Skip to main content

Cancer Stem Cells in Ovarian Cancer

  • Chapter
  • First Online:
Cancer Stem Cells in Solid Tumors

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1268 Accesses

Abstract

Ovarian cancer causes more deaths than any other gynecologic malignancy. Five-year survival rates have only marginally improved over the past 3 decades, with progression to drug resistance remaining the major therapeutic barrier. Similar to a number of other carcinomas, recent reports suggest that ovarian tumors may exhibit a hierarchical organization of cell types, with tumor development and progression driven by “cancer stem cells” that are inefficiently targeted by conventional therapies. This chapter will focus on the cancer stem cell (CSC) hypothesis as it may relate to ovarian cancer, examine reports of ovarian cancer stem cells (OCSCs), and discuss potentially improved therapeutic strategies based on the specific targeting of these tumor progenitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABC:

Adenosine triphosphate binding cassette

ALDH:

Aldehyde dehydrogenase

ATRA:

All-trans retinoic acid

BCRP:

Breast cancer resistance protein

BRCA:

Breast cancer susceptibility gene

CD:

Cluster of differentiation

CSC:

Cancer stem cell

DNMT:

DNA methyltransferases

DTEP:

Drug-tolerant expanded persisters

DTP:

Drug-tolerant persisters

EMT:

Epithelial-to-mesenchymal transition

EOC:

Epithelial ovarian cancer

ERK:

Extracellular receptor kinase

FACS:

Fluorescence activated cell sorting

FAK:

Focal adhesion kinase

FTE:

Fallopian tube epithelia

HDAC:

Histone deacetylase

HOX:

Homeobox

IFN-α:

Interferon-alpha

IL:

Interleukin

MDR:

Multidrug resistance

MyD88:

Myeloid differentiation factor 88

NF-κB:

Nuclear factor kappa light chain enhancer of activated B cells

NICD:

Notch intracellular domain

OCSC:

Ovarian cancer stem cell

OS:

Overall survival

OSE:

Ovarian surface epithelium

PI3K:

Phosphatidylinositol 3-kinase

SCF:

Stem cell factor

SHH:

Sonic hedgehog

SP:

Side population

STIC:

Serous tubal intraepithelial carcinomas

TGF-β:

Transforming growth factor beta

uPA:

Urokinase plasminogen activator

Wnt:

Wingless

References

  1. American Cancer Society. Cancer Facts & Figures 2009, Atlanta, GA: Amercian Cancer Society; 2009. Available at www.cancer.org/downloads/STT/2008CAFFfinalsecured.pdf.

  2. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer statistics, 2009. CA Cancer J Clin 59 (4):225–249.

    Article  PubMed  Google Scholar 

  3. Bell DA (2005) Origins and molecular pathology of ovarian cancer. Mod Pathol 18 Suppl 2:S19–32.

    Article  PubMed  CAS  Google Scholar 

  4. Bankhead CR, Collins C, Stokes-Lampard H, Rose P, Wilson S, Clements A, Mant D, Kehoe ST, Austoker J (2008) Identifying symptoms of ovarian cancer: a qualitative and quantitative study. BJOG 115 (8):1008–1014.

    Article  PubMed  CAS  Google Scholar 

  5. Twombly R (2007) Cancer killer may be “silent” no more. J Natl Cancer Inst 99 (18):1359–1361.

    Article  PubMed  Google Scholar 

  6. Goff BA, Mandel L, Muntz HG, Melancon CH (2000) Ovarian carcinoma diagnosis. Cancer 89 (10):2068–2075.

    Article  PubMed  CAS  Google Scholar 

  7. Agarwal R, Kaye SB (2003) Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nat Rev Cancer 3 (7):502–516.

    Article  PubMed  CAS  Google Scholar 

  8. Armstrong DK, Bundy B, Wenzel L, Huang HQ, Baergen R, Lele S, Copeland LJ, Walker JL, Burger RA (2006) Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N Engl J Med 354 (1):34–43.

    Article  PubMed  CAS  Google Scholar 

  9. Clarke-Pearson DL (2009) Clinical practice. Screening for ovarian cancer. N Engl J Med 361 (2):170–177.

    Article  PubMed  CAS  Google Scholar 

  10. Ozols RF (2005) Treatment goals in ovarian cancer. Int J Gynecol Cancer 15 Suppl 1:3–11.

    Article  PubMed  Google Scholar 

  11. Choi JH, Wong AS, Huang HF, Leung PC (2007) Gonadotropins and ovarian cancer. Endocr Rev 28 (4):440–461.

    Article  PubMed  CAS  Google Scholar 

  12. Murdoch WJ, McDonnel AC (2002) Roles of the ovarian surface epithelium in ovulation and carcinogenesis. Reproduction 123 (6):743–750.

    Article  PubMed  CAS  Google Scholar 

  13. Ness RB, Cottreau C (1999) Possible role of ovarian epithelial inflammation in ovarian cancer. J Natl Cancer Inst 91 (17):1459–1467.

    Article  PubMed  CAS  Google Scholar 

  14. Fleming JS, Beaugie CR, Haviv I, Chenevix-Trench G, Tan OL (2006) Incessant ovulation, inflammation and epithelial ovarian carcinogenesis: revisiting old hypotheses. Mol Cell Endocrinol 247 (1-2):4–21.

    Article  PubMed  CAS  Google Scholar 

  15. Holschneider CH, Berek JS (2000) Ovarian cancer: epidemiology, biology, and prognostic factors. Semin Surg Oncol 19 (1):3–10.

    Article  PubMed  CAS  Google Scholar 

  16. Auersperg N, Wong AS, Choi KC, Kang SK, Leung PC (2001) Ovarian surface epithelium: biology, endocrinology, and pathology. Endocr Rev 22 (2):255–288.

    Article  PubMed  CAS  Google Scholar 

  17. Levanon K, Crum C, Drapkin R (2008) New insights into the pathogenesis of serous ovarian cancer and its clinical impact. J Clin Oncol 26 (32):5284–5293.

    Article  PubMed  Google Scholar 

  18. Lee Y, Miron A, Drapkin R, Nucci MR, Medeiros F, Saleemuddin A, Garber J, Birch C, Mou H, Gordon RW, Cramer DW, McKeon FD, Crum CP (2007) A candidate precursor to serous carcinoma that originates in the distal fallopian tube. J Pathol 211 (1):26–35.

    Article  PubMed  CAS  Google Scholar 

  19. Tuma RS (2010) Origin of ovarian cancer may have implications for screening. J Natl Cancer Inst 102 (1):11–13.

    Article  PubMed  Google Scholar 

  20. Kurman RJ, Shih Ie M (2010) The origin and pathogenesis of epithelial ovarian cancer: a proposed unifying theory. Am J Surg Pathol 34 (3):433–443.

    Article  PubMed  Google Scholar 

  21. Landen CN, Jr., Birrer MJ, Sood AK (2008) Early events in the pathogenesis of epithelial ovarian cancer. J Clin Oncol 26 (6):995–1005.

    Article  PubMed  CAS  Google Scholar 

  22. Tan DS, Agarwal R, Kaye SB (2006) Mechanisms of transcoelomic metastasis in ovarian cancer. Lancet Oncol 7 (11):925–934.

    Article  PubMed  Google Scholar 

  23. Amadori D, Sansoni E, Amadori A (1997) Ovarian cancer: natural history and metastatic pattern. Front Biosci 2:g8–10.

    PubMed  CAS  Google Scholar 

  24. Hacker NF, Valmadre S, Robertson G (2008) Management of retroperitoneal lymph nodes in advanced ovarian cancer. Int J Gynecol Cancer 18 Suppl 1:7–10.

    Article  PubMed  Google Scholar 

  25. Burleson KM, Casey RC, Skubitz KM, Pambuccian SE, Oegema TR, Jr., Skubitz AP (2004) Ovarian carcinoma ascites spheroids adhere to extracellular matrix components and mesothelial cell monolayers. Gynecol Oncol 93 (1):170–181.

    Article  PubMed  CAS  Google Scholar 

  26. Burleson KM, Boente MP, Pambuccian SE, Skubitz AP (2006) Disaggregation and invasion of ovarian carcinoma ascites spheroids. J Transl Med 4:6.

    Article  PubMed  CAS  Google Scholar 

  27. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3 (7):730–737.

    Article  PubMed  CAS  Google Scholar 

  28. Polyak K, Hahn WC (2006) Roots and stems: stem cells in cancer. Nat Med 12 (3):296–300.

    Article  PubMed  CAS  Google Scholar 

  29. Dalerba P, Cho RW, Clarke MF (2007) Cancer stem cells: models and concepts. Annu Rev Med 58:267–284.

    Article  PubMed  CAS  Google Scholar 

  30. Zhang S, Balch C, Chan MW, Lai HC, Matei D, Schilder JM, Yan PS, Huang TH, Nephew KP (2008) Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res 68 (11):4311–4320.

    Article  PubMed  CAS  Google Scholar 

  31. Baba T, Convery PA, Matsumura N, Whitaker RS, Kondoh E, Perry T, Huang Z, Bentley RC, Mori S, Fujii S, Marks JR, Berchuck A, Murphy SK (2009) Epigenetic regulation of CD133 and tumorigenicity of CD133+ ovarian cancer cells. Oncogene 28 (2):209–218.

    Article  PubMed  CAS  Google Scholar 

  32. Bapat SA (2010) Human Ovarian Cancer Stem Cells. Reproduction 140:33–41.

    Article  PubMed  CAS  Google Scholar 

  33. Bapat SA, Mali AM, Koppikar CB, Kurrey NK (2005) Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Res 65 (8):3025–3029.

    PubMed  CAS  Google Scholar 

  34. Curley MD, Therrien VA, Cummings CL, Sergent PA, Koulouris CR, Friel AM, Roberts DJ, Seiden MV, Scadden DT, Rueda BR, Foster R (2009) CD133 expression defines a tumor initiating cell population in primary human ovarian cancer. Stem Cells 27 (12):2875–2883.

    PubMed  CAS  Google Scholar 

  35. Deng S, Yang X, Lassus H, Liang S, Kaur S, Ye Q, Li C, Wang LP, Roby KF, Orsulic S, Connolly DC, Zhang Y, Montone K, Butzow R, Coukos G, Zhang L (2010) Distinct expression levels and patterns of stem cell marker, aldehyde dehydrogenase isoform 1 (ALDH1), in human epithelial cancers. PLoS One 5 (4):e10277.

    Article  PubMed  CAS  Google Scholar 

  36. Fong MY, Kakar SS (2010) The role of cancer stem cells and the side population in epithelial ovarian cancer. Histol Histopathol 25 (1):113–120.

    PubMed  CAS  Google Scholar 

  37. Gao MQ, Choi YP, Kang S, Youn JH, Cho NH (2010) CD24(+) cells from hierarchically organized ovarian cancer are enriched in cancer stem cells. Oncogene 29:2972–2980.

    Google Scholar 

  38. Gao Q, Geng L, Kvalheim G, Gaudernack G, Suo Z (2009) Identification of cancer stem-like side population cells in ovarian cancer cell line OVCAR-3. Ultrastruct Pathol 33 (4):175–181.

    PubMed  Google Scholar 

  39. Hu L, McArthur C, Jaffe RB (2010) Ovarian cancer stem-like side-population cells are tumourigenic and chemoresistant. Br J Cancer 102 (8):1276–1283.

    Article  PubMed  CAS  Google Scholar 

  40. Moserle L, Indraccolo S, Ghisi M, Frasson C, Fortunato E, Canevari S, Miotti S, Tosello V, Zamarchi R, Corradin A, Minuzzo S, Rossi E, Basso G, Amadori A (2008) The side population of ovarian cancer cells is a primary target of IFN-alpha antitumor effects. Cancer Res 68 (14):5658–5668.

    Article  PubMed  CAS  Google Scholar 

  41. Peng S, Maihle NJ, Huang Y (2010) Pluripotency factors Lin28 and Oct4 identify a sub-population of stem cell-like cells in ovarian cancer. Oncogene 29 (14):2153–2159.

    Article  PubMed  CAS  Google Scholar 

  42. Szotek PP, Pieretti-Vanmarcke R, Masiakos PT, Dinulescu DM, Connolly D, Foster R, Dombkowski D, Preffer F, Maclaughlin DT, Donahoe PK (2006) Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proc Natl Acad Sci USA 103 (30):11154–11159.

    Article  PubMed  CAS  Google Scholar 

  43. Wani AA, Sharma N, Shouche YS, Bapat SA (2006) Nuclear-mitochondrial genomic profiling reveals a pattern of evolution in epithelial ovarian tumor stem cells. Oncogene 25 (47):6336–6344.

    Article  PubMed  CAS  Google Scholar 

  44. Alvero AB, Chen R, Fu HH, Montagna M, Schwartz PE, Rutherford T, Silasi DA, Steffensen KD, Waldstrom M, Visintin I, Mor G (2009) Molecular phenotyping of human ovarian cancer stem cells unravels the mechanisms for repair and chemoresistance. Cell Cycle 8 (1):158–166.

    Article  PubMed  CAS  Google Scholar 

  45. Lobo NA, Shimono Y, Qian D, Clarke MF (2007) The biology of cancer stem cells. Annu Rev Cell Dev Biol 23:675–699.

    Article  PubMed  CAS  Google Scholar 

  46. Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8 (10):755–768.

    Article  PubMed  CAS  Google Scholar 

  47. Kim M, Turnquist H, Jackson J, Sgagias M, Yan Y, Gong M, Dean M, Sharp JG, Cowan K (2002) The multidrug resistance transporter ABCG2 (breast cancer resistance protein 1) effluxes Hoechst 33342 and is overexpressed in hematopoietic stem cells. Clin Cancer Res 8 (1):22–28.

    PubMed  CAS  Google Scholar 

  48. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183 (4):1797–1806.

    Article  PubMed  CAS  Google Scholar 

  49. Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, Lagutina I, Grosveld GC, Osawa M, Nakauchi H, Sorrentino BP (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7 (9):1028–1034.

    Article  PubMed  CAS  Google Scholar 

  50. Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U, Goodell MA, Brenner MK (2004) A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA 101 (39):14228–14233.

    Article  PubMed  CAS  Google Scholar 

  51. Sharom FJ (2008) ABC multidrug transporters: structure, function and role in chemoresistance. Pharmacogenomics 9 (1):105–127.

    Article  PubMed  CAS  Google Scholar 

  52. Patrawala L, Calhoun T, Schneider-Broussard R, Zhou J, Claypool K, Tang DG (2005) Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic. Cancer Res 65 (14):6207–6219.

    Article  PubMed  CAS  Google Scholar 

  53. Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi AK, Ross DD (1998) A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA 95 (26):15665–15670.

    Article  PubMed  CAS  Google Scholar 

  54. Allikmets R, Schriml LM, Hutchinson A, Romano-Spica V, Dean M (1998) A human placenta-specific ATP-binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidrug resistance. Cancer Res 58 (23):5337–5339.

    PubMed  CAS  Google Scholar 

  55. Miyake K, Mickley L, Litman T, Zhan Z, Robey R, Cristensen B, Brangi M, Greenberger L, Dean M, Fojo T, Bates SE (1999) Molecular cloning of cDNAs which are highly overexpressed in mitoxantrone-resistant cells: demonstration of homology to ABC transport genes. Cancer Res 59 (1):8–13.

    PubMed  CAS  Google Scholar 

  56. Olempska M, Eisenach PA, Ammerpohl O, Ungefroren H, Fandrich F, Kalthoff H (2007) Detection of tumor stem cell markers in pancreatic carcinoma cell lines. Hepatobiliary Pancreat Dis Int 6 (1):92–97.

    PubMed  CAS  Google Scholar 

  57. Lou H, Dean M (2007) Targeted therapy for cancer stem cells: the patched pathway and ABC transporters. Oncogene 26 (9):1357–1360.

    Article  PubMed  CAS  Google Scholar 

  58. Kurrey NK, Jalgaonkar SP, Joglekar AV, Ghanate AD, Chaskar PD, Doiphode RY, Bapat SA (2009) Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells 27 (9):2059–2068.

    Article  PubMed  CAS  Google Scholar 

  59. Zola H, Swart B, Nicholson I, Aasted B, Bensussan A, Boumsell L, Buckley C, Clark G, Drbal K, Engel P, Hart D, Horejsi V, Isacke C, Macardle P, Malavasi F, Mason D, Olive D, Saalmueller A, Schlossman SF, Schwartz-Albiez R, Simmons P, Tedder TF, Uguccioni M, Warren H (2005) CD molecules 2005: human cell differentiation molecules. Blood 106 (9):3123–3126.

    Article  PubMed  CAS  Google Scholar 

  60. Tonary AM, Macdonald EA, Faught W, Senterman MK, Vanderhyden BC (2000) Lack of expression of c-KIT in ovarian cancers is associated with poor prognosis. Int J Cancer 89 (3):242–250.

    Article  PubMed  CAS  Google Scholar 

  61. Ponta H, Wainwright D, Herrlich P (1998) The CD44 protein family. Int J Biochem Cell Biol 30 (3):299–305.

    Article  PubMed  CAS  Google Scholar 

  62. Lesley J, Hyman R, Kincade PW (1993) CD44 and its interaction with extracellular matrix. Adv Immunol 54:271–335.

    Article  PubMed  CAS  Google Scholar 

  63. Fraser JR, Laurent TC, Laurent UB (1997) Hyaluronan: its nature, distribution, functions and turnover. J Intern Med 242 (1):27–33.

    Article  PubMed  CAS  Google Scholar 

  64. Ropponen K, Tammi M, Parkkinen J, Eskelinen M, Tammi R, Lipponen P, Agren U, Alhava E, Kosma VM (1998) Tumor cell-associated hyaluronan as an unfavorable prognostic factor in colorectal cancer. Cancer Res 58 (2):342–347.

    PubMed  CAS  Google Scholar 

  65. Setala LP, Tammi MI, Tammi RH, Eskelinen MJ, Lipponen PK, Agren UM, Parkkinen J, Alhava EM, Kosma VM (1999) Hyaluronan expression in gastric cancer cells is associated with local and nodal spread and reduced survival rate. Br J Cancer 79 (7-8):1133–1138.

    Article  PubMed  CAS  Google Scholar 

  66. Anttila MA, Tammi RH, Tammi MI, Syrjanen KJ, Saarikoski SV, Kosma VM (2000) High levels of stromal hyaluronan predict poor disease outcome in epithelial ovarian cancer. Cancer Res 60 (1):150–155.

    PubMed  CAS  Google Scholar 

  67. Chen H, Hao J, Wang L, Li Y (2009) Coexpression of invasive markers (uPA, CD44) and multiple drug-resistance proteins (MDR1, MRP2) is correlated with epithelial ovarian cancer progression. Br J Cancer 101 (3):432–440.

    Article  PubMed  CAS  Google Scholar 

  68. Bourguignon LY, Gilad E, Peyrollier K (2007) Heregulin-mediated ErbB2-ERK signaling activates hyaluronan synthases leading to CD44-dependent ovarian tumor cell growth and migration. J Biol Chem 282 (27):19426–19441.

    Article  PubMed  CAS  Google Scholar 

  69. Bourguignon LY, Peyrollier K, Gilad E, Brightman A (2007) Hyaluronan-CD44 interaction with neural Wiskott-Aldrich syndrome protein (N-WASP) promotes actin polymerization and ErbB2 activation leading to beta-catenin nuclear translocation, transcriptional up-regulation, and cell migration in ovarian tumor cells. J Biol Chem 282 (2):1265–1280.

    Article  PubMed  CAS  Google Scholar 

  70. Auzenne E, Ghosh SC, Khodadadian M, Rivera B, Farquhar D, Price RE, Ravoori M, Kundra V, Freedman RS, Klostergaard J (2007) Hyaluronic acid-paclitaxel: antitumor efficacy against CD44(+) human ovarian carcinoma xenografts. Neoplasia 9 (6):479–486.

    Article  PubMed  CAS  Google Scholar 

  71. Sillanpaa S, Anttila MA, Voutilainen K, Tammi RH, Tammi MI, Saarikoski SV, Kosma VM (2003) CD44 expression indicates favorable prognosis in epithelial ovarian cancer. Clin Cancer Res 9 (14):5318–5324.

    PubMed  Google Scholar 

  72. Slomiany MG, Dai L, Tolliver LB, Grass GD, Zeng Y, Toole BP (2009) Inhibition of functional hyaluronan-CD44 interactions in CD133-positive primary human ovarian carcinoma ells by small hyaluronan oligosaccharides. Clin Cancer Res 15 (24):7593–7601.

    Article  PubMed  CAS  Google Scholar 

  73. Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, Tsukamoto AS, Gage FH, Weissman IL (2000) Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA 97 (26):14720–14725.

    Article  PubMed  CAS  Google Scholar 

  74. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432 (7015):396–401.

    Article  PubMed  CAS  Google Scholar 

  75. Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, Lu L, Irvin D, Black KL, Yu JS (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5:67.

    Article  PubMed  CAS  Google Scholar 

  76. Yin S, Li J, Hu C, Chen X, Yao M, Yan M, Jiang G, Ge C, Xie H, Wan D, Yang S, Zheng S, Gu J (2007) CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer 120 (7):1444–1450.

    Article  PubMed  CAS  Google Scholar 

  77. Monzani E, Facchetti F, Galmozzi E, Corsini E, Benetti A, Cavazzin C, Gritti A, Piccinini A, Porro D, Santinami M, Invernici G, Parati E, Alessandri G, La Porta CA (2007) Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. Eur J Cancer 43 (5):935–946.

    Article  PubMed  CAS  Google Scholar 

  78. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65 (23):10946–10951.

    Article  PubMed  CAS  Google Scholar 

  79. Miki J, Furusato B, Li H, Gu Y, Takahashi H, Egawa S, Sesterhenn IA, McLeod DG, Srivastava S, Rhim JS (2007) Identification of putative stem cell markers, CD133 and CXCR4, in hTERT-immortalized primary nonmalignant and malignant tumor-derived human prostate epithelial cell lines and in prostate cancer specimens. Cancer Res 67 (7):3153–3161.

    Article  PubMed  CAS  Google Scholar 

  80. O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445 (7123):106–110.

    Article  PubMed  CAS  Google Scholar 

  81. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445 (7123):111–115.

    Article  PubMed  CAS  Google Scholar 

  82. Kusumbe AP, Mali AM, Bapat SA (2009) CD133-expressing stem cells associated with ovarian metastases establish an endothelial hierarchy and contribute to tumor vasculature. Stem Cells 27 (3):498–508.

    Article  PubMed  CAS  Google Scholar 

  83. Ferrandina G, Martinelli E, Petrillo M, Prisco MG, Zannoni G, Sioletic S, Scambia G (2009) CD133 antigen expression in ovarian cancer. BMC Cancer 9:221.

    Article  PubMed  CAS  Google Scholar 

  84. Kristiansen G, Denkert C, Schluns K, Dahl E, Pilarsky C, Hauptmann S (2002) CD24 is expressed in ovarian cancer and is a new independent prognostic marker of patient survival. Am J Pathol 161 (4):1215–1221.

    Article  PubMed  CAS  Google Scholar 

  85. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100 (7):3983–3988.

    Article  PubMed  CAS  Google Scholar 

  86. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM (2007) Identification of pancreatic cancer stem cells. Cancer Res 67 (3):1030–1037.

    Article  PubMed  CAS  Google Scholar 

  87. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin, II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318 (5858):1917–1920.

    Article  PubMed  CAS  Google Scholar 

  88. Shell S, Park SM, Radjabi AR, Schickel R, Kistner EO, Jewell DA, Feig C, Lengyel E, Peter ME (2007) Let-7 expression defines two differentiation stages of cancer. Proc Natl Acad Sci USA 104 (27):11400–11405.

    Article  PubMed  CAS  Google Scholar 

  89. Viswanathan SR, Powers JT, Einhorn W, Hoshida Y, Ng TL, Toffanin S, O’Sullivan M, Lu J, Phillips LA, Lockhart VL, Shah SP, Tanwar PS, Mermel CH, Beroukhim R, Azam M, Teixeira J, Meyerson M, Hughes TP, Llovet JM, Radich J, Mullighan CG, Golub TR, Sorensen PH, Daley GQ (2009) Lin28 promotes transformation and is associated with advanced human malignancies. Nat Genet 41 (7):843–848.

    Article  PubMed  CAS  Google Scholar 

  90. Kastan MB, Schlaffer E, Russo JE, Colvin OM, Civin CI, Hilton J (1990) Direct demonstration of elevated aldehyde dehydrogenase in human hematopoietic progenitor cells. Blood 75 (10):1947–1950.

    PubMed  CAS  Google Scholar 

  91. Storms RW, Trujillo AP, Springer JB, Shah L, Colvin OM, Ludeman SM, Smith C (1999) Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity. Proc Natl Acad Sci USA 96 (16):9118–9123.

    Article  PubMed  CAS  Google Scholar 

  92. Hess DA, Wirthlin L, Craft TP, Herrbrich PE, Hohm SA, Lahey R, Eades WC, Creer MH, Nolta JA (2006) Selection based on CD133 and high aldehyde dehydrogenase activity isolates long-term reconstituting human hematopoietic stem cells. Blood 107 (5):2162–2169.

    Article  PubMed  CAS  Google Scholar 

  93. Cai J, Cheng A, Luo Y, Lu C, Mattson MP, Rao MS, Furukawa K (2004) Membrane properties of rat embryonic multipotent neural stem cells. J Neurochem 88 (1):212–226.

    Article  PubMed  CAS  Google Scholar 

  94. Hess DA, Meyerrose TE, Wirthlin L, Craft TP, Herrbrich PE, Creer MH, Nolta JA (2004) Functional characterization of highly purified human hematopoietic repopulating cells isolated according to aldehyde dehydrogenase activity. Blood 104 (6):1648–1655.

    Article  PubMed  CAS  Google Scholar 

  95. Armstrong L, Stojkovic M, Dimmick I, Ahmad S, Stojkovic P, Hole N, Lako M (2004) Phenotypic characterization of murine primitive hematopoietic progenitor cells isolated on basis of aldehyde dehydrogenase activity. Stem Cells 22 (7):1142–1151.

    Article  PubMed  Google Scholar 

  96. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S, Schott A, Hayes D, Birnbaum D, Wicha MS, Dontu G (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1 (5):555–567.

    Article  PubMed  CAS  Google Scholar 

  97. Morimoto K, Kim SJ, Tanei T, Shimazu K, Tanji Y, Taguchi T, Tamaki Y, Terada N, Noguchi S (2009) Stem cell marker aldehyde dehydrogenase 1-positive breast cancers are characterized by negative estrogen receptor, positive human epidermal growth factor receptor type 2, and high Ki67 expression. Cancer Sci 100 (6):1062–1068.

    Article  PubMed  CAS  Google Scholar 

  98. Jiang F, Qiu Q, Khanna A, Todd NW, Deepak J, Xing L, Wang H, Liu Z, Su Y, Stass SA, Katz RL (2009) Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer. Mol Cancer Res 7 (3):330–338.

    Article  PubMed  CAS  Google Scholar 

  99. Chang B, Liu G, Xue F, Rosen DG, Xiao L, Wang X, Liu J (2009) ALDH1 expression correlates with favorable prognosis in ovarian cancers. Mod Pathol 22 (6):817–823.

    PubMed  CAS  Google Scholar 

  100. Rasheed ZA, Yang J, Wang Q, Kowalski J, Freed I, Murter C, Hong SM, Koorstra JB, Rajeshkumar NV, He X, Goggins M, Iacobuzio-Donahue C, Berman DM, Laheru D, Jimeno A, Hidalgo M, Maitra A, Matsui W (2010) Prognostic significance of tumorigenic cells with mesenchymal features in pancreatic adenocarcinoma. J Natl Cancer Inst 102 (5):340–351.

    Article  PubMed  CAS  Google Scholar 

  101. Su Y, Qiu Q, Zhang X, Jiang Z, Leng Q, Liu Z, Stass SA, Jiang F (2010) Aldehyde dehydrogenase 1 A1-positive cell population is enriched in tumor-initiating cells and associated with progression of bladder cancer. Cancer Epidemiol Biomarkers Prev 19 (2):327–337.

    Article  PubMed  CAS  Google Scholar 

  102. Charafe-Jauffret E, Ginestier C, Iovino F, Tarpin C, Diebel M, Esterni B, Houvenaeghel G, Extra JM, Bertucci F, Jacquemier J, Xerri L, Dontu G, Stassi G, Xiao Y, Barsky SH, Birnbaum D, Viens P, Wicha MS (2010) Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clin Cancer Res 16 (1):45–55.

    Article  PubMed  CAS  Google Scholar 

  103. Dubeau L (2008) The cell of origin of ovarian epithelial tumours. Lancet Oncol 9 (12):1191–1197.

    Article  PubMed  CAS  Google Scholar 

  104. Cho KR, Shih Ie M (2009) Ovarian cancer. Annu Rev Pathol 4:287–313.

    Article  PubMed  CAS  Google Scholar 

  105. Rodriguez M, Dubeau L (2001) Ovarian tumor development: insights from ovarian embryogenesis. Eur J Gynaecol Oncol 22 (3):175–183.

    PubMed  CAS  Google Scholar 

  106. Behringer RR, Finegold MJ, Cate RL (1994) Mullerian-inhibiting substance function during mammalian sexual development. Cell 79 (3):415–425.

    Article  PubMed  CAS  Google Scholar 

  107. Byskov AG (1982) Primordial germ cells and regulation of meiosis. In: Reproduction in mammals. I. Germ cells and fertilization. Austin CR and Short RV, eds. Cambridge University Press, London:16.

    Google Scholar 

  108. Cheng W, Liu J, Yoshida H, Rosen D, Naora H (2005) Lineage infidelity of epithelial ovarian cancers is controlled by HOX genes that specify regional identity in the reproductive tract. Nat Med 11 (5):531–537.

    Article  PubMed  CAS  Google Scholar 

  109. Tone AA, Begley H, Sharma M, Murphy J, Rosen B, Brown TJ, Shaw PA (2008) Gene expression profiles of luteal phase fallopian tube epithelium from BRCA mutation carriers resemble high-grade serous carcinoma. Clin Cancer Res 14 (13):4067–4078.

    Article  PubMed  CAS  Google Scholar 

  110. Bowen NJ, Logani S, Dickerson EB, Kapa LB, Akhtar M, Benigno BB, McDonald JF (2007) Emerging roles for PAX8 in ovarian cancer and endosalpingeal development. Gynecol Oncol 104 (2):331–337.

    Article  PubMed  CAS  Google Scholar 

  111. Dubeau L (1999) The cell of origin of ovarian epithelial tumors and the ovarian surface epithelium dogma: does the emperor have no clothes? Gynecol Oncol 72 (3):437–442.

    Article  PubMed  CAS  Google Scholar 

  112. Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139 (5):871–890.

    Article  PubMed  CAS  Google Scholar 

  113. Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F, Maheswaran S, McDermott U, Azizian N, Zou L, Fischbach MA, Wong KK, Brandstetter K, Wittner B, Ramaswamy S, Classon M, Settleman J (2010) A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141 (1):69–80.

    Article  PubMed  CAS  Google Scholar 

  114. Li M, Balch C, Montgomery JS, Jeong M, Chung JH, Yan P, Huang TH, Kim S, Nephew KP (2009) Integrated analysis of DNA methylation and gene expression reveals specific signaling pathways associated with platinum resistance in ovarian cancer. BMC Med Genomics 2:34.

    Article  PubMed  CAS  Google Scholar 

  115. Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5 (4):275–284.

    Article  PubMed  CAS  Google Scholar 

  116. Jordan CT (2009) Cancer stem cells: controversial or just misunderstood? Cell Stem Cell 4 (3):203–205.

    Article  PubMed  CAS  Google Scholar 

  117. Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2 (7):489–501.

    Article  PubMed  CAS  Google Scholar 

  118. Ungar Y, Oluwatooyin F, Shimoni E (2003) Thermal Stability of Genistein and Daidzein and Its Effect on Their Antioxidant Activity. J Agric Food Chem 51 (15):4394–4399.

    Article  PubMed  CAS  Google Scholar 

  119. Somjen D, Katzburg S, Nevo N, Gayer B, Hodge RP, Renevey MD, Kalchenko V, Meshorer A, Stern N, Kohen F (2008) A daidzein-daunomycin conjugate improves the therapeutic response in an animal model of ovarian carcinoma. J Steroid Biochem Mol Biol 110 (1-2):144–149.

    Article  PubMed  CAS  Google Scholar 

  120. Green JM, Alvero AB, Kohen F, Mor G (2009) 7-(O)-Carboxymethyl daidzein conjugated to N-t-Boc-hexylenediamine: a novel compound capable of inducing cell death in epithelial ovarian cancer stem cells. Cancer Biol Ther 8 (18):1747–1753.

    Article  PubMed  CAS  Google Scholar 

  121. Ma S, Lee TK, Zheng BJ, Chan KW, Guan XY (2008) CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene 27 (12):1749–1758.

    Article  PubMed  CAS  Google Scholar 

  122. Eyler CE, Foo WC, LaFiura KM, McLendon RE, Hjelmeland AB, Rich JN (2008) Brain cancer stem cells display preferential sensitivity to Akt inhibition. Stem Cells 26 (12):3027–3036.

    Article  PubMed  CAS  Google Scholar 

  123. Dubrovska A, Kim S, Salamone RJ, Walker JR, Maira SM, Garcia-Echeverria C, Schultz PG, Reddy VA (2009) The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc Natl Acad Sci USA 106 (1):268–273.

    Article  PubMed  CAS  Google Scholar 

  124. Ginestier C, Liu S, Diebel ME, Korkaya H, Luo M, Brown M, Wicinski J, Cabaud O, Charafe-Jauffret E, Birnbaum D, Guan JL, Dontu G, Wicha MS (2010) CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Invest 120 (2):485–497.

    Article  PubMed  CAS  Google Scholar 

  125. Chari NS, McDonnell TJ (2007) The sonic hedgehog signaling network in development and neoplasia. Adv Anat Pathol 14 (5):344–352.

    Article  PubMed  CAS  Google Scholar 

  126. Ischenko I, Seeliger H, Schaffer M, Jauch KW, Bruns CJ (2008) Cancer stem cells: how can we target them? Curr Med Chem 15 (30):3171–3184.

    Article  PubMed  CAS  Google Scholar 

  127. Dean M (2006) Cancer stem cells: redefining the paradigm of cancer treatment strategies. Mol Interv 6 (3):140–148.

    Article  PubMed  CAS  Google Scholar 

  128. Bhattacharya R, Kwon J, Ali B, Wang E, Patra S, Shridhar V, Mukherjee P (2008) Role of hedgehog signaling in ovarian cancer. Clin Cancer Res 14 (23):7659–7666.

    Article  PubMed  CAS  Google Scholar 

  129. Yang L, He J, Huang S, Zhang X, Bian Y, He N, Zhang H, Xie J (2009) Activation of hedgehog signaling is not a frequent event in ovarian cancers. Mol Cancer 8:112.

    Article  PubMed  CAS  Google Scholar 

  130. Kopan R, Ilagan MX (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137 (2):216–233.

    Article  PubMed  CAS  Google Scholar 

  131. Pannuti A, Foreman K, Rizzo P, Osipo C, Golde T, Osborne B, Miele L (2010) Targeting notch to target cancer stem cells. Clin Cancer Res 16 (12):3141–3152.

    Article  PubMed  CAS  Google Scholar 

  132. Hopfer O, Zwahlen D, Fey MF, Aebi S (2005) The Notch pathway in ovarian carcinomas and adenomas. Br J Cancer 93 (6):709–718.

    Article  PubMed  CAS  Google Scholar 

  133. Rose SL, Kunnimalaiyaan M, Drenzek J, Seiler N (2010) Notch 1 signaling is active in ovarian cancer. Gynecol Oncol 117 (1):130–133.

    Article  PubMed  CAS  Google Scholar 

  134. Park JT, Li M, Nakayama K, Mao TL, Davidson B, Zhang Z, Kurman RJ, Eberhart CG, Shih Ie M, Wang TL (2006) Notch3 gene amplification in ovarian cancer. Cancer Res 66 (12):6312–6318.

    Article  PubMed  CAS  Google Scholar 

  135. Klaus A, Birchmeier W (2008) Wnt signalling and its impact on development and cancer. Nat Rev Cancer 8 (5):387–398.

    Article  PubMed  CAS  Google Scholar 

  136. Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127 (3):469–480.

    Article  PubMed  CAS  Google Scholar 

  137. Rask K, Nilsson A, Brannstrom M, Carlsson P, Hellberg P, Janson PO, Hedin L, Sundfeldt K (2003) Wnt-signalling pathway in ovarian epithelial tumours: increased expression of beta-catenin and GSK3beta. Br J Cancer 89 (7):1298–1304.

    Article  PubMed  CAS  Google Scholar 

  138. Lepourcelet M, Chen YN, France DS, Wang H, Crews P, Petersen F, Bruseo C, Wood AW, Shivdasani RA (2004) Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex. Cancer Cell 5 (1):91–102.

    Article  PubMed  CAS  Google Scholar 

  139. Barker N, Clevers H (2006) Mining the Wnt pathway for cancer therapeutics. Nat Rev Drug Discov 5 (12):997–1014.

    Article  PubMed  CAS  Google Scholar 

  140. Wuarin L, Verity MA, Sidell N (1991) Effects of interferon-gamma and its interaction with retinoic acid on human neuroblastoma differentiation. Int J Cancer 48 (1):136–141.

    Article  PubMed  CAS  Google Scholar 

  141. Sell S (2004) Stem cell origin of cancer and differentiation therapy. Crit Rev Oncol Hematol 51 (1):1–28.

    Article  PubMed  Google Scholar 

  142. Hansen LA, Sigman CC, Andreola F, Ross SA, Kelloff GJ, De Luca LM (2000) Retinoids in chemoprevention and differentiation therapy. Carcinogenesis 21 (7):1271–1279.

    Article  PubMed  CAS  Google Scholar 

  143. Leszczyniecka M, Roberts T, Dent P, Grant S, