Skip to main content

Role of Ammonia in the Pathogenesis of Hepatic Encephalopathy

  • Chapter
  • First Online:
Hepatic Encephalopathy

Part of the book series: Clinical Gastroenterology ((CG))

  • 1517 Accesses

Abstract

There is consensus that ammonia is a key factor in the pathogenesis of hepatic encephalopathy (HE). Clinical studies have documented a satisfactory correlation between the advancement of HE symptoms and the increase in blood ammonia. The risk of development of HE cirrhotic patients is associated with increased ammonia production from glutamine in the intestines or kidney. Both clinical and animal model studies favor the role of ammonia in inducing brain edema, which is the major cause of death in patients with acute liver failure. Brain edema associated with HE has a profound cytotoxic component which results from astrocytic swelling. Infusion of ammonia in rats and application of ammonia on cultured astrocytes result in an increase in astrocytic cell volume. Ammonia induces astrocytic swelling by triggering a vicious cycle of oxidative/nitrosative stress and intracellular osmotic imbalance. The edema-inducing effect is to a considerable degree mediated by glutamine, which acts via two complementary mechanisms: (a) by increasing the intracellular osmotic pressure; (b) by causing mitochondrial damage following its entry to the inside of the organelle, where it unloads ammonia in a glutaminase-mediated reaction (the “Trojan horse” mode of action). Recent evidence indicates that ammonia may also induce brain edema by a vasogenic mechanism, in a process which involves subtle blood–brain barrier impairment associated with degradation of tight junction proteins and activation of matrix metalloproteinases. It is thought to be responsible for the shift of balance from excitation to inhibition which evolves with the advancement of HE. Changes in the glutamatergic tone primarily result from altered NMDA receptor function; its initial overactivation is followed by decreased activity. One of the consequences of NMDA receptor inactivation is decreased production of cGMP which contributes to the impairment of cognitive and motor functions in HE. Ammonia activates inhibitory GABAergic transmission mainly by increasing the synthesis and activation of peripheral benzodiazepine receptor agonists, which are positive modulators of the GABAA receptor. Furthermore it contributes to the increase in inhibitory serotoninergic transmission by promoting the blood-to-brain transfer of the serotonin precursor, tryptophan. It has been noticed that the nature and magnitude of neurotoxic effects of ammonia demonstrates differential distribution in brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zieve L. Pathogenesis of hepatic encephalopathy. Metab Brain Dis. 1987;2:147–65.

    Article  PubMed  CAS  Google Scholar 

  2. Lockwood AH. Blood ammonia levels and hepatic encephalopathy. Metab Brain Dis. 2004;19:345–9.

    Article  PubMed  CAS  Google Scholar 

  3. Ong JP, Aggarwal A, Krieger D, et al. Correlation between ammonia levels and the severity of hepatic encephalopathy. Am J Med. 2003;114:188–93.

    Article  PubMed  CAS  Google Scholar 

  4. Romero-Gomez M, Ramos-Guerrero R, Grande L, et al. Intestinal glutaminase activity is increased in liver cirrhosis and correlates with minimal hepatic encephalopathy. J Hepatol. 2004;41:49–54.

    Article  PubMed  CAS  Google Scholar 

  5. Olde Damink SW, Jalan R, Deutz NE, et al. The kidney plays a major role in the hyperammonemia seen after simulated or actual GI bleeding in patients with cirrhosis. Hepatology. 2003;37:277–85.

    Article  Google Scholar 

  6. Romero-Gomez M, Grande L, Camacho I, et al. Altered response to oral glutamine challenge as prognostic factor for overt episodes in patients with minimal hepatic encephalopathy. J Hepatol. 2002;37:781–7.

    Article  PubMed  CAS  Google Scholar 

  7. Romero-Gomez M, Jover M, Del Campo JA, et al. Variations in the promoter region of the glutaminase gene and the development of hepatic encephalopathy in patients with cirrhosis. A cohort study. Ann Intern Med. 2010;153:281–8.

    PubMed  Google Scholar 

  8. Ott P, Larsen FS. Blood-brain barrier permeability to ammonia in liver failure: a critical reappraisal. Neurochem Int. 2004;44:185–98.

    Article  PubMed  CAS  Google Scholar 

  9. Felipo V, Butterworth RF. Neurobiology of ammonia. Prog Neurobiol. 2002;67:259–79.

    Article  PubMed  CAS  Google Scholar 

  10. Clemmesen JO, Larsen FS, Kondrup J, et al. Cerebral herniation in patients with acute liver failure is correlated with arterial ammonia concentration. Hepatology. 1999;29:648–53.

    Article  PubMed  CAS  Google Scholar 

  11. Tofteng F, Hauerberg J, Hansen BA, et al. Persistent arterial hyperammonemia increases the concentration of glutamine and alanine in the brain and correlates with intracranial pressure in patients with fulminant hepatic failure. J Cereb Blood Flow Metab. 2006;26:21–7.

    Article  PubMed  CAS  Google Scholar 

  12. Takahashi H, Koehler RC, Brusilow SW, et al. Inhibition of brain glutamine accumulation prevents cerebral edema in hyperammonemic rats. Am J Physiol. 1991;261:H825–9.

    PubMed  CAS  Google Scholar 

  13. Hilgier W, Olson JE. Brain ion and amino acid contents during edema development in hepatic encephalopathy. J Neurochem. 1994;62:197–204.

    Article  PubMed  CAS  Google Scholar 

  14. Blei AT, Olaffson S, Therrien G, et al. Ammonia-induced brain edema and intracranial hypertension in rats after portacaval anastomosis. Hepatology. 2000;19:1437–44.

    Article  Google Scholar 

  15. Traber P, Dal Canto M, Ganger D, et al. Electron microscopic evaluation of brain edema in rabbits with galactosamine induced fulminant hepatic failure. Hepatology. 1987;7:1257–61.

    Article  Google Scholar 

  16. Häussinger D, Schliess F. Pathogenetic mechanisms of hepatic encephalopathy. Gut. 2008;57: 1156–65.

    Article  PubMed  Google Scholar 

  17. Norenberg MD, Baker L, Norenberg LO, et al. Ammonia-induced astrocyte swelling in primary culture. Neurochem Res. 1991;16:833–6.

    Article  PubMed  CAS  Google Scholar 

  18. Zielińska M, Law RO, Albrecht J. Excitotoxic mechanism of cell swelling in rat cerebral cortical slices treated acutely with ammonia. Neurochem Int. 2003;43:299–303.

    Article  PubMed  Google Scholar 

  19. Wendon JA, Harrison PM, Keays R, et al. Cerebral blood flow and metabolism in fulminant liver failure. Hepatology. 1994;19:1407–13.

    Article  PubMed  CAS  Google Scholar 

  20. Master S, Gottstein J, Blei AT. Cerebral blood flow and the development of ammonia-induced brain edema in rats after portacaval anastomosis. Hepatology. 1999;30:876–80.

    Article  PubMed  CAS  Google Scholar 

  21. Larsen FS, Gottstein J, Blei AT. Cerebral hyperemia and nitric oxide synthase in rats with ammonia-induced brain edema. J Hepatol. 2001;34:548–54.

    Article  PubMed  CAS  Google Scholar 

  22. Chung C, Gottstein J, Blei AT. Indomethacin prevents the development of experimental ammonia-induced brain edema in rats after portacaval anastomosis. Hepatology. 2001;34: 249–54.

    Article  PubMed  CAS  Google Scholar 

  23. Cauli O, López-Larrubia P, Rodrigues TB, et al. Magnetic resonance analysis of the effects of acute ammonia intoxication on rat brain. Role of NMDA receptors. J Neurochem. 2007;103:1334–43.

    Article  PubMed  CAS  Google Scholar 

  24. Cauli O, López-Larrubia P, Rodrigo R, et al. Brain region-selective mechanisms contribute to the progression of cerebral alterations in acute liver failure in rats. Gastroenterology. 2011;140:638–45.

    Article  PubMed  CAS  Google Scholar 

  25. Chen F, Ohashi N, Li W, et al. Disruptions of occludin and claudin-5 in brain endothelial cells in vitro and in brains of mice with acute liver failure. Hepatology. 2009;50:1914–23.

    Article  PubMed  CAS  Google Scholar 

  26. Aguilar MA, Miñarro J, Felipo V. Chronic moderate hyperammonemia impairs active and passive avoidance behavior and conditional discrimination learning in rats. Exp Neurol. 2000;161: 704–13.

    Article  PubMed  CAS  Google Scholar 

  27. Erceg S, Monfort P, Cauli O, et al. Role of extracellular cGMP and of hyperammonemia in the impairment of learning in rats with chronic hepatic failure. Therapeutic implications. Neurochem Int. 2006;48:441–6.

    Article  PubMed  CAS  Google Scholar 

  28. Canales JJ, Elayadi A, Errami M, et al. Chronic hyperammonemia alters motor and neurochemical responses to activation of group I metabotropic glutamate receptors in the nucleus accumbens in rats in vivo. Neurobiol Dis. 2003;14:380–90.

    Article  PubMed  CAS  Google Scholar 

  29. Davies NA, Wright G, Ytrebø LM, et al. L-ornithine and phenylacetate synergistically produce sustained reduction in ammonia and brain water in cirrhotic rats. Hepatology. 2009;50: 155–64.

    Article  PubMed  CAS  Google Scholar 

  30. Hertz L, Kala G. Energy metabolism in brain cells: effects of elevated ammonia concentrations. Metabol Brain Dis. 2007;22:199–218.

    Article  CAS  Google Scholar 

  31. Vogels BAPM, Maas MAW, Daalhuisen J, et al. Memantine, a noncompetitive NMDA receptor antagonist improves hyperammonemia-induced encephalopathy and acute hepatic encephalopathy in rats. Hepatology. 1997;25:820–7.

    Article  PubMed  CAS  Google Scholar 

  32. Konopacka A, Konopacki FA, Albrecht J. Protein kinase G is involved in ammonia-induced swelling of astrocytes. J Neurochem. 2009;109 Suppl 1:246–51.

    Article  PubMed  CAS  Google Scholar 

  33. Skowronska M, Zielinska M, Albrecht J. Stimulation of natriuretic peptide receptor C attenuates accumulation of reactive oxygen species and nitric oxide synthesis in ammonia-treated astrocytes. J Neurochem. 2010;115:1068–76.

    Article  PubMed  CAS  Google Scholar 

  34. Sinke AP, Jayakumar AR, Panickar KS, et al. NFkappaB in the mechanism of ammonia-induced astrocyte swelling in culture. J Neurochem. 2008;106:2302–11.

    PubMed  CAS  Google Scholar 

  35. Jayakumar AR, Liu M, Moriyama M, et al. Na-K-Cl cotransporter-1 in the mechanism of ammonia-induced astrocyte swelling. J Biol Chem. 2008;283:33874–82.

    Article  PubMed  CAS  Google Scholar 

  36. Jayakumar AR, Valdes V, Norenberg MD. The Na-K-Cl cotransporter in the brain edema of acute liver failure. J Hepatol. 2011;54:272–8.

    Article  PubMed  CAS  Google Scholar 

  37. Ziemińska E, Dolińska M, Lazarewicz JW, et al. Induction of permeability transition and swelling of rat brain mitochondria by glutamine. Neurotoxicology. 2000;21:295–300.

    PubMed  Google Scholar 

  38. Albrecht J, Norenberg MD. Glutamine: a Trojan horse in ammonia neurotoxicity. Hepatology. 2006;44:788–94.

    Article  PubMed  CAS  Google Scholar 

  39. Rama Rao KV, Reddy PV, Tong X, et al. Brain edema in acute liver failure: inhibition by L-histidine. Am J Pathol. 2010;176:1400–8.

    Article  PubMed  Google Scholar 

  40. Panickar KS, Jayakumar AR, Rama Rao KV, et al. Downregulation of the 18-kDa translocator protein: effects on the ammonia-induced mitochondrial permeability transition and cell swelling in cultured astrocytes. Glia. 2007;55:1720–7.

    Article  PubMed  CAS  Google Scholar 

  41. Görg B, Morwinsky A, Keitel V, et al. Ammonia triggers exocytotic release of L-glutamate from cultured rat astrocytes. Glia. 2010;58:691–705.

    PubMed  Google Scholar 

  42. Norenberg MD, Hugo Z, Neary JT, et al. The glial glutamate transporter in hyperammonemia and hepatic encephalopathy: relation to energy metabolism and glutamatergic neurotransmission. Glia. 1997;21:124–33.

    Article  PubMed  CAS  Google Scholar 

  43. Sánchez-Pérez AM, Felipo V. Chronic exposure to ammonia alters basal and NMDA-induced phosphorylation of NMDA receptor-subunit NR1. Neuroscience. 2006;140:1239–44.

    Article  PubMed  Google Scholar 

  44. Hilgier W, Freśko I, Klemenska E, et al. Glutamine inhibits ammonia-induced accumulation of cGMP in rat striatum limiting arginine supply for NO synthesis. Neurobiol Dis. 2009;35:75–81.

    Article  PubMed  CAS  Google Scholar 

  45. Itzhak Y, Roig-Cantisano A, Dombro RS, et al. Acute liver failure and hyperammonemia increase peripheral-type benzodiazepine receptor binding and pregnenolone synthesis in mouse brain. Brain Res. 1995;705:345–8.

    Article  PubMed  CAS  Google Scholar 

  46. Ahboucha S, Pomier-Layrargues G, Mamer O, et al. Increased levels of pregnenolone and its neuroactive metabolite allopregnanolone in autopsied brain tissue from cirrhotic patients who died in hepatic coma. Neurochem Int. 2006;49:372–8.

    Article  PubMed  CAS  Google Scholar 

  47. Cauli O, Mansouri MT, Agusti A, et al. Hyperammonemia increases GABAergic tone in the cerebellum but decreases it in the rat cortex. Gastroenterology. 2009;136:1359–67.

    Article  PubMed  CAS  Google Scholar 

  48. Lozeva V, Montgomery JA, Tuomisto L, et al. Increased brain serotonin turnover correlates with the degree of shunting and hyperammonemia in rats following variable portal vein stenosis. J Hepatol. 2004;40:742–8.

    Article  PubMed  CAS  Google Scholar 

  49. Hilgier W, Puka M, Albrecht J. Characteristics of large neutral amino acid-induced release of preloaded glutamine from rat cerebral capillaries in vitro: effects of ammonia, hepatic encephalopathy and γ-glutamyltranspeptidase inhibitors. J Neurosci Res. 1992;32:221–6.

    Article  PubMed  CAS  Google Scholar 

  50. Rodrigo R, Cauli O, Gomez-Pinedo U, et al. Hyperammonemia induces neuroinflammation that contributes to cognitive impairment in rats with hepatic encephalopathy. Gastroenterology. 2010;139:675–84.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Albrecht PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Albrecht, J. (2012). Role of Ammonia in the Pathogenesis of Hepatic Encephalopathy. In: Mullen, K., Prakash, R. (eds) Hepatic Encephalopathy. Clinical Gastroenterology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-836-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-836-8_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-835-1

  • Online ISBN: 978-1-61779-836-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics