Hereditary and familial kidney cancer. Curr Opin Urol. 2009;19:478–85.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence Jennings MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jennings, L. (2012). Molecular Analysis in Pediatric Renal Tumors. In: Mackinnon Jr, A. (eds) Pediatric Neoplasia. Molecular and Translational Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-116-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-116-5_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-115-8

  • Online ISBN: 978-1-62703-116-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics