Skip to main content

LIM Kinase and Cancer Metastasis

  • Chapter
  • First Online:
Cytoskeleton and Human Disease

Abstract

The members of the LIM kinase family, LIMK1 and LIMK2 are ubiquitously expressed serine kinases that share identical genomic structure and ~ 50% overall identity. The most studied substrate of LIMK1 and LIMK2 is the actin depolymerizing factor (ADF)/cofilin family of proteins. These actin-binding proteins bind to and severe actin filaments (F-actin) and sequester actin monomers resulting in actin depolymerization. Phosphorylation of cofilin by LIMK inhibits its actin-binding activity resulting in the accumulation of F-actin. The actin cytoskeleton plays a pivotal role in the motility of normal cells and in the invasive capacity of tumor cells. Both polymerization and depolymerization of actin are required for cell motility and invasion. Actin polymerization is required at the front of the cell while actin disassembly is required at the rear, effectively moving individual filaments forward using the force generated by polymerization. LIMK1 levels are high in metastatic breast and prostate tumors and in a variety of invasive cancer cell lines. Overexpression of LIMK1 in breast and prostate cancers increased their invasion in vitro and in mice while downregulation of its activity reduced their invasiveness, suggesting that inhibition of LIMK activity with pharmacological agents may be used to inhibit the metastatic spread of cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bernard O, Ganiatsas S, Kannourakis G, Dringen R (1994) Kiz-1, a protein with LIM zinc finger and kinase domains, is expressed mainly in neurons. Cell Growth Differ 5:1159–1171

    PubMed  CAS  Google Scholar 

  2. Okano I, Hiraoka J, Otera H et al (1995) Identification and characterization of a novel family of serine/threonine kinases containing two N-terminal LIM motifs. J Biol Chem 270:31321–31330

    Article  PubMed  CAS  Google Scholar 

  3. Bernard O, Burkitt V, Webb GC et al (1996) Structure and chromosomal localization of the genomic locus encoding the Kiz1 LIM-kinase gene. Genomics 35:593–596

    Article  PubMed  CAS  Google Scholar 

  4. Ikebe C, Ohashi K, Fujimori T et al (1997) Mouse LIM-kinase 2 gene—cDNA cloning, genomic organization, and tissue-specific expression of two alternatively initiated transcripts. Genomics 46:504–508

    Article  PubMed  CAS  Google Scholar 

  5. Stanyon CA, Bernard O (1999) LIM-kinase1. Int J Biochem Cell Biol 31:389–394

    Article  PubMed  CAS  Google Scholar 

  6. Edwards DC, Gill GN (1999) Structural features of LIM kinase that control effects on the actin cytoskeleton. J Biol Chem 274:11352–11361

    Article  PubMed  CAS  Google Scholar 

  7. Takahashi H, Koshimizu U, Miyazaki J, Nakamura T (2002) Impaired spermatogenic ability of testicular germ cells in mice deficient in the LIM-kinase 2 gene. Dev Biol 241:259–272

    Article  PubMed  CAS  Google Scholar 

  8. Bamburg JR (1999) Proteins of the ADF/cofilin family: essential regulators of actin dynamics. Annu Rev Cell Dev Biol 15:185–230

    Article  PubMed  CAS  Google Scholar 

  9. Moriyama K, Iida K, Yahara I (1996) Phosphorylation of Ser-3 of cofilin regulates its essential function on actin. Genes Cells 1:73–86

    Article  PubMed  CAS  Google Scholar 

  10. Nebl G, Meuer SC, Samstag Y (1996) Dephosphorylation of serine 3 regulates nuclear translocation of cofilin. J Biol Chem 271:26276–26280

    Article  PubMed  CAS  Google Scholar 

  11. Arber S, Barbayannis FA, Hanser H et al (1998) Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393:805–809

    Article  PubMed  CAS  Google Scholar 

  12. Yang N, Higuchi O, Ohashi K et al (1998) Cofilin phosphorylation by LIM-kinase1 and its role in Rac-mediated actin reorganization. Nature 393:809–812

    Article  PubMed  CAS  Google Scholar 

  13. Ohashi K, Nagata K, Maekawa M, Ishizaki T, Narumiya S, Mizuno K (2000) Rho-associated kinase ROCK activates LIM-kinase 1 by phosphorylation at threonine 508 within the activation loop. J Biol Chem 275:3577–3582

    Article  PubMed  CAS  Google Scholar 

  14. Amano T, Tanabe K, Eto T, Narumiya S, Mizuno K (2001) LIM-kinase 2 induces formation of stress fibres, focal adhesions and membrane blebs, dependent on its activation by Rho-associated kinase- catalysed phosphorylation at threonine-505. Biochem J 354:149–159

    Article  PubMed  CAS  Google Scholar 

  15. Sumi T, Matsumoto K, Nakamura T (2001) Specific activation of LIM kinase 2 via phosphorylation of threonine 505 by ROCK, a Rho-dependent protein kinase. J Biol Chem 276:670–676

    Article  PubMed  CAS  Google Scholar 

  16. Edwards DC, Sanders LC, Bokoch GM, Gill GN (1999) Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat Cell Biol 1:253–259

    Article  PubMed  CAS  Google Scholar 

  17. Misra UK, Deedwania R, Pizzo SV (2005) Binding of activated alpha2-macroglobulin to its cell surface receptor GRP78 in 1-LN prostate cancer cells regulates PAK-2-dependent activation of LIMK. J Biol Chem 280:26278–26286

    Article  PubMed  CAS  Google Scholar 

  18. Sumi T, Matsumoto K, Shibuya A, Nakamura T (2001) Activation of LIM kinases by myotonic dystrophy kinase-related Cdc42-binding kinase alpha. J Biol Chem 276:23092–23096

    Article  PubMed  CAS  Google Scholar 

  19. Niwa R, Nagata-Ohashi K, Takeichi M, Mizuno K, Uemura T (2002) Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell 108:233–246

    Article  PubMed  CAS  Google Scholar 

  20. Soosairajah J, Maiti S, Wiggan O et al (2005) Interplay between components of a novel LIM kinase-slingshot phosphatase complex regulates cofilin. Embo J 24:473–486

    Article  PubMed  CAS  Google Scholar 

  21. Mizuno K, Okano I, Ohashi K et al (1994) Identification of a human cDNA encoding a novel protein kinase with two repeats of the LIM/double zinc finger motif. Oncogene 9:1605–1612

    PubMed  CAS  Google Scholar 

  22. Wang JY, Wigston DJ, Rees HD, Levey AI, Falls DL (2000) LIM kinase 1 accumulates in presynaptic terminals during synapse maturation. J Comp Neurol 416:319–334

    Article  PubMed  CAS  Google Scholar 

  23. Foletta VC, Moussi N, Sarmiere PD, Bamburg JR, Bernard O (2004) LIM kinase 1, a key regulator of actin dynamics, is widely expressed in embryonic and adult tissues. Exp Cell Res 294:392–405

    Article  PubMed  CAS  Google Scholar 

  24. Gorovoy M, Niu J, Bernard O et al (2005) LIM kinase 1 coordinates microtubule stability and actin polymerization in human endothelial cells. J Biol Chem 280:26533–26542

    Article  PubMed  CAS  Google Scholar 

  25. Sumi T, Hashigasako A, Matsumoto K, Nakamura T (2006) Different activity regulation and subcellular localization of LIMK1 and LIMK2 during cell cycle transition. Exp Cell Res 312:1021–1230

    Article  PubMed  CAS  Google Scholar 

  26. Kaji N, Muramoto A, Mizuno K (2008) LIM kinase-mediated cofilin phosphorylation during mitosis is required for precise spindle positioning. J Biol Chem 283:4983–4992

    Article  PubMed  CAS  Google Scholar 

  27. Acevedo K, Moussi N, Li R, Soo P, Bernard O (2006) LIM kinase 2 is widely expressed in all tissues. J Histochem Cytochem 54:487–501

    Article  PubMed  CAS  Google Scholar 

  28. Sumi T, Matsumoto K, Nakamura T (2002) Mitosis-dependent phosphorylation and activation of LIM-kinase 1. Biochem Biophys Res Commun 290:1315–1320

    Article  PubMed  CAS  Google Scholar 

  29. Amano T, Kaji N, Ohashi K, Mizuno K (2002) Mitosis-specific activation of LIM motif-containing protein kinase and roles of cofilin phosphorylation and dephosphorylation in mitosis. J Biol Chem 277:22093–22102

    Article  PubMed  CAS  Google Scholar 

  30. Hsu FF, Lin TY, Chen JY, Shieh SY (2010) p53-Mediated transactivation of LIMK2b links actin dynamics to cell cycle checkpoint control. Oncogene 29:2864–2876

    Article  PubMed  CAS  Google Scholar 

  31. Croft DR, Crighton D, Samuel MS et al (2010) p53-mediated transcriptional regulation and activation of the actin cytoskeleton regulatory RhoC to LIMK2 signaling pathway promotes cell survival. Cell Res 21(4):666–682

    Article  PubMed  Google Scholar 

  32. Croft DR, Olson MF (2006) The Rho GTPase effector ROCK regulates cyclin A, cyclin D1, and p27Kip1 levels by distinct mechanisms. Mol Cell Biol 26:4612–4627

    Article  PubMed  CAS  Google Scholar 

  33. Po’uha ST, Shum MS, Goebel A, Bernard O, Kavallaris M (2010) LIM-kinase 2, a regulator of actin dynamics, is involved in mitotic spindle integrity and sensitivity to microtubule-destabilizing drugs. Oncogene 29:597–607

    Article  PubMed  Google Scholar 

  34. Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–465

    Article  PubMed  CAS  Google Scholar 

  35. Wang W, Eddy R, Condeelis J (2007) The cofilin pathway in breast cancer invasion and metastasis. Nat Rev Cancer 7:429–440

    Article  PubMed  CAS  Google Scholar 

  36. Hall A (2009) The cytoskeleton and cancer. Cancer Metastasis Rev 28:5–14

    Article  PubMed  Google Scholar 

  37. Sahai E, Marshall CJ (2002) RHO-GTPases and cancer. Nat Rev Cancer 2:133–142

    Article  PubMed  Google Scholar 

  38. Vega FM, Ridley AJ (2008) Rho GTPases in cancer cell biology. FEBS Lett 582:2093–2101

    Article  PubMed  CAS  Google Scholar 

  39. Wang W, Goswami S, Lapidus K et al (2004) Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Res 64:8585–8894

    Article  PubMed  CAS  Google Scholar 

  40. Davila M, Frost AR, Grizzle WE, Chakrabarti R (2003) LIM kinase 1 is essential for the invasive growth of prostate epithelial cells: implications in prostate cancer. J Biol Chem 278:36868–36875

    Article  PubMed  CAS  Google Scholar 

  41. Yoshioka K, Foletta V, Bernard O, Itoh K (2003) A role for LIM kinase in cancer invasion. Proc Natl Acad Sci U S A 100:7247–7252

    Article  PubMed  CAS  Google Scholar 

  42. Bagheri-Yarmand R, Mazumdar A, Sahin AA, Kumar R (2006) LIM kinase 1 increases tumor metastasis of human breast cancer cells via regulation of the urokinase-type plasminogen activator system. Int J Cancer 118:2703–2710

    Article  PubMed  CAS  Google Scholar 

  43. Horita Y, Ohashi K, Mukai M, Inoue M, Mizuno K (2008) Suppression of the invasive capacity of rat ascites hepatoma cells by knockdown of Slingshot or LIM kinase. J Biol Chem 283:6013–6021

    Article  PubMed  CAS  Google Scholar 

  44. Ross-Macdonald P, de Silva H, Guo Q et al (2008) Identification of a nonkinase target mediating cytotoxicity of novel kinase inhibitors. Mol Cancer Ther 7:3490–3498

    Article  PubMed  CAS  Google Scholar 

  45. Scott RW, Hooper S, Crighton D et al (2010) LIM kinases are required for invasive path generation by tumor and tumor-associated stromal cells. J Cell Biol 191:169–185

    Article  PubMed  CAS  Google Scholar 

  46. Zebda N, Bernard O, Bailly M, Welti S, Lawrence DS, Condeelis JS (2000) Phosphorylation of ADF/cofilin abolishes EGF-induced actin nucleation at the leading edge and subsequent lamellipod extension. J Cell Biol 151:1119–1128

    Article  PubMed  CAS  Google Scholar 

  47. Wang W, Mouneimne G, Sidani M et al (2006) The activity status of cofilin is directly related to invasion, intravasation, and metastasis of mammary tumors. J Cell Biol 173:395–404

    Article  PubMed  CAS  Google Scholar 

  48. Oser M, Condeelis J (2009) The cofilin activity cycle in lamellipodia and invadopodia. J Cell Biochem 108:1252–1262

    Article  PubMed  CAS  Google Scholar 

  49. van Rheenen J, Condeelis J, Glogauer M (2009) A common cofilin activity cycle in invasive tumor cells and inflammatory cells. J Cell Sci 122:305–311

    Article  PubMed  CAS  Google Scholar 

  50. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Dr. Bernard’s laboratory is supported by the National Health & Medical Research Council (NHMRC) of Australia, The Cancer Council of Victoria, Australian Research Council Australia, and AICR. Alice Schofield is the recipient of an Australian Postgraduate Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ora Bernard Ph.D .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Schofield, A., Bernard, O. (2012). LIM Kinase and Cancer Metastasis. In: Kavallaris, M. (eds) Cytoskeleton and Human Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-788-0_8

Download citation

Publish with us

Policies and ethics