Skip to main content

Dietary Zinc Supplementation and Prenatal Ethanol Exposure

  • Chapter
  • First Online:
Alcohol, Nutrition, and Health Consequences

Abstract

Exposure to alcohol during pregnancy is associated with an increased risk of spontaneous abortion, growth retardation, congenital malformations and central nervous system dysfunction [1, 2]. These negative birth outcomes, which are collectively referred to as fetal alcohol spectrum disorder (FASD), range in severity from full fetal alcohol syndrome (FAS) through milder although clinically significant forms which can affect physical and behavioural outcomes (i.e. alcohol-related birth defects (ARBD) and alcohol-related neurodevelopmental disorders (ARND)). These outcomes are associated not only with chronic consumption of alcohol at high intakes and frequency but also with a single episode of alcohol intake, which is commonly called ‘binge drinking’ (>4 drinks/occasion). Although abstinence from alcohol during pregnancy would prevent these disorders, the motivation for self-restraint from drinking alcohol is not uniformly accepted among women [3–6]. Moreover, up to two-thirds of pregnancies are reported to be unplanned, indicating that many women may be unaware of their pregnancy when consuming alcohol [3, 5, 6]. Thus, the consumption of alcohol during pregnancy will continue to negatively impact on birth outcomes well into the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jones KL, Smith DW, Ulleland CN, Streissguth P. Pattern of malformation in offspring of chronic alcoholic mothers. Lancet. 1973;1(7815):1267–71.

    PubMed  CAS  Google Scholar 

  2. Streissguth AP, Landesman-Dwyer S, Martin JC, Smith DW. Teratogenic effects of alcohol in humans and laboratory animals. Science. 1980;209(4454):353–61.

    PubMed  CAS  Google Scholar 

  3. Colvin L, Payne J, Parsons D, Kurinczuk JJ, Bower C. Alcohol consumption during pregnancy in nonindigenous west Australian women. Alcohol Clin Exp Res. 2007;31(2):276–84.

    PubMed  Google Scholar 

  4. Goransson M, Magnusson A, Bergman H, Rydberg U, Heilig M. Fetus at risk: prevalence of alcohol consumption during pregnancy estimated with a simple screening method in Swedish antenatal clinics. Addiction. 2003;98(11):1513–20.

    PubMed  Google Scholar 

  5. Kesmodel U, Kesmodel PS, Larsen A, Secher NJ. Use of alcohol and illicit drugs among pregnant Danish women, 1998. Scand J Public Health. 2003;31(1):5–11.

    PubMed  Google Scholar 

  6. Urban M, Chersich MF, Fourie LA, Chetty C, Olivier L, Viljoen D. Fetal alcohol syndrome among grade 1 schoolchildren in Northern Cape Province: prevalence and risk factors. S Afr Med J. 2008;98(11):877–82.

    PubMed  Google Scholar 

  7. Randall CL, Anton RF. Aspirin reduces alcohol-induced prenatal mortality and malformations in mice. Alcohol Clin Exp Res. 1984;8(6):513–5.

    PubMed  CAS  Google Scholar 

  8. Sood B, Delaney-Black V, Covington C, et al. Prenatal alcohol exposure and childhood behavior at age 6 to 7 years: I. dose–response effect. Pediatrics. 2001;108(2):E34.

    PubMed  CAS  Google Scholar 

  9. Streissguth AP, Sampson PD, Olson HC, et al. Maternal drinking during pregnancy: attention and short-term memory in 14-year-old offspring–a longitudinal prospective study. Alcohol Clin Exp Res. 1994;18(1):202–18.

    PubMed  CAS  Google Scholar 

  10. Abel EL, Hannigan JH. Maternal risk factors in fetal alcohol syndrome: provocative and permissive influences. Neurotoxicol Teratol. 1995;17(4):445–62.

    PubMed  CAS  Google Scholar 

  11. May PA, Gossage JP, Marais AS, et al. Maternal risk factors for fetal alcohol syndrome and partial fetal alcohol syndrome in South Africa: a third study. Alcohol Clin Exp Res. 2008;32(5):738–53.

    PubMed  Google Scholar 

  12. Maier SE, West JR. Drinking patterns and alcohol-related birth defects. Alcohol Res Health. 2001;25(3):168–74.

    PubMed  CAS  Google Scholar 

  13. West JR, Goodlett CR, Bonthius DJ, Hamre KM, Marcussen BL. Cell population depletion associated with fetal alcohol brain damage: mechanisms of BAC-dependent cell loss. Alcohol Clin Exp Res. 1990;14(6):813–8.

    PubMed  CAS  Google Scholar 

  14. Sulik KK. Critical periods for alcohol teratogenesis in mice, with special reference to the gastrulation stage of embryogenesis. Ciba Found Symp. 1984;105:124–41.

    PubMed  CAS  Google Scholar 

  15. Summers BL, Henry CM, Rofe AM, Coyle P. Dietary zinc supplementation during pregnancy prevents spatial and object recognition memory impairments caused by early prenatal ethanol exposure. Behav Brain Res. 2008;186(2): 230–8.

    PubMed  CAS  Google Scholar 

  16. Summers BL, Rofe AM, Coyle P. Prenatal zinc treatment at the time of acute ethanol exposure limits spatial memory impairments in mouse offspring. Pediatr Res. 2006;59(1):66–71.

    PubMed  CAS  Google Scholar 

  17. Summers BL, Rofe AM, Coyle P. Dietary zinc supplementation throughout pregnancy protects against fetal dysmorphology and improves postnatal survival after prenatal ethanol exposure in mice. Alcohol Clin Exp Res. 2009;33(4):591–600.

    PubMed  CAS  Google Scholar 

  18. Bailey BN, Delaney-Black V, Covington CY, et al. Prenatal exposure to binge drinking and cognitive and behavioral outcomes at age 7 years. Am J Obstet Gynecol. 2004;191(3):1037–43.

    PubMed  Google Scholar 

  19. Rice PA, Nesbitt Jr RE, Cuenca VG, Zhang W, Gordon GB, Kim TJ. The effect of ethanol on the production of lactate, triglycerides, phospholipids, and free fatty acids in the perfused human placenta. Am J Obstet Gynecol. 1986;155(1):207–11.

    PubMed  CAS  Google Scholar 

  20. Becker HC, Diaz-Granados JL, Randall CL. Teratogenic actions of ethanol in the mouse: a minireview. Pharmacol Biochem Behav. 1996;55(4):501–13.

    PubMed  CAS  Google Scholar 

  21. Day NL, Jasperse D, Richardson G, et al. Prenatal exposure to alcohol: effect on infant growth and morphologic characteristics. Pediatrics. 1989;84(3):536–41.

    PubMed  CAS  Google Scholar 

  22. Goodlett CR, Horn KH, Zhou FC. Alcohol teratogenesis: mechanisms of damage and strategies for intervention. Exp Biol Med (Maywood). 2005;230(6):394–406.

    CAS  Google Scholar 

  23. Guerri C, Saez R, Sancho-Tello M, Martin de Aquilera E, Renau-Piqueras J. Ethanol alters astrocyte development: a study of critical periods using primary cultures. Neurochem Res. 1990;15(5):559–65.

    PubMed  CAS  Google Scholar 

  24. Hamre KM, West JR. The effects of the timing of ethanol exposure during the brain growth spurt on the number of cerebellar Purkinje and granule cell nuclear profiles. Alcohol Clin Exp Res. 1993;17(3):610–22.

    PubMed  CAS  Google Scholar 

  25. Ikonomidou C, Bittigau P, Ishimaru MJ, et al. Ethanol-induced apoptotic neurodegeneration and fetal alcohol syndrome. Science. 2000;287(5455):1056–60.

    PubMed  CAS  Google Scholar 

  26. Abel EL. An update on incidence of FAS: FAS is not an equal opportunity birth defect. Neurotoxicol Teratol. 1995;17(4):437–43.

    PubMed  CAS  Google Scholar 

  27. Bingol N, Schuster C, Fuchs M, et al. The influence of socioeconomic factors on the occurrence of fetal alcohol syndrome. Adv Alcohol Subst Abuse. 1987;6(4):105–18.

    PubMed  CAS  Google Scholar 

  28. May PA, Gossage JP, Kalberg WO, et al. Prevalence and epidemiologic characteristics of FASD from various research methods with an emphasis on recent in-school studies. Dev Disabil Res Rev. 2009;15(3):176–92.

    PubMed  Google Scholar 

  29. May PA, Brooke L, Gossage JP, et al. Epidemiology of fetal alcohol syndrome in a South African community in the Western Cape Province. Am J Public Health. 2000;90(12):1905–12.

    PubMed  CAS  Google Scholar 

  30. May PA, Gossage JP, Marais AS, et al. The epidemiology of fetal alcohol syndrome and partial FAS in a South African community. Drug Alcohol Depend. 2007;88(2–3):259–71.

    PubMed  Google Scholar 

  31. Viljoen DL, Gossage JP, Brooke L, et al. Fetal alcohol syndrome epidemiology in a South African community: a second study of a very high prevalence area. J Stud Alcohol. 2005;66(5):593–604.

    PubMed  Google Scholar 

  32. Guerrini I, Thomson AD, Gurling HD. The importance of alcohol misuse, malnutrition and genetic susceptibility on brain growth and plasticity. Neurosci Biobehav Rev. 2007;31(2):212–20.

    PubMed  CAS  Google Scholar 

  33. Antony AC. In utero physiology: role of folic acid in nutrient delivery and fetal development. Am J Clin Nutr. 2007;85(2):598S–603.

    PubMed  CAS  Google Scholar 

  34. Black RE. Micronutrients in pregnancy. Br J Nutr. 2001;85(Suppl 2):S193–7.

    PubMed  CAS  Google Scholar 

  35. Leis-Marquez MT, Guzman-Huerta E. Maternal nutrition effect on fetus development and pregnant women’s health. Ginecol Obstet Mex. 1999;67:113–28.

    PubMed  CAS  Google Scholar 

  36. Lozoff B, Georgieff MK. Iron deficiency and brain development. Semin Pediatr Neurol. 2006;13(3):158–65.

    PubMed  Google Scholar 

  37. May PA, Gossage JP. Estimating the prevalence of fetal alcohol syndrome. A summary. Alcohol Res Health. 2001;25(3):159–67.

    PubMed  CAS  Google Scholar 

  38. Jacobson JL, Jacobson SW, Sokol RJ. Increased vulnerability to alcohol-related birth defects in the offspring of mothers over 30. Alcohol Clin Exp Res. 1996;20(2):359–63.

    PubMed  CAS  Google Scholar 

  39. Jacobson JL, Jacobson SW, Sokol RJ, Ager Jr JW. Relation of maternal age and pattern of pregnancy drinking to functionally significant cognitive deficit in infancy. Alcohol Clin Exp Res. 1998;22(2):345–51.

    PubMed  CAS  Google Scholar 

  40. Streissguth AP, Dehaene P. Fetal alcohol syndrome in twins of alcoholic mothers: concordance of diagnosis and IQ. Am J Med Genet. 1993;47(6):857–61.

    PubMed  CAS  Google Scholar 

  41. Crabbe JC, Harris RA. The genetic basis of alcohol and drug actions. New York: Plenum; 1991.

    Google Scholar 

  42. Gemma S, Vichi S, Testai E. Metabolic and genetic factors contributing to alcohol induced effects and fetal alcohol syndrome. Neurosci Biobehav Rev. 2007;31(2):221–9.

    PubMed  CAS  Google Scholar 

  43. Warren KR, Li TK. Genetic polymorphisms: impact on the risk of fetal alcohol spectrum disorders. Birth Defects Res A Clin Mol Teratol. 2005;73(4):195–203.

    PubMed  CAS  Google Scholar 

  44. Haorah J, Ramirez SH, Floreani N, Gorantla S, Morsey B, Persidsky Y. Mechanism of alcohol-induced oxidative stress and neuronal injury. Free Radic Biol Med. 2008;45(11):1542–50.

    PubMed  CAS  Google Scholar 

  45. Bosron WF, Ehrig T, Li TK. Genetic factors in alcohol metabolism and alcoholism. Semin Liver Dis. 1993;13(2):126–35.

    PubMed  CAS  Google Scholar 

  46. Gemma S, Vichi S, Testai E. Individual susceptibility and alcohol effects: biochemical and genetic aspects. Ann Ist Super Sanita. 2006;42(1):8–16.

    PubMed  CAS  Google Scholar 

  47. Tenkku LE, Morris DS, Salas J, Xaverius PK. Racial disparities in pregnancy-related drinking reduction. Matern Child Health J. 2009;13(5):604–13.

    PubMed  Google Scholar 

  48. Flynn HA, Marcus SM, Barry KL, Blow FC. Rates and correlates of alcohol use among pregnant women in obstetrics clinics. Alcohol Clin Exp Res. 2003;27(1):81–7.

    PubMed  Google Scholar 

  49. Morojele NK, London L, Olorunju SA, Matjila MJ, Davids AS, Rendall-Mkosi KM. Predictors of risk of alcohol-exposed pregnancies among women in an urban and a rural area of South Africa. Soc Sci Med. 2010;70(4): 534–42.

    PubMed  Google Scholar 

  50. Nakamura MU, Alexandre SM, Kuhn dos Santos JF. Obstetric and perinatal effects of active and/or passive smoking during pregnancy. Sao Paulo Med J. 2004;122(3):94–8.

    PubMed  Google Scholar 

  51. Aliyu MH, Wilson RE, Zoorob R, et al. Prenatal alcohol consumption and fetal growth restriction: potentiation effect by concomitant smoking. Nicotine Tob Res. 2009;11(1):36–43.

    PubMed  Google Scholar 

  52. Sharpe TT, Velasquez MM. Risk of alcohol-exposed pregnancies among low-income, illicit drug-using women. J Womens Health (Larchmt). 2008;17(8):1339–44.

    Google Scholar 

  53. Young NK. Effects of alcohol and other drugs on children. J Psychoactive Drugs. 1997;29(1):23–42.

    PubMed  CAS  Google Scholar 

  54. Overholser JC. Fetal alcohol syndrome: a review of the disorder. J Contemp Psychother. 1990;20:163–76.

    Google Scholar 

  55. Dreosti IE, Ballard FJ, Belling GB, Record IR, Manuel SJ, Hetzel BS. The effect of ethanol and acetaldehyde on DNA synthesis in growing cells and on fetal development in the rat. Alcohol Clin Exp Res. 1981;5(3):357–62.

    PubMed  CAS  Google Scholar 

  56. Garro AJ, McBeth DL, Lima V, Lieber CS. Ethanol consumption inhibits fetal DNA methylation in mice: implications for the fetal alcohol syndrome. Alcohol Clin Exp Res. 1991;15(3):395–8.

    PubMed  CAS  Google Scholar 

  57. Henderson GI, Schenker S. The effect of maternal alcohol consumption on the viability and visceral development of the newborn rat. Res Commun Chem Pathol Pharmacol. 1977;16(1):15–32.

    PubMed  CAS  Google Scholar 

  58. Schenker S, Becker HC, Randall CL, Phillips DK, Baskin GS, Henderson GI. Fetal alcohol syndrome: current status of pathogenesis. Alcohol Clin Exp Res. 1990;14(5):635–47.

    PubMed  CAS  Google Scholar 

  59. Shibley Jr IA, Pennington SN. Metabolic and mitotic changes associated with the fetal alcohol syndrome. Alcohol Alcohol. 1997;32(4):423–34.

    PubMed  CAS  Google Scholar 

  60. Nava-Ocampo AA, Velazquez-Armenta Y, Brien JF, Koren G. Elimination kinetics of ethanol in pregnant women. Reprod Toxicol. 2004;18(4):613–7.

    PubMed  CAS  Google Scholar 

  61. Blakley PM, Scott Jr WJ. Determination of the proximate teratogen of the mouse fetal alcohol syndrome. 1. Teratogenicity of ethanol and acetaldehyde. Toxicol Appl Pharmacol. 1984;72(2):355–63.

    PubMed  CAS  Google Scholar 

  62. Clarke DW, Steenaart NA, Slack CJ, Brien JF. Pharmacokinetics of ethanol and its metabolite, acetaldehyde, and fetolethality in the third-trimester pregnant guinea pig for oral administration of acute, multiple-dose ethanol. Can J Physiol Pharmacol. 1986;64(8):1060–7.

    PubMed  CAS  Google Scholar 

  63. Hayashi M, Shimazaki Y, Kamata S, Kakiichi N, Ikeda M. Disposition of ethanol and acetaldehyde in maternal blood, fetal blood, and amniotic fluid of near-term pregnant rats. Bull Environ Contam Toxicol. 1991;47(2): 184–9.

    PubMed  CAS  Google Scholar 

  64. Ng PK, Cottle MK, Baker JM, Johnson B, van Muyden P, van Petten GR. Ethanol kinetics during pregnancy. Study in ewes and their fetuses. Prog Neuropsychopharmacol Biol Psychiatry. 1982;6(1):37–42.

    PubMed  CAS  Google Scholar 

  65. Wilkening RB, Anderson S, Martensson L, Meschia G. Placental transfer as a function of uterine blood flow. Am J Physiol Heart Circ Physiol. 1982;242:H429–36.

    CAS  Google Scholar 

  66. Brown NA, Goulding EH, Fabro S. Ethanol embryotoxicity: direct effects on mammalian embryos in vitro. Science. 1979;206(4418):573–5.

    PubMed  CAS  Google Scholar 

  67. Giavini E, Broccia ML, Prati M, Bellomo D, Menegola E. Effects of ethanol and acetaldehyde on rat embryos developing in vitro. In Vitro Cell Dev Biol. 1992;28A(3 Pt 1):205–10.

    PubMed  CAS  Google Scholar 

  68. Higuchi Y, Matsumoto N. Embryotoxicity of ethanol and acetaldehyde: direct effects of mouse embryo in vitro. Congenit Anom. 1984;24:9–28.

    CAS  Google Scholar 

  69. Jing H, Li Y. Effects of ethanol on mouse embryonic brain development and heat shock protein 73 expression. Toxicol In Vitro. 2004;18:601–7.

    PubMed  CAS  Google Scholar 

  70. Michaelis EK, Michaelis ML. Cellular and molecular bases of alcohol’s teratogenic effects. Alcohol Health Res World. 1994;18:601–7.

    Google Scholar 

  71. Blakley PM, Scott Jr WJ. Determination of the proximate teratogen of the mouse fetal alcohol syndrome. 2. Pharmacokinetics of the placental transfer of ethanol and acetaldehyde. Toxicol Appl Pharmacol. 1984;72(2):364–71.

    PubMed  CAS  Google Scholar 

  72. Varma PK, Persaud TV. Influence of pyrazole, an inhibitor of alcohol dehydrogenase on the prenatal toxicity of ethanol in the rat. Res Commun Chem Pathol Pharmacol. 1979;26(1):65–73.

    PubMed  CAS  Google Scholar 

  73. Koivisto T, Mishin VM, Mak KM, Cohen PA, Lieber CS. Induction of cytochrome P-4502E1 by ethanol in rat Kupffer cells. Alcohol Clin Exp Res. 1996;20(2):207–12.

    PubMed  CAS  Google Scholar 

  74. Tsutsumi M, Lasker JM, Shimizu M, Rosman AS, Lieber CS. The intralobular distribution of ethanol-inducible P450IIE1 in rat and human liver. Hepatology. 1989;10(4):437–46.

    PubMed  CAS  Google Scholar 

  75. Salaspuro MP, Lieber CS. Non-uniformity of blood ethanol elimination: its exaggeration after chronic consumption. Ann Clin Res. 1978;10(5):294–7.

    PubMed  CAS  Google Scholar 

  76. Ariyoshi T, Takabatake E, Remmer H. Drug metabolism in ethanol-induced fatty liver. Life Sci. 1970;9(7):361–9.

    PubMed  CAS  Google Scholar 

  77. Dai Y, Rashba-Step J, Cederbaum AI. Stable expression of human cytochrome P4502E1 in HepG2 cells: characterization of catalytic activities and production of reactive oxygen intermediates. Biochemistry. 1993;32(27):6928–37.

    PubMed  CAS  Google Scholar 

  78. Lieber CS. The discovery of the microsomal ethanol oxidizing system and its physiologic and pathologic role. Drug Metab Rev. 2004;36(3–4):511–29.

    PubMed  CAS  Google Scholar 

  79. Brien JF, Loomis CW. Pharmacology of acetaldehyde. Can J Physiol Pharmacol. 1983;61:1–22.

    PubMed  CAS  Google Scholar 

  80. Karl PI, Gordon BH, Lieber CS, Fisher SE. Acetaldehyde production and transfer by the perfused human placental cotyledon. Science. 1988;242(4876):273–5.

    PubMed  CAS  Google Scholar 

  81. Campbell MA, Fantel AG. Teratogenicity of acetaldehyde in vitro: relevance to the fetal alcohol syndrome. Life Sci. 1983;32(23):2641–7.

    PubMed  CAS  Google Scholar 

  82. Sreenathan RN, Padmanabhan R, Singh S. Teratogenic effects of acetaldehyde in the rat. Drug Alcohol Depend. 1982;9(4):339–50.

    PubMed  CAS  Google Scholar 

  83. Priscott PK. The effects of acetaldehyde and 2,3-butanediol on rat embryos developing in vitro. Biochem Pharmacol. 1985;34(4):529–32.

    PubMed  CAS  Google Scholar 

  84. O’Shea KS, Kaufman MH. The teratogenic effect of acetaldehyde: implications for the study of the fetal alcohol syndrome. J Anat. 1979;128(Pt 1):65–76.

    PubMed  Google Scholar 

  85. Padmanabhan R, Sreenathan RN, Singh S. Studies on the lethal and teratogenic effects of acetaldehyde in the rat. Congenit Anom. 1983;23:13–23.

    Google Scholar 

  86. Lieber CS. Interaction of ethanol with drugs, hepatotoxic agents, carcinogens and vitamins. Alcohol Alcohol. 1990;25(2–3):157–76.

    PubMed  CAS  Google Scholar 

  87. Cohen-Kerem R, Koren G. Antioxidants and fetal protection against ethanol teratogenicity. I. Review of the experimental data and implications to humans. Neurotoxicol Teratol. 2003;25(1):1–9.

    PubMed  CAS  Google Scholar 

  88. Orny A. Embryonic oxidative stress as a mechanism of teratogenesis with special emphasis on diabetic embryopathy. Reprod Toxicol. 2007;24:31–41.

    Google Scholar 

  89. Davis WL, Crawford LA, Cooper OJ, Farmer GR, Thomas DL, Freeman BL. Ethanol induces the generation of reactive free radicals by neural crest cells in vitro. J Craniofac Genet Dev Biol. 1990;10(3):277–93.

    PubMed  CAS  Google Scholar 

  90. Bonthius DJ, Bonthius NE, Li S, Karacay B. The protective effect of neuronal nitric oxide synthase (nNOS) against alcohol toxicity depends upon the NO-cGMP-PKG pathway and NF-kappaB. Neurotoxicology. 2008;29(6):1080–91.

    PubMed  CAS  Google Scholar 

  91. Kim BE, Wang F, Dufner-Beattie J, Andrews GK, Eide DJ, Petris MJ. Zn2  +  −stimulated endocytosis of the mZIP4 zinc transporter regulates its location at the plasma membrane. J Biol Chem. 2004;279(6):4523–30.

    PubMed  CAS  Google Scholar 

  92. Parnell SE, Sulik KK, Dehart DB, Chen SY. Reduction of ethanol-induced ocular abnormalities in mice through dietary administration of N-acetylcysteine. Alcohol. 2010;44(7–8):699–705.

    PubMed  CAS  Google Scholar 

  93. Bradford BU. Role of peroxisomes in the swift increase in alcohol metabolism. J Gastroenterol Hepatol. 2007;22(Suppl 1):S28–30.

    PubMed  CAS  Google Scholar 

  94. Maden M, Ong DE, Summerbell D, Chytil F. The role of retinoid-binding proteins in the generation of pattern in the developing limb, the regenerating limb and the nervous system. Development. 1989;107(Suppl):109–19.

    PubMed  CAS  Google Scholar 

  95. Mark M, Ghyselinck NB, Wendling O, et al. A genetic dissection of the retinoid signalling pathway in the mouse. Proc Nutr Soc. 1999;58(3):609–13.

    PubMed  CAS  Google Scholar 

  96. Marshall H, Morrison A, Studer M, Popperl H, Krumlauf R. Retinoids and Hox genes. FASEB J. 1996;10(9):969–78.

    PubMed  CAS  Google Scholar 

  97. Johnson CS, Zucker RM, Hunter 3rd ES, Sulik KK. Perturbation of retinoic acid (RA)-mediated limb development suggests a role for diminished RA signaling in the teratogenesis of ethanol. Birth Defects Res A Clin Mol Teratol. 2007;79(9):631–41.

    PubMed  CAS  Google Scholar 

  98. Marrs JA, Clendenon SG, Ratcliffe DR, Fielding SM, Liu Q, Bosron WF. Zebrafish fetal alcohol syndrome model: effects of ethanol are rescued by retinoic acid supplement. Alcohol. 2010;44(7–8):707–15. Epub 2009 Dec 29.

    PubMed  CAS  Google Scholar 

  99. Yelin R, Schyr RB, Kot H, et al. Ethanol exposure affects gene expression in the embryonic organizer and reduces retinoic acid levels. Dev Biol. 2005;279(1):193–204.

    PubMed  CAS  Google Scholar 

  100. Chen Y, Pollet N, Niehrs C, Pieler T. Increased XRALDH2 activity has a posteriorizing effect on the central nervous system of Xenopus embryos. Mech Dev. 2001;101(1–2):91–103.

    PubMed  CAS  Google Scholar 

  101. Niederreither K, Subbarayan V, Dolle P, Chambon P. Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nat Genet. 1999;21(4):444–8.

    PubMed  CAS  Google Scholar 

  102. Kot-Leibovich H, Fainsod A. Ethanol induces embryonic malformations by competing for retinaldehyde dehydrogenase activity during vertebrate gastrulation. Dis Model Mech. 2009;2(5–6):295–305.

    PubMed  CAS  Google Scholar 

  103. Clagett-Dame M, DeLuca HF. The role of vitamin A in mammalian reproduction and embryonic development. Annu Rev Nutr. 2002;22:347–81.

    PubMed  CAS  Google Scholar 

  104. Duester G. A hypothetical mechanism for fetal alcohol syndrome involving ethanol inhibition of retinoic acid synthesis at the alcohol dehydrogenase step. Alcohol Clin Exp Res. 1991;15(3):568–72.

    PubMed  CAS  Google Scholar 

  105. Kessel M. Respecification of vertebral identities by retinoic acid. Development. 1992;115(2):487–501.

    PubMed  CAS  Google Scholar 

  106. Yelin R, Kot H, Yelin D, Fainsod A. Early molecular effects of ethanol during vertebrate embryogenesis. Differentiation. 2007;75(5):393–403.

    PubMed  CAS  Google Scholar 

  107. Kane MA, Folias AE, Wang C, Napoli JL. Ethanol elevates physiological all-trans-retinoic acid levels in select loci through altering retinoid metabolism in multiple loci: a potential mechanism of ethanol toxicity. FASEB J. 2010;24(3):823–32.

    PubMed  CAS  Google Scholar 

  108. Grylewski RJ. Prostacyclin among prostanoids. Pharmacol Rep. 2008;60:3–11.

    Google Scholar 

  109. Challis JR, Patrick JE. The production of prostaglandins and thromboxanes in the feto-placental unit and their effects on the developing fetus. Semin Perinatol. 1980;4(1):23–33.

    PubMed  CAS  Google Scholar 

  110. Goldberg VJ, Ramwell PW. Role of rostaglandins in reproduction. Physiol Rev. 1975;55(3):325–51.

    PubMed  CAS  Google Scholar 

  111. Keirse MJ. Biosynthesis and metabolism of prostaglandins in the pregnant human uterus. Adv Prostaglandin Thromboxane Res. 1978;4:87–102.

    PubMed  CAS  Google Scholar 

  112. Persaud TV. Prostaglandins and organogenesis. Adv Prostaglandin Thromboxane Res. 1978;4:139–56.

    PubMed  CAS  Google Scholar 

  113. Caughey GE, Cleland LG, Penglis PS, Gamble JR, James MJ. Roles of cyclooxygenase (COX)-1 and COX-2 in prostanoid production by human endothelial cells: selective up-regulation of prostacyclin synthesis by COX-2. J Immunol. 2001;167(5):2831–8.

    PubMed  CAS  Google Scholar 

  114. Okahara K, Sun B, Kambayashi J. Upregulation of prostacyclin synthesis-related gene expression by shear stress in vascular endothelial cells. Arterioscler Thromb Vasc Biol. 1998;18(12):1922–6.

    PubMed  CAS  Google Scholar 

  115. Walsh SW. Eicosanoids in preeclampsia. Prostaglandins Leukot Essent Fatty Acids. 2004;70(2):223–32.

    PubMed  CAS  Google Scholar 

  116. Hilbelink DR, Persaud TV. Teratogenic effects of prostaglandin E2 in hamsters. Prog Lipid Res. 1981;20:241–2.

    PubMed  CAS  Google Scholar 

  117. Liebgott B, Wiley MJ. Prenatal hamster development following maternal administration of PGE2 at midterm. Prostaglandins Leukot Med. 1985;17(3):309–18.

    PubMed  CAS  Google Scholar 

  118. Pennington S, Kalmus G. Brain growth during ethanol-induced hypoplasia. Drug Alcohol Depend. 1987;20(3): 279–86.

    PubMed  CAS  Google Scholar 

  119. Anton RF, Becker HC, Randall CL. Ethanol increases PGE and thromboxane production in mouse pregnant uterine tissue. Life Sci. 1990;46(16):1145–53.

    PubMed  CAS  Google Scholar 

  120. Randall CL, Anton RF, Becker HC. Effect of indomethacin on alcohol-induced morphological anomalies in mice. Life Sci. 1987;41(3):361–9.

    PubMed  CAS  Google Scholar 

  121. Smith GN, Brien JF, Homan J, Carmichael L, Treissman D, Patrick J. Effect of ethanol on ovine fetal and maternal plasma prostaglandin E2 concentrations and fetal breathing movements. J Dev Physiol. 1990;14(1):23–8.

    PubMed  CAS  Google Scholar 

  122. Smith GN, Sinervo KR, Carmichael L, Patrick J, Bocking AD, Brien JF. The effects of indomethacin and prostaglandin E2 on the ethanol-induced suppression of ovine fetal breathing movements. J Dev Physiol. 1991;16(4):239–42.

    PubMed  CAS  Google Scholar 

  123. Burd L, Roberts D, Olson M, Odendaal H. Ethanol and the placenta: a review. J Matern Fetal Neonatal Med. 2007;20(5):361–75.

    PubMed  CAS  Google Scholar 

  124. Fisher SE, Atkinson M, Burnap JK, et al. Ethanol-associated selective fetal malnutrition: a contributing factor in the fetal alcohol syndrome. Alcohol Clin Exp Res. 1982;6(2):197–201.

