Skip to main content

Mechanisms and Consequences of Centrosome Clustering in Cancer Cells

  • Chapter
  • First Online:
The Centrosome

Abstract

Ever since initially proposed by Theodor Boveri in 1914, centrosome abnormalities have been accused to be involved in the induction of chromosomal instability and tumorigenesis. New evidence especially on a mechanism termed centrosomal clustering now again supports Boveri's idea and adds fuel to the old debate on a mechanistic link between supernumerary centrosomes and malignant transformation. On top, inhibiting centrosome clustering might well turn out to be one of the long sought after possibilities to specifically interfere with tumor cells while leaving healthy tissues untouched.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams RR et al (2001) Human INCENP colocalizes with the Aurora-B/AIRK2 kinase on chromosomes and is overexpressed in tumour cells. Chromosoma 110:65–74

    PubMed  CAS  Google Scholar 

  • Altieri DC (2003) Survivin, versatile modulation of cell division and apoptosis in cancer. Oncogene 22:8581–8589

    PubMed  CAS  Google Scholar 

  • Anderhub SJ, Krämer A, Maier B (2012) Centrosome amplification in tumorigenesis. Cancer Lett. 322:8–17

    Google Scholar 

  • Andersen JS, Wilkinson CJ, Mayor T, Mortensen P, Nigg EA, Mann M (2003) Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426:570–574

    PubMed  CAS  Google Scholar 

  • Arquint C, Sonnen KF, Stierhof YD, Nigg EA (2012) Cell cycle-regulated expression of STIL controls centriole numbers in human cells. J Cell Sci 125:1342–1452

    PubMed  CAS  Google Scholar 

  • Baker DJ, Jin F, Jeganathan KB, van Deursen JM (2009) Whole chromosome instability caused by Bub1 insufficiency drives tumorigenesis through tumor suppressor gene loss of heterozygosity. Cancer Cell 16:475–486

    PubMed  CAS  Google Scholar 

  • Barr FA, Sillje HH, Nigg EA (2004) Polo-like kinases and the orchestration of cell division. Nat Rev Mol Cell Biol 5:429–440

    PubMed  CAS  Google Scholar 

  • Basto R et al (2008) Centrosome amplification can initiate tumorigenesis in flies. Cell 133:1032–1042

    PubMed  CAS  Google Scholar 

  • Bettencourt-Dias M et al (2005) SAK/PLK4 is required for centriole duplication and flagella development. Curr Biol 15:2199–2207

    PubMed  CAS  Google Scholar 

  • Birkbak NJ et al. (2011) Paradoxical relationship between chromosomal instability and survival outcome in cancer. Cancer Res. (epub ahead of print)

    Google Scholar 

  • Bischoff JR et al (1998) A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J 17:3052–3065

    PubMed  CAS  Google Scholar 

  • Bornens M (2002) Centrosome composition and microtubule anchoring mechanisms. Curr Opin Cell Biol 14:25–34

    PubMed  CAS  Google Scholar 

  • Boveri T (1929) The origin of malignant tumors. Williams and Wilkins, Baltimore

    Google Scholar 

  • Boyarchuk Y, Salic A, Dasso M, Arnaoutov A (2007) Bub1 is essential for assembly of the functional inner centromere. J Cell Biol 176:919–928

    PubMed  CAS  Google Scholar 

  • Breuer M et al (2010) HURP permits MTOC sorting for robust meiotic spindle bipolarity, similar to extra centrosome clustering in cancer cells. J Cell Biol 191:1251–1260

    PubMed  CAS  Google Scholar 

  • Brinkley BR (2001) Managing the centrosome numbers game: from chaos to stability in cancer cell division. Trends Cell Biol 11:18–21

    PubMed  CAS  Google Scholar 

  • Brito DA, Rieder CL (2009) The ability to survive mitosis in the presence of microtubule poisons differs significantly between human nontransformed (RPE-1) and cancer (U2OS, HeLa) cells. Cell Motil. Cytoskeleton 66:437–447

    PubMed  CAS  Google Scholar 

  • Carmena M, Earnshaw WC (2003) The cellular geography of aurora kinases. Nat Rev Mol Cell Biol 4:842–854

    PubMed  CAS  Google Scholar 

  • Carter SL et al (2006) A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat Genet 38:1043–1048

    PubMed  CAS  Google Scholar 

  • Castellanos E, Dominguez P, Gonzalez C (2008) Centrosome dysfunction in Drosophila neural stem cell causes tumors that are not due to genome instability. Curr Biol 18:1209–1214

    PubMed  CAS  Google Scholar 

  • Castiel A, Visochek L, Mittelman L, Dantzer F, Izraeli S, Cohen-Armon M (2011) A phenanthrene derived PARP inhibitor is an extra-centrosomes de-clustering agent exclusively eradicating human cancer cells. BMC Cancer 11:412

    PubMed  CAS  Google Scholar 

  • Caussinus E, Gonzalez C (2005) Induction of tumor growth by altered stem-cell asymmetric division in Drosophila melanogaster. Nat Genet 37:1125–1129

    PubMed  CAS  Google Scholar 

  • Chang P, Jacobson MK, Mitchison TJ (2004) Poly(ADP-ribose) is required for spindle assembly and structure. Nature 432:645–649

    PubMed  CAS  Google Scholar 

  • Chang JL et al (2006) Borealin/Dasra B is a cell cycle-regulated chromosomal passenger protein and its nuclear accumulation is linked to poor prognosis for human gastric cancer. Exp Cell Res 312:962–973

    PubMed  CAS  Google Scholar 

  • Charrasse S et al (1995) Characterization of the cDNA and pattern of expression of a new gene over-expressed in human hepatomas and colonic tumors. Eur J Biochem 234:406–413

    PubMed  CAS  Google Scholar 

  • Chen JG, Horwitz SB (2002) Differential mitotic responses to microtubule-stabilizing and -destabilizing drugs. Cancer Res 62:1935–1938

    PubMed  CAS  Google Scholar 

  • Cizmecioglu O, Arnold M, Bahtz R, Settele F, Ehret L, Haselmann-Weiss U, Antony C, Hoffmann I (2010) Cep152 acts as a scaffold for recruitment of Plk4 and CPAP to the centrosome. J Cell Biol 191:731–739

    PubMed  CAS  Google Scholar 

  • Dai J, Kataneva AV, Higgins JMG (2009) Studies of haspin-depleted cells reveal that spindle-pole integrity in mitosis requires chromosome cohesion. J Cell Sci 122:4168–4176

    PubMed  CAS  Google Scholar 

  • De S, Cipriano R, Jackson MW, Stark GR (2009) Overexpression of kinesins mediates docetaxel resistance in breast cancer cells. Cancer Res 69:8035–8042

    PubMed  CAS  Google Scholar 

  • Diaz-Rodriguez E, Sotillo R, Schvartzman J-M, Benezra R (2008) Hec1 overexpression hyperactivates the mitotic checkpoint and induces tumor formation in vivo. Proc. Natl. Acad. Sci. USA 105:16719–16724

    PubMed  CAS  Google Scholar 

  • Doxsey SJ, Stein P, Evans L, Calarco PD, Kirschner M (1994) Pericentrin, a highly conserved centrosome protein involved in microtubule organization. Cell 76:639–650

    PubMed  CAS  Google Scholar 

  • Duncan AW et al (2010) The ploidy conveyor of mature hepatocytes as a source of genetic variation. Nature 467:707–711

    PubMed  CAS  Google Scholar 

  • Dzhindzhev NS et al (2010) Asterless is a scaffold for the onset of centriole assembly. Nature 467:714–718

    PubMed  CAS  Google Scholar 

  • Einarson MB, Cukierman E, Compton DA, Golemis EA (2004) Human enhancer of invasion-cluster, a coiled-coil protein required for passage through mitosis. Mol Cell Biol 24:3957–3971

    PubMed  CAS  Google Scholar 

  • Epstein SS, Andrea J, Joshi S, Mantel N (1967) Hepatocarcinogenicity of griseofulvin following parenteral administration to infant mice. Cancer Res 27:1900–1906

    PubMed  CAS  Google Scholar 

  • Ferguson RL, Maller JL (2010) Centrosomal localization of cyclin E-Cdk2 is required for initiation of DNA synthesis. Curr Biol 20:856–860

    PubMed  CAS  Google Scholar 

  • Ferretti C et al (2010) Expression of the kinetochore protein Hec1 during the cell cycle in normal and cancer cells and its regulation by the pRb pathway. Cell Cycle 9:4147–4182

    Google Scholar 

  • Fielding AB, Lim S, Montgomery K, Dobreva I, Dedhar S (2011) A critical role of integrin-linked kinase, ch-TOG and TACC3 in centrosome clustering in cancer cells. Oncogene 30:521–534

    PubMed  CAS  Google Scholar 

  • Fukasawa K (2007) Oncogenes and tumour suppressors take on centrosomes. Nat Rev Cancer 7:911–924

    PubMed  CAS  Google Scholar 

  • Ganem NJ, Godinho SA, Pellman D (2009) A mechanism linking extra centrosomes to chromosomal instability. Nature 460:278–282

    PubMed  CAS  Google Scholar 

  • Gould RR, Borisy GG (1977) The pericentriolar material in Chinese hamster ovary cells nucleates microtubule formation. J Cell Biol 73:601–615

    PubMed  CAS  Google Scholar 

  • Grinberg-Rashi H et al (2009) The expression of three genes in primary non-small cell lung cancer is associated with metastatic spread to the brain. Clin Cancer Res 15:1755–1761

    PubMed  CAS  Google Scholar 

  • Grisham LM, Wilson L, Bensch KG (1973) Antimitotic action of griseofulvin does not involve disruption of microtubules. Nature 244:294–296

    PubMed  CAS  Google Scholar 

  • Guidotti J-E et al (2003) Liver cell polyploidization: a pivotal role for binuclear hepatocytes. J Biol Chem 278:19095–19101

    PubMed  CAS  Google Scholar 

  • Gull K, Trinci APJ (1973) Griseofulvin inhibits fungal mitosis. Nature 244:292–294

    PubMed  CAS  Google Scholar 

  • Habedanck R, Stierhof YD, Wilkinson CJ, Nigg EA (2005) The Polo kinase Plk4 functions in centriole duplication. Nat Cell Biol 7:1140–1146

    PubMed  CAS  Google Scholar 

  • Hannigan G, Troussard AA, Dedhar S (2005) Integrin-linked kinase: a cancer therapeutic target unique among its ILK. Nat Rev Cancer 5:51–63

    PubMed  CAS  Google Scholar 

  • Hatch EM, Kulukian A, Holland AJ, Cleveland DW, Stearns T (2010) Cep152 interacts with Plk4 and is required for centriole duplication. J Cell Biol 191:721–729

    PubMed  CAS  Google Scholar 

  • Hayama S et al (2006) Activation of CDCA1-KNTC2, members of centromere protein complex, involved in pulmonary carcinogenesis. Cancer Res 66:10339–10348

    PubMed  CAS  Google Scholar 

  • Hori T et al (2008) CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore. Cell 135:1039–1052

    PubMed  CAS  Google Scholar 

  • Huang H et al (2007) Tripin/hSgo2 recruits MCAK to the inner centromere to correct defective kinetochore attachments. J Cell Biol 177:413–424

    PubMed  CAS  Google Scholar 

  • Hung LY, Chen HL, Chang CW, Li BR, Tang TK (2004) Identification of a novel microtubule-destabilizing motif in CPAP that binds to tubulin heterodimers and inhibits microtubule assembly. Mol Biol Cell 15:2697–2706

    PubMed  CAS  Google Scholar 

  • Indjeian VB, Stern BM, Murray AW (2005) The centromeric protein Sgo1 is required to sense lack of tension on mitotic chromosomes. Science 307:130–133

    PubMed  CAS  Google Scholar 

  • Ishikawa K et al (2008) Mitotic centromere-associated kinesin is a novel marker for prognosis and lymph node metastasis in colorectal cancer. Br J Cancer 98:1824–1829

    PubMed  CAS  Google Scholar 

  • Jackman M, Lindon C, Nigg EA, Pines J (2003) Active cyclin B1-Cdk1 first appears on centrosomes in prophase. Nat Cell Biol 5:143–148

    PubMed  CAS  Google Scholar 

  • Kalra J et al (2009) QLT0267, a small molecule inhibitor targeting integrin-linked kinase (ILK), and docetaxel can combine to produce synergistic interactions linked to enhanced cytotoxicity, reductions in P-AKT levels, altered F-actin architecture and improved treatment outcomes in an orthotopic breast cancer model. Breast Cancer Res 11:R25

    PubMed  Google Scholar 

  • Kanai M, Tong W-M, Sugihara E, Wang Z-Q, Fukasawa K, Miwa M (2003) Involvement of poly(ADP-ribose) polymerase 1 and poly(ADP-ribosyl)ation in regulation of centrosome function. Mol Cell Biol 23:2451–2462

    PubMed  CAS  Google Scholar 

  • Karna P et al (2011) A novel microtubule-modulating noscapinoid triggers apoptosis by inducing spindle multipolarity via centrosome amplification and declustering. Cell Death Differ 18:632–644

    PubMed  CAS  Google Scholar 

  • Kawashima SA, Tsukahara T, Langegger M, Hauf S, Kitajima TS, Watanabe Y (2007) Shugoshin enables tension-generating attachment of kinetochores by loading Aurora to centromeres. Genes Dev 21:420–435

    PubMed  CAS  Google Scholar 

  • Kawashima SA, Yamagishi Y, Honda T, Ishiguro K, Watanabe Y (2010) Phosphorylation of H2A by Bub1 prevents chromosomal instability through localizing shugoshin. Science 327:172–177

    PubMed  CAS  Google Scholar 

  • Kelly AE, Ghenoiu C, Xue JZ, Zierhut C, Kimura H, Funabiki H (2010) Survivin reads phosphorylated histone H3 threonine 3 to activate the mitotic kinase aurora B. Science 330:235–239

    PubMed  CAS  Google Scholar 

  • Kitagawa D, Kohlmaier G, Keller D, Strnad P, Balestra FR, Fluckiger I, Gönczy P (2011) Spindle positioning in human cells relies on proper centriole formation and on the microcephaly proteins CPAP and STIL. J Cell Sci 124:3884–3893

    PubMed  CAS  Google Scholar 

  • Kleylein-Sohn J, Westendorf J, Le Clech M, Habedanck R, Stierhof YD, Nigg EA (2007) Plk4-induced centriole biogenesis in human cells. Dev Cell 13:190–202

    PubMed  CAS  Google Scholar 

  • Koffa MD, Casanova CM, Santarella R, Kocher T, Wilm M, Mattaj IW (2006) HURP is part of a Ran-dependent complex involved in spindle formation. Curr Biol 16:743–754

    PubMed  CAS  Google Scholar 

  • Kops GJ, Foltz DR, Cleveland DW (2004) Lethality to human cancer cells through massive chromosome loss by inhibition of the mitotic checkpoint. Proc. Natl. Acad. Sci. USA 101:8699–8704

    PubMed  CAS  Google Scholar 

  • Koutsami MK et al (2006) Centrosome abnormalities are frequently observed in non-small-cell lung cancer and are associated with aneuploidy and cyclin E overexpression. J. Pathol. 209:512–521

    PubMed  CAS  Google Scholar 

  • Krämer A, Neben K, Ho AD (2002) Centrosome replication, genomic instability and cancer. Leukemia 16:767–775

    PubMed  Google Scholar 

  • Krämer A et al (2003) Centrosome aberrations as a possible mechanism for chromosomal instability in non-Hodgkin’s lymphoma. Leukemia 17:2207–2213

    PubMed  Google Scholar 

  • Kuriyama R, Borisy GG (1981) Centriole cycle in Chinese hamster ovary cells as determined by whole-mount electron microscopy. J Cell Biol 91:814–821

    PubMed  CAS  Google Scholar 

  • Kwiatkowski N et al (2010) Small-molecule kinase inhibitors provide insight into Mps1 cell cycle function. Nat Chem Biol 6:359–368

    PubMed  CAS  Google Scholar 

  • Kwon M et al (2008) Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev 22:2189–2203

    PubMed  CAS  Google Scholar 

  • Lawo S et al (2009) HAUS, the 8-subunit complex, regulates centrosome and spindle integrity. Curr Biol 19:1–11

    Google Scholar 

  • Leber B et al. Proteins required for centrosome clustering in cancer cells. Sci. Transl. Med. 2, 32ra38 (2010)

    Google Scholar 

  • Leidel S, Delattre M, Cerutti L, Baumer K, Gönczy P (2005) SAS-6 defines a protein family required for centrosome duplication in C. elegans and in human cells. Nat Cell Biol 7:115–125

    PubMed  CAS  Google Scholar 

  • Levine DS, Sanchez CA, Rabinovitch PS, Reid BJ (1991) Formation of the tetraploid intermediate is associated with the development of cells with more than four centrioles in the elastase-simian virus 40 tumor antigen transgenic mouse model of pancreatic cancer. Proc. Natl. Acad. Sci. USA 88:6427–6431

    PubMed  CAS  Google Scholar 

  • Lingle WL, Salisbury JL (1999) Altered centrosome structure is associated with abnormal mitoses in human breast tumors. Am J Pathol 155:1941–1951

    PubMed  CAS  Google Scholar 

  • Lingle WL, Lutz WH, Ingle JN, Maihle NJ, Salisbury JL (1998) Centrosome hypertrophy in human breast tumors: implications for genomic stability and cell polarity. Proc. Natl. Acad. Sci. USA 95:2950–2955

    PubMed  CAS  Google Scholar 

  • Liu D, Vader G, Vromans MJM, Lampson MA, Lens SMA (2009) Sensing chromosome bi-orientation by spatial separation of aurora B kinase from kinetochore substrates. Science 323:1350–1353

    PubMed  CAS  Google Scholar 

  • Löffler H et al (2011) Cep63 recruits Cdk1 to the centrosome: implications for regulation of mitotic entry, centrosome amplification, and genome maintenance. Cancer Res 71:2129–2139

    PubMed  Google Scholar 

  • Loo DS (2006) Systemic antifungal agents: an update of established and new therapies. Adv Dermatol 22:101–124

    PubMed  Google Scholar 

  • Nakamura Y et al (2007) Clinicopathological and biological significance of mitotic centromere-associated kinesin overexpression in human gastric cancer. Br J Cancer 97:543–549

    PubMed  CAS  Google Scholar 

  • Neben K, Giesecke C, Schweizer S, Ho AD, Krämer A (2003) Centrosome aberrations in acute myeloid leukemia are correlated with cytogenetic risk profile. Blood 101:289–291

    PubMed  CAS  Google Scholar 

  • Nguyen CL, McLaughlin-Drubin ME, MĂĽnger K (2008) Delocalization of the microtubule motor dynein from mitotic spindles by the human papillomavirus E7 oncoprotein is not sufficient for induction of multipolar mitoses. Cancer Res 68:8715–8722

    PubMed  CAS  Google Scholar 

  • Nguyen HG et al (2009) Deregulated Aurora-B induced tetraploidy promotes tumorigenesis. FASEB J. 23:2741–2748

    PubMed  CAS  Google Scholar 

  • Nguyen M-H et al (2010) Phosphorylation and activation of cell division cycle associated 5 by mitogen-activated protein kinase play a crucial role in human lung carcinogenesis. Cancer Res 70:5337–5347

    PubMed  CAS  Google Scholar 

  • Nigg EA (2002) Centrosome aberrations: cause or consequence of cancer progression? Nat Rev Cancer 2:815–825

    PubMed  CAS  Google Scholar 

  • Nigg EA, Raff JW (2009) Centrioles, centrosomes, and cilia in health and disease. Cell 139:663–678

    PubMed  CAS  Google Scholar 

  • Panda D, Rathinasamy K, Santra MK, Wilson L (2005) Kinetic suppression of microtubule dynamic instability by griseofulvin: implications for its possible use in the treatment of cancer. Proc. Natl. Acad. Sci. USA 102:9878–9883

    PubMed  CAS  Google Scholar 

  • Peset I, Vernos I (2008) The TACC proteins: TACC-ling microtubule dynamics and centrosome function. Trends Cell Biol 18:379–388

    PubMed  CAS  Google Scholar 

  • Pihan GA, Purohit A, Wallace J (1998) Centrosome defects and genetic instability in malignant tumors. Cancer Res 58:3974–3985

    PubMed  CAS  Google Scholar 

  • Pihan GA, Purohit A, Wallace J, Malhotra R, Liotta L, Doxsey SJ (2001) Centrosome defects can account for cellular and genetic changes that characterize prostate cancer progression. Cancer Res 61:2212–2219

    PubMed  CAS  Google Scholar 

  • Putkey FR et al (2002) Unstable kinetochore-microtubule capture and chromosomal instability following deletion of CENP-E. Dev Cell 3:351–365

    PubMed  CAS  Google Scholar 

  • Quintyne NJ, Reing JE, Hoffelder DR, Gollin SM, Saunders WS (2005) Spindle multipolarity is prevented by centrosomal clustering. Science 307:127–129

    PubMed  CAS  Google Scholar 

  • Rebacz B et al (2007) Identification of griseofulvin as an inhibitor of centrosomal clustering in a phenotype-based screen. Cancer Res 67:6342–6350

    PubMed  CAS  Google Scholar 

  • Ring D, Hubble R, Kirschner M (1982) Mitosis in a cell with multiple centrioles. J Cell Biol 94:549–556

    PubMed  CAS  Google Scholar 

  • Roobol A, Gull K, Pogson CI (1977) Evidence that griseofulvin binds to a microtubule associated protein. FEBS Lett 75:149–153

    PubMed  CAS  Google Scholar 

  • Ruchaud S, Carmena M, Earnshaw WC (2007) Chromosomal passengers: conducting cell division. Nat Rev Mol Cell Biol 8:798–812

    PubMed  CAS  Google Scholar 

  • Saxena A, Saffery R, Wong LH, Kalitsis P, Choo A (2002) Centromere proteins CENPA, CENPB, and BUB3 interact with poly(ADP-ribose) polymerase-1 protein and are poly(ADP-ribosyl)ated. J Biol Chem 277:26921–26926

    PubMed  CAS  Google Scholar 

  • Schmitz J, Watrin E, LĂ©nárt P, Mechtler K, Peters J-M (2007) Sororin is required for stable binding of cohesin to chromatin and for sister chromatid cohesion in interphase. Curr Biol 17:630–636

    PubMed  CAS  Google Scholar 

  • Schockel L, Mockel M, Mayer B, Boos D, Stemmann O (2011) Cleavage of cohesin rings coordinates the separation of centrioles and chromatids. Nat Cell Biol 13:966–972

    PubMed  Google Scholar 

  • Schvartzman J-M, Sotillo R, Benezra R (2010) Mitotic chromosomal instability and cancer: mouse modelling of the human disease. Nat Rev Cancer 10:102–115

    PubMed  CAS  Google Scholar 

  • Shao S et al (2010) Centrosomal Nlp is an oncogenic protein that is gene-amplified in human tumors and causes spontaneous tumorigenesis in transgenic mice. J. Clin. Invest. 120:498–507

    PubMed  CAS  Google Scholar 

  • Shimo A et al (2007) Elevated expression of protein regulator of cytokinesis 1, involved in the growth of breast cancer cells. Cancer Sci 98:174–181

    PubMed  CAS  Google Scholar 

  • Silkworth WT, Nardi IK, Scholl LM, Cimini D (2009) Multipolar spindle pole coalescence is a major source of kinetochore mis-attachment and chromosome mis-segregation. in cancer cells. PLoS ONE 4:e6564

    PubMed  Google Scholar 

  • Sillje HHW, Nagel S, Körner R, Nigg EA (2006) HURP is a Ran-importin β-related protein that stabilizes kinetochore microtubules in the vincinity of chromosomes. Curr Biol 16:731–742

    PubMed  CAS  Google Scholar 

  • Sluder G, Thompson EA, Miller FJ, Hayes J, Rieder CL (1997) The checkpoint control for anaphase onset does not monitor excess numbers of spindle poles or bipolar spindle symmetry. J Cell Sci 110:421–429

    PubMed  CAS  Google Scholar 

  • Sotillo R et al (2007) Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell 11:9–23

    PubMed  CAS  Google Scholar 

  • Stearns T, Evans L, Kirschner M (1991) Gamma-tubulin is a highly conserved component of the centrosome. Cell 65:825–836

    PubMed  CAS  Google Scholar 

  • Stevens NR, Dobbelaere J, Brunk K, Franz A, Raff JW (2010) Drosophila Ana2 is a conserved centriole duplication factor. J Cell Biol 188:313–323

    PubMed  CAS  Google Scholar 

  • Strnad P, Gönczy P (2008) Mechanisms of procentriole formation. Trends Cell Biol 18:389–396

    PubMed  CAS  Google Scholar 

  • Tang CJ et al (2011) The human microcephaly protein STIL interacts with CPAP and is required for procentriole formation. EMBO J 30:4790–4804

    PubMed  CAS  Google Scholar 

  • Taylor S, Peters JM (2008) Polo and Aurora kinases: lessons derived from chemical biology. Curr Opin Cell Biol 20:77–84

    PubMed  CAS  Google Scholar 

  • Thery M et al (2005) The extracellular matrix guides the orientation of the cell division axis. Nat Cell Biol 7:947–953

    PubMed  CAS  Google Scholar 

  • Tsou MF, Stearns T (2006) Mechanism limiting centrosome duplication to once per cell cycle. Nature 442:947–951

    PubMed  CAS  Google Scholar 

  • Tsou AP et al (2003) Identification of a novel cell cycle regulated gene, HURP, overexpressed in human hepatocellular carcinoma. Oncogene 22:298–307

    PubMed  CAS  Google Scholar 

  • Uehara R et al (2009) The augmin complex plays a critical role in spindle microtubule generation for mitotic progression and cytokinesis in human cells. Proc. Natl. Acad. Sci. USA 106:6998–7003

    PubMed  CAS  Google Scholar 

  • Uzbekov R, Prigent C (2007) Clockwise or anticlockwise? Turning the centriole triplets in the right direction! FEBS Lett 581:1251–1254

    PubMed  CAS  Google Scholar 

  • Vader G, Lens SM (2008) The Aurora kinase family in cell division and cancer. Biochim Biophys Acta 1786:60–72

    PubMed  CAS  Google Scholar 

  • Vanoosthuyse V, Prykhozhij S, Hardwick KG (2007) Shugoshin 2 regulates localization of the chromosomal passenger proteins in fission yeast mitosis. Mol Biol Cell 18:1657–1669

    PubMed  CAS  Google Scholar 

  • von Hansemann D (1890) Ăśber asymmetrische Zellteilung in Epithelkrebsen und deren biologische Bedeutung. Virchows Arch. Patholog. Anat. 119, 299-326 (in German)

    Google Scholar 

  • Vulprecht J et al (2012) SIL is required for centriole duplication in human cells. J Cell Sci 125:1353–1362

    PubMed  CAS  Google Scholar 

  • Wang X et al (2009) Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature 461:947–955

    PubMed  CAS  Google Scholar 

  • Wang F et al (2010) Histone H3 Thr-3 phosphorylation by haspin positions aurora B at centromeres in mitosis. Science 330:231–235

    PubMed  CAS  Google Scholar 

  • Weaver BA, Silk AD, Montagna C, Verdier-Pinard P, Cleveland DW (2007) Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell 11:25–36

    PubMed  CAS  Google Scholar 

  • Weber K, Wehland J, Herzog W (1976) Griseofulvin interacts with microtubules both in vitro and in vivo. J Mol Biol 102:817–829

    PubMed  CAS  Google Scholar 

  • Wehland J, Herzog W, Weber K (1977) Interaction of griseofulvin with microtubules, microtubule protein and tubulin. J Mol Biol 111:329–342

    PubMed  CAS  Google Scholar 

  • Wei RR, Al-Bassam J, Harrison SC (2007) The Ndc80/HEC1 complex is a contact point for kinetochore-microtubule attachment. Nat Struct Mol Biol 14:54–59

    PubMed  CAS  Google Scholar 

  • Wilkinson RW et al (2007) AZD1152, a selective inhibitor of Aurora B kinase, inhibits human tumor xenograft growth by inducing apoptosis. Clin Cancer Res 13:3682–3688

    PubMed  CAS  Google Scholar 

  • Wong J, Fang G (2006) HURP controls spindle dynamics to promote proper interkinetochore tension and efficient kinetochore capture. J Cell Biol 173:879–891

    PubMed  CAS  Google Scholar 

  • Wu G, Lin YT, Wei R, Chen Y, Shan Z, Lee WH (2008a) Hice1, a novel microtubule-associated protein required for maintenance of spindle integrity and chromosomal stability in human cells. Mol Cell Biol 28:3652–3662

    PubMed  CAS  Google Scholar 

  • Wu G et al (2008b) Small molecule targeting the Hec1/Nek2 mitotic pathway suppresses tumor cell growth in culture and in animal. Cancer Res 68:8393–8399

    PubMed  CAS  Google Scholar 

  • Yamagishi Y, Honda T, Tanno Y, Watanabe Y (2010) Two histone marks establish the inner centromere and chromosome bi-orientation. Science 330:239–243

    PubMed  CAS  Google Scholar 

  • Yamashita YM, Mahowald AP, Perlin JR, Fuller MT (2007) Asymmetric inheritance of mother versus daughter centrosome in stem cell division. Science 315:518–521

    PubMed  CAS  Google Scholar 

  • Yang Z, Loncarek J, Khodjakov A, Rieder CL (2008) Extra centrosomes and/or chromosomes prolong mitosis in human cells. Nat Cell Biol 10:748–751

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We apologize to those authors whose work is not cited because of space limitations. This work was supported by the Deutsche Forschungsgemeinschaft, the Deutsche Krebshilfe, the Deutsche José Carreras Leukämie-Stiftung and the Interdisciplinary Research Program of the National Center for Tumor Diseases Heidelberg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alwin Krämer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Krämer, A., Anderhub, S., Maier, B. (2012). Mechanisms and Consequences of Centrosome Clustering in Cancer Cells. In: Schatten, H. (eds) The Centrosome. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-035-9_17

Download citation

Publish with us

Policies and ethics