    PubMed  CAS  Google Scholar 

  125. Andersson S, Halmesmaki E, Koivusalo M, Lapatto R, Ylikorkala O. Placental alcohol metabolism in chronic alcohol abuse. Biol Neonate. 1989;56(2):90–3.

    PubMed  CAS  Google Scholar 

  126. Kennedy LA. Changes in the term mouse placenta associated with maternal alcohol consumption and fetal growth deficits. Am J Obstet Gynecol. 1984;149(5):518–22.

    PubMed  CAS  Google Scholar 

  127. Hollstedt C, Dahlgren L, Rydberg U. Outcome of pregnancy in women treated at an alcohol clinic. Acta Psychiatr Scand. 1983;67(4):236–48.

    PubMed  CAS  Google Scholar 

  128. Baldwin VJ, MacLeod PM, Benirschke K. Placental findings in alcohol abuse in pregnancy. Birth Defects Orig Artic Ser. 1982;18(3 Pt A):89–94.

    PubMed  CAS  Google Scholar 

  129. Gundogan F, Elwood G, Longato L, et al. Impaired placentation in fetal alcohol syndrome. Placenta. 2008;29(2):148–57.

    PubMed  CAS  Google Scholar 

  130. Jones PJ, Leichter J, Lee M. Placental blood flow in rats fed alcohol before and during gestation. Life Sci. 1981;29(11):1153–9.

    PubMed  CAS  Google Scholar 

  131. Acevedo CG, Huambachano AM, Bravo I, Contreras E. Endogenous nitric oxide attenuates ethanol-induced vasoconstriction in the human placenta. Gynecol Obstet Invest. 1997;44(3):153–6.

    PubMed  CAS  Google Scholar 

  132. Taylor SM, Heron AE, Cannell GR, Florin TH. Pressor effect of ethanol in the isolated perfused human placental lobule. Eur J Pharmacol. 1994;270(4):371–4.

    PubMed  CAS  Google Scholar 

  133. Mukherjee AB, Hodgen GD. Maternal ethanol exposure induces transient impairment of umbilical circulation and fetal hypoxia in monkeys. Science. 1982;218(4573):700–2.

    PubMed  CAS  Google Scholar 

  134. Altura BM, Altura BT, Carella A, Chatterjee M, Halevy S, Tejani N. Alcohol produces spasms of human umbilical blood vessels: relationship to fetal alcohol syndrome (FAS). Eur J Pharmacol. 1982;86(2):311–2.

    PubMed  CAS  Google Scholar 

  135. Savoy-Moore RT, Dombrowski MP, Cheng A, Abel EA, Sokol RJ. Low dose alcohol contracts the human umbilical artery in vitro. Alcohol Clin Exp Res. 1989;13(1):40–2.

    PubMed  CAS  Google Scholar 

  136. Fisher SE, Atkinson M, Jacobson S, et al. Selective fetal malnutrition: the effect of in vivo ethanol exposure upon in vitro placental uptake of amino acids in the non-human primate. Pediatr Res. 1983;17(9):704–7.

    PubMed  CAS  Google Scholar 

  137. Henderson GI, Patwardhan RV, McLeroy S, Schenker S. Inhibition of placental amino acid uptake in rats following acute and chronic ethanol exposure. Alcohol Clin Exp Res. 1982;6(4):495–505.

    PubMed  CAS  Google Scholar 

  138. Fisher SE, Karl PI. Histidine transfer across the human placenta: characteristics in the isolated perfused human placenta and the effect of ethanol. Placenta. 1990;11(2):157–65.

    PubMed  CAS  Google Scholar 

  139. Schenker S, Dicke JM, Johnson RF, Hays SE, Henderson GI. Effect of ethanol on human placental transport of model amino acids and glucose. Alcohol Clin Exp Res. 1989;13(1):112–9.

    PubMed  CAS  Google Scholar 

  140. Hu ZQ, Henderson GI, Mock DM, Schenker S. Biotin uptake by basolateral membrane vesicles of human placenta: normal characteristics and role of ethanol. Proc Soc Exp Biol Med. 1994;206(4):404–8.

    PubMed  CAS  Google Scholar 

  141. Keating E, Lemos C, Goncalves P, Martel F. Acute and chronic effects of some dietary bioactive compounds on folic acid uptake and on the expression of folic acid transporters by the human trophoblast cell line BeWo. J Nutr Biochem. 2008;19(2):91–100.

    PubMed  CAS  Google Scholar 

  142. Schenker S, Johnson RF, Mahuren JD, Henderson GI, Coburn SP. Human placental vitamin B6 (pyridoxal) transport: normal characteristics and effects of ethanol. Am J Physiol. 1992;262(6 Pt 2):R966–74.

    PubMed  CAS  Google Scholar 

  143. Haggarty P, Abramovich DR, Page K. The effect of maternal smoking and ethanol on fatty acid transport by the human placenta. Br J Nutr. 2002;87(3):247–52.

    PubMed  CAS  Google Scholar 

  144. Singh SP, Snyder AK, Pullen GL. Maternal alcohol ingestion inhibits fetal glucose uptake and growth. Neurotoxicol Teratol. 1989;11(3):215–9.

    PubMed  CAS  Google Scholar 

  145. Snyder AK, Singh SP, Pullen GL. Ethanol-induced intrauterine growth retardation: correlation with placental glucose transfer. Alcohol Clin Exp Res. 1986;10(2):167–70.

    PubMed  CAS  Google Scholar 

  146. Boehm 2nd SL, Lundahl KR, Caldwell J, Gilliam DM. Ethanol teratogenesis in the C57BL/6 J, DBA/2 J, and A/J inbred mouse strains. Alcohol. 1997;14(4):389–95.

    PubMed  CAS  Google Scholar 

  147. Dreosti IE, Buckley RA, Record IR. The teratogenic effect of zinc deficiency and accompanying feeding patterns in mice. Nutr Res. 1986;6:159–66.

    CAS  Google Scholar 

  148. Hickory W, Nanda R, Catalanotto FA. Fetal skeletal malformations associated with moderate zinc deficiency during pregnancy. J Nutr. 1979;109(5):883–91.

    PubMed  CAS  Google Scholar 

  149. Keen CL, Hurley LS. Effects of zinc deficiency on prenatal and postnatal development. Neurotoxicology. 1987;8(3):379–87.

    PubMed  CAS  Google Scholar 

  150. Keppen LD, Pysher T, Rennert OM. Zinc deficiency acts as a co-teratogen with alcohol in fetal alcohol syndrome. Pediatr Res. 1985;19(9):944–7.

    PubMed  CAS  Google Scholar 

  151. Randall CL, Taylor WJ. Prenatal ethanol exposure in mice: teratogenic effects. Teratology. 1979;19(3):305–11.

    PubMed  CAS  Google Scholar 

  152. Sauerbier I. Circadian modification of ethanol damage in utero to mice. Am J Anat. 1987;178(2):170–4.

    PubMed  CAS  Google Scholar 

  153. Sulik KK, Johnston MC, Webb MA. Fetal alcohol syndrome: embryogenesis in a mouse model. Science. 1981;214(4523):936–8.

    PubMed  CAS  Google Scholar 

  154. Dunty Jr WC, Chen SY, Zucker RM, Dehart DB, Sulik KK. Selective vulnerability of embryonic cell populations to ethanol-induced apoptosis: implications for alcohol-related birth defects and neurodevelopmental disorder. Alcohol Clin Exp Res. 2001;25(10):1523–35.

    PubMed  CAS  Google Scholar 

  155. Jankowski-Hennig MA, Clegg MS, Daston GP, Rogers JM, Keen CL. Zinc-deficient rat embryos have increased caspase 3-like activity and apoptosis. Biochem Biophys Res Commun. 2000;271(1):250–6.

    PubMed  CAS  Google Scholar 

  156. Rogers JM, Taubeneck MW, Daston GP, et al. Zinc deficiency causes apoptosis but not cell cycle alterations in organogenesis-stage rat embryos: effect of varying duration of deficiency. Teratology. 1995;52(3):149–59.

    PubMed  CAS  Google Scholar 

  157. Ruth RE, Goldsmith SK. Interaction between zinc deprivation and acute ethanol intoxication during pregnancy in rats. J Nutr. 1981;111(11):2034–8.

    PubMed  CAS  Google Scholar 

  158. Vallee BL, Falchuk KH. The biochemical basis of zinc physiology. Physiol Rev. 1993;73(1):79–118.

    PubMed  CAS  Google Scholar 

  159. Zalewski PD, Forbes IJ, Seamark RF, et al. Flux of intracellular labile zinc during apoptosis (gene-directed cell death) revealed by a specific chemical probe, Zinquin. Chem Biol. 1994;1(3):153–61.

    PubMed  CAS  Google Scholar 

  160. Maret W. Protein interface zinc sites: the role of zinc in the supramolecular assembly of proteins and in transient protein-protein interactions. In: Messerschmidt A, Bode W, Cygler M, editors. Handbook of metalloproteins, vol. 3. Chichester: Wiley; 2004. p. 432–41.

    Google Scholar 

  161. Cousins RJ. Absorption, transport, and hepatic metabolism of copper and zinc: special reference to metallothionein and ceruloplasmin. Physiol Rev. 1985;65(2):238–309.

    PubMed  CAS  Google Scholar 

  162. Klug A, Rhodes D. ‘Zinc fingers’: a novel protein motif for nucleic acid recognition. Trends Biochem Sci. 1987;12:464–9.

    CAS  Google Scholar 

  163. Maret W, Sandstead HH. Possible roles of zinc nutriture in the fetal origins of disease. Exp Gerontol. 2008;43(5):378–81.

    PubMed  CAS  Google Scholar 

  164. Frederickson CJ, Koh JY, Bush AI. The neurobiology of zinc in health and disease. Nat Rev Neurosci. 2005;6(6):449–62.

    PubMed  CAS  Google Scholar 

  165. Beach RS, Gershwin ME, Hurley LS. Reversibility of development retardation following murine fetal zinc deprivation. J Nutr. 1982;112(6):1169–81.

    PubMed  CAS  Google Scholar 

  166. da Cunha Ferreira RM, Marquiegui IM, Elizaga IV. Teratogenicity of zinc deficiency in the rat: study of the fetal skeleton. Teratology. 1989;39(2):181–94.

    PubMed  Google Scholar 

  167. Halas ES, Hunt CD, Eberhardt MJ. Learning and memory disabilities in young adult rats from mildly zinc deficient dams. Physiol Behav. 1986;37(3):451–8.

    PubMed  CAS  Google Scholar 

  168. Hurley LS, Swenerton H. Congenital malformations resulting from zinc deficiency in rats. Proc Soc Exp Biol Med. 1966;123(3):692–6.

    PubMed  CAS  Google Scholar 

  169. Keen CL, Uriu-Adams JY, Skalny A, et al. The plausibility of maternal nutritional status being a contributing factor to the risk for fetal alcohol spectrum disorders: the potential influence of zinc status as an example. Biofactors. 2010;36(2):125–35.

    PubMed  CAS  Google Scholar 

  170. Hurley LS, Gowan J, Swenerton H. Teratogenic effects on short term and transitory zinc deficiency in rats. Teratology. 1971;4:199–204.

    CAS  Google Scholar 

  171. Golub MS, Keen CL, Gershwin ME, Hendrickx AG. Developmental zinc deficiency and behavior. J Nutr. 1995;125(8 Suppl):2263S–71.

    PubMed  CAS  Google Scholar 

  172. Halas ES, Eberhardt MJ, Diers MA, Sandstead HH. Learning and memory impairment in adult rats due to severe zinc deficiency during lactation. Physiol Behav. 1983;30(3):371–81.

    PubMed  CAS  Google Scholar 

  173. Halas ES, Heinrich MD, Sandstead HH. Long term memory deficits in adult rats due to postnatal malnutrition. Physiol Behav. 1979;22(5):991–7.

    PubMed  CAS  Google Scholar 

  174. Halas ES, Reynolds GM, Sandstead HH. Intra-uterine nutrition and its effects on aggression. Physiol Behav. 1977;19(5):653–61.

    PubMed  CAS  Google Scholar 

  175. Halas ES, Sandstead HH. Some effects of prenatal zinc deficiency on behavior of the adult rat. Pediatr Res. 1975;9(2):94–7.

    PubMed  CAS  Google Scholar 

  176. Lokken PM, Halas ES, Sandstead HH. Influence of zinc deficiency on behavior. Proc Soc Exp Biol Med. 1973;144(2):680–2.

    PubMed  CAS  Google Scholar 

  177. Dreosti IE, Tao SH, Hurley LS. Plasma zinc and leukocyte changes in weaning and pregnant rats during zinc deficiency. Proc Soc Exp Biol Med. 1968;128(1):169–74.

    PubMed  CAS  Google Scholar 

  178. Lombeck T, Schnippering HG, Ritzl F, Feinendegen LE, Bremer HJ. Letter: absorption of zinc in acrodermatitis enteropathica. Lancet. 1975;1(7911):855.

    PubMed  CAS  Google Scholar 

  179. Maverakis E, Fung MA, Lynch PJ, et al. Acrodermatitis enteropathica and an overview of zinc metabolism. J Am Acad Dermatol. 2007;56(1):116–24.

    PubMed  Google Scholar 

  180. Moynahan EJ. Letter: acrodermatitis enteropathica: a lethal inherited human zinc-deficiency disorder. Lancet. 1974;2(7877):399–400.

    PubMed  CAS  Google Scholar 

  181. Swanson CA, King JC. Zinc and pregnancy outcome. Am J Clin Nutr. 1987;46(5):763–71.

    PubMed  CAS  Google Scholar 

  182. Solomons NW. Biological availability of zinc in humans. Am J Clin Nutr. 1982;35(5):1048–75.

    PubMed  CAS  Google Scholar 

  183. Davies NT, Williams RB. The effect of pregnancy and lactation on the absorption of zinc and lysine by the rat duodenum in situ. Br J Nutr. 1977;38(3):417–23.

    PubMed  CAS  Google Scholar 

  184. Schwarz FJ, Kirchgessner M, Sherif SY. Intestinal absorption of zinc during gravidity and lactation (author’s transl). Res Exp Med (Berl). 1981;179(1):35–42.

    CAS  Google Scholar 

  185. O’Brien KO, Zavaleta N, Caulfield LE, Wen J, Abrams SA. Prenatal iron supplements impair zinc absorption in pregnant Peruvian women. J Nutr. 2000;130(9):2251–5.

    PubMed  Google Scholar 

  186. Sian L, Krebs NF, Westcott JE, et al. Zinc homeostasis during lactation in a population with a low zinc intake. Am J Clin Nutr. 2002;75(1):99–103.

    PubMed  CAS  Google Scholar 

  187. Fung EB, Ritchie LD, Woodhouse LR, Roehl R, King JC. Zinc absorption in women during pregnancy and lactation: a longitudinal study. Am J Clin Nutr. 1997;66(1):80–8.

    PubMed  CAS  Google Scholar 

  188. Donangelo CM, Zapata CL, Woodhouse LR, Shames DM, Mukherjea R, King JC. Zinc absorption and kinetics during pregnancy and lactation in Brazilian women. Am J Clin Nutr. 2005;82(1):118–24.

    PubMed  CAS  Google Scholar 

  189. Beer WH, Johnson RF, Guentzel MN, Lozano J, Henderson GI, Schenker S. Human placental transfer of zinc: normal characteristics and role of ethanol. Alcohol Clin Exp Res. 1992;16(1):98–105.

    PubMed  CAS  Google Scholar 

  190. Daston GP, Overmann GJ, Taubeneck MW, Lehman-McKeeman LD, Rogers JM, Keen CL. The role of metallothionein induction and altered zinc status in maternally mediated developmental toxicity: comparison of the effects of urethane and styrene in rats. Toxicol Appl Pharmacol. 1991;110(3):450–63.

    PubMed  CAS  Google Scholar 

  191. Bui LM, Taubeneck MW, Commisso JF, Uriu-Hare JY, Faber WD, Keen CL. Altered zinc metabolism contributes to the developmental toxicity of 2-ethylhexanoic acid, 2-ethylhexanol and valproic acid. Toxicology. 1998;126(1):9–21.

    PubMed  CAS  Google Scholar 

  192. Daston GP, Overmann GJ, Baines D, et al. Altered Zn status by alpha-hederin in the pregnant rat and its relationship to adverse developmental outcome. Reprod Toxicol. 1994;8(1):15–24.

    PubMed  CAS  Google Scholar 

  193. Taubeneck MW, Daston GP, Rogers JM, Gershwin ME, Ansari A, Keen CL. Tumor necrosis factor-alpha alters maternal and embryonic zinc metabolism and is developmentally toxic in mice. J Nutr. 1995;125(4):908–19.

    PubMed  CAS  Google Scholar 

  194. Taubeneck MW, Daston GP, Rogers JM, Keen CL. Altered maternal zinc metabolism following exposure to diverse developmental toxicants. Reprod Toxicol. 1994;8(1):25–40.

    PubMed  CAS  Google Scholar 

  195. Coyle P, Philcox JC, Carey LC, Rofe AM. Metallothionein: the multipurpose protein. Cell Mol Life Sci. 2002;59(4):627–47.

    PubMed  CAS  Google Scholar 

  196. Hidalgo J, Aschner M, Zatta P, Vasak M. Roles of the metallothionein family of proteins in the central nervous system. Brain Res Bull. 2001;55(2):133–45.

    PubMed  CAS  Google Scholar 

  197. Andrews GK, Geiser J. Expression of the mouse metallothionein-I and -II genes provides a reproductive advantage during maternal dietary zinc deficiency. J Nutr. 1999;129(9):1643–8.

    PubMed  CAS  Google Scholar 

  198. Carey LC, Coyle P, Philcox JC, Rofe AM. Maternal ethanol exposure is associated with decreased plasma zinc and increased fetal abnormalities in normal but not metallothionein-null mice. Alcohol Clin Exp Res. 2000;24(2):213–9.

    PubMed  CAS  Google Scholar 

  199. Carey LC, Coyle P, Philcox JC, Rofe AM. Ethanol decreases zinc transfer to the fetus in normal but not metallothionein-null mice. Alcohol Clin Exp Res. 2000;24(8):1236–40.

    PubMed  CAS  Google Scholar 

  200. Michalska AE, Choo KH. Targeting and germ-line transmission of a null mutation at the metallothionein I and II loci in mouse. Proc Natl Acad Sci USA. 1993;90(17):8088–92.

    PubMed  CAS  Google Scholar 

  201. Coyle P, Cowley CJ, Rofe AM. Zinc in pregnancy. In: Rink L, editor. Zinc in human health. Amsterdam, IOS Press; 2011. pp. 305–24.

    Google Scholar 

  202. Lloyd JB, Beckman DA, Brent RL. Nutritional role of the visceral yolk sac in organogenesis-stage rat embryos. Reprod Toxicol. 1998;12(2):193–5.

    PubMed  CAS  Google Scholar 

  203. Georgiades P, Ferguson-Smith AC, Burton GJ. Comparative developmental anatomy of the murine and human definitive placentae. Placenta. 2002;23(1):3–19.

    PubMed  CAS  Google Scholar 

  204. Burton GJ, Watson AL, Hempstock J, Skepper JN, Jauniaux E. Uterine glands provide histiotrophic nutrition for the human fetus during the first trimester of pregnancy. J Clin Endocrinol Metab. 2002;87(6):2954–9.

    PubMed  CAS  Google Scholar 

  205. Berman RF, Hannigan JH. Effects of prenatal alcohol exposure on the hippocampus: spatial behavior, electrophysiology, and neuroanatomy. Hippocampus. 2000;10(1):94–110.

    PubMed  CAS  Google Scholar 

  206. Astley SJ, Magnuson SI, Omnell LM, Clarren SK. Fetal alcohol syndrome: changes in craniofacial form with age, cognition, and timing of ethanol exposure in the macaque. Teratology. 1999;59(3):163–72.

    PubMed  CAS  Google Scholar 

  207. Clarren SK, Astley SJ, Bowden DM. Physical anomalies and developmental delays in nonhuman primate infants exposed to weekly doses of ethanol during gestation. Teratology. 1988;37(6):561–9.

    PubMed  CAS  Google Scholar 

  208. Arendt T. Impairment in memory function and neurodegenerative changes in the cholinergic basal forebrain system induced by chronic intake of ethanol. J Neural Transm Suppl. 1994;44:173–87.

    PubMed  CAS  Google Scholar 

  209. Carey LC, Coyle P, Philcox JC, Rofe AM. Zinc supplementation at the time of ethanol exposure ameliorates teratogenicity in mice. Alcohol Clin Exp Res. 2003;27(1):107–10.

    PubMed  CAS  Google Scholar 

  210. Seyoum G, Persaud TV. Protective influence of zinc against the deleterious effects of ethanol in postimplantation rat embryos in vivo. Exp Toxicol Pathol. 1995;47(1):75–9.

    PubMed  CAS  Google Scholar 

  211. Davis SR, McMahon RJ, Cousins RJ. Metallothionein knockout and transgenic mice exhibit altered intestinal processing of zinc with uniform zinc-dependent zinc transporter-1 expression. J Nutr. 1998;128(5):825–31.

    PubMed  CAS  Google Scholar 

  212. Goldenberg RL, Tamura T, Neggers Y, et al. The effect of zinc supplementation on pregnancy outcome. JAMA. 1995;274(6):463–8.

    PubMed  CAS  Google Scholar 

  213. Mendelson RA, Huber AM. The effect of ethanol consumption on trace elements in the fetal rat. Curr Alcohol. 1979;7:39–48.

    PubMed  CAS  Google Scholar 

  214. Tanaka H, Nakazawa K, Suzuki N, Arima M. Prevention possibility for brain dysfunction in rat with the fetal alcohol syndrome–low-zinc-status and hypoglycemia. Brain Dev. 1982;4(6):429–38.

    PubMed  CAS  Google Scholar 

  215. Tanaka H, Inomata K, Arima M. Zinc supplementation in ethanol-treated pregnant rats increases the metabolic activity in the fetal hippocampus. Brain Dev. 1983;5(6):549–54.

    PubMed  CAS  Google Scholar 

  216. Tanaka H. Fetal alcohol syndrome: a Japanese perspective. Ann Med. 1998;30(1):21–6.

    PubMed  CAS  Google Scholar 

  217. Tanaka H, Iwasaki S, Nakazawa K, Inomata K. Fetal alcohol syndrome in rats: conditions for improvement of ethanol effects on fetal cerebral development with supplementary agents. Biol Neonate. 1988;54(6):320–9.

    PubMed  CAS  Google Scholar 

  218. Keppen LD, Moore DJ, Cannon DJ. Zinc nutrition in fetal alcohol syndrome. Neurotoxicology. 1990;11(2):375–80.

    PubMed  CAS  Google Scholar 

  219. Goodlett CR, Horn KH. Mechanisms of alcohol-induced damage to the developing nervous system. Alcohol Res Health. 2001;25(3):175–84.

    PubMed  CAS  Google Scholar 

  220. Henderson GI, Devi BG, Perez A, Schenker S. In utero ethanol exposure elicits oxidative stress in the rat fetus. Alcohol Clin Exp Res. 1995;19(3):714–20.

    PubMed  CAS  Google Scholar 

  221. Allington C, Shamovsky IL, Ross GM, Riopelle RJ. Zinc inhibits p75NTR-mediated apoptosis in chick neural retina. Cell Death Differ. 2001;8(5):451–6.

    PubMed  CAS  Google Scholar 

  222. Fernandez EL, Gustafson AL, Andersson M, Hellman B, Dencker L. Cadmium-induced changes in apoptotic gene expression levels and DNA damage in mouse embryos are blocked by zinc. Toxicol Sci. 2003;76(1):162–70.

    PubMed  CAS  Google Scholar 

  223. Truong-Tran AQ, Carter J, Ruffin RE, Zalewski PD. The role of zinc in caspase activation and apoptotic cell death. Biometals. 2001;14(3–4):315–30.

    PubMed  CAS  Google Scholar 

  224. Borrell J, Vela JM, Arevalo-Martin A, Molina-Holgado E, Guaza C. Prenatal immune challenge disrupts sensorimotor gating in adult rats. Implications for the etiopathogenesis of schizophrenia. Neuropsychopharmacology. 2002;26(2):204–15.

    PubMed  CAS  Google Scholar 

  225. Fortier ME, Joober R, Luheshi GN, Boksa P. Maternal exposure to bacterial endotoxin during pregnancy enhances amphetamine-induced locomotion and startle responses in adult rat offspring. J Psychiatr Res. 2004;38(3): 335–45.

    PubMed  Google Scholar 

  226. Golan HM, Lev V, Hallak M, Sorokin Y, Huleihel M. Specific neurodevelopmental damage in mice offspring following maternal inflammation during pregnancy. Neuropharmacology. 2005;48(6):903–17.

    PubMed  CAS  Google Scholar 

  227. McDermott S, Callaghan W, Szwejbka L, Mann H, Daguise V. Urinary tract infections during pregnancy and mental retardation and developmental delay. Obstet Gynecol. 2000;96(1):113–9.

    PubMed  CAS  Google Scholar 

  228. Meyer U, Schwendener S, Feldon J, Yee BK. Prenatal and postnatal maternal contributions in the infection model of schizophrenia. Exp Brain Res. 2006;173(2):243–57.

    PubMed  Google Scholar 

  229. Offenbacher S, Riche EL, Barros SP, Bobetsis YA, Lin D, Beck JD. Effects of maternal Campylobacter rectus infection on murine placenta, fetal and neonatal survival, and brain development. J Periodontol. 2005;76(11 Suppl):2133–43.

    PubMed  CAS  Google Scholar 

  230. Opler MG, Susser ES. Fetal environment and schizophrenia. Environ Health Perspect. 2005;113(9):1239–42.

    PubMed  CAS  Google Scholar 

  231. Shi L, Fatemi SH, Sidwell RW, Patterson PH. Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. J Neurosci. 2003;23(1):297–302.

    PubMed  Google Scholar 

  232. Carey LC, Berbee PL, Coyle P, Philcox JC, Rofe AM. Zinc treatment prevents lipopolysaccharide-induced teratogenicity in mice. Birth Defects Research Part A Clin Mol Teratol. 2003;67(4):240–5.

    CAS  Google Scholar 

  233. Chua JS, Rofe AM, Coyle P. Dietary zinc supplementation ameliorates LPS-induced teratogenicity in mice. Pediatr Res. 2006;59(3):355–8.

    PubMed  CAS  Google Scholar 

  234. Coyle P, Martin SA, Carey LC, Summers BL, Rofe AM. Ethanol-mediated fetal dysmorphology and its relationship to the ontogeny of maternal liver metallothionein. Alcohol Clin Exp Res. 2009;33(6):1051–8.

    PubMed  CAS  Google Scholar 

  235. Lee BE, Hong YC, Lee KH, et al. Influence of maternal serum levels of vitamins C and E during the second trimester on birth weight and length. Eur J Clin Nutr. 2004;58(10):1365–71.

    PubMed  CAS  Google Scholar 

  236. Memon S, Pratten MK. Developmental toxicity of ethanol in chick heart in ovo and in micromass culture can be prevented by addition of vitamin C and folic acid. Reprod Toxicol. 2009;28(2):262–9.

    PubMed  CAS  Google Scholar 

  237. Flynn A, Miller SI, Martier SS, Golden NL, Sokol RJ, Del Villano BC. Zinc status of pregnant alcoholic women: a determinant of fetal outcome. Lancet. 1981;1(8220 Pt 1):572–51.

    PubMed  CAS  Google Scholar 

  238. Lipson AH, Walsh DA, Webster WS. Fetal alcohol syndrome. A great paediatric imitator. Med J Aust. 1983;1(6):266–9.

    PubMed  CAS  Google Scholar 

  239. May PA. Fetal alcohol effects among North American Indians: evidence and implications for society. Alcohol Health Res World. 1991;15:239–48.

    Google Scholar 

  240. Thomson N, MacRae A, Burns J, et al. Overview of Australian indigenous health status. 2010. http://www.healthinfonet.ecu.edu.au/health-facts/overviews. Accessed 4 Aug 2011.

  241. Mahomed K, Bhutta Z, Middleton P. Zinc supplementation for improving pregnancy and infant outcome. Cochrane Database Syst Rev. 2007;2007(2):CD000230.

    Google Scholar 

  242. Christian P, Khatry SK, Katz J, et al. Effects of alternative maternal micronutrient supplements on low birth weight in rural Nepal: double blind randomised community trial. BMJ. 2003;326(7389):571.

    PubMed  Google Scholar 

  243. Christian P, Stewart CP, LeClerq SC, et al. Antenatal and postnatal iron supplementation and childhood mortality in rural Nepal: a prospective follow-up in a randomized, controlled community trial. Am J Epidemiol. 2009;170(9):1127–36.

    PubMed  Google Scholar 

  244. World Health Organization. Iron and folate supplementation. Integrated management of pregnancy and childbirth (IMPAC). Geneva: WHO; 2006.

    Google Scholar 

  245. Stewart CP, Christian P, LeClerq SC, West Jr KP, Khatry SK. Antenatal supplementation with folic acid  +  iron  +  zinc improves linear growth and reduces peripheral adiposity in school-age children in rural Nepal. Am J Clin Nutr. 2009;90(1):132–40.

    PubMed  CAS  Google Scholar 

  246. Bhutta ZA, Black RE, Brown KH, et al. Prevention of diarrhea and pneumonia by zinc supplementation in children in developing countries: pooled analysis of randomized controlled trials. Zinc Investigators’ Collaborative Group. J Pediatr. 1999;135(6):689–97.

    PubMed  CAS  Google Scholar 

  247. Shrimpton R, Gross R, Darnton-Hill I, Young M. Zinc deficiency: what are the most appropriate interventions? BMJ. 2005;330(7487):347–9.

    PubMed  Google Scholar 

  248. Osendarp SJ, van Raaij JM, Darmstadt GL, Baqui AH, Hautvast JG, Fuchs GJ. Zinc supplementation during pregnancy and effects on growth and morbidity in low birthweight infants: a randomised placebo controlled trial. Lancet. 2001;357(9262):1080–5.

    PubMed  CAS  Google Scholar 

  249. Iannotti LL, Zavaleta N, Leon Z, Huasquiche C, Shankar AH, Caulfield LE. Maternal zinc supplementation reduces diarrheal morbidity in Peruvian infants. J Pediatr. 2010;156(6):960–4. 964 e961–962.

    PubMed  CAS  Google Scholar 

  250. Haase H, Rink L. Zinc signalling. In: Rink L, editor. Zinc in human health. Amsterdam, IOS Press; 2011. pp. 94–117.

    Google Scholar 

  251. Waterland RA, Jirtle RL. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol. 2003;23(15):5293–300.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Coyle B.Sc., M.Sc., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Coyle, P., Summers-Pearce, B., Cowley, C.J., Rofe, A.M. (2013). Dietary Zinc Supplementation and Prenatal Ethanol Exposure. In: Watson, R., Preedy, V., Zibadi, S. (eds) Alcohol, Nutrition, and Health Consequences. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-047-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-047-2_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-046-5

  • Online ISBN: 978-1-62703-047-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics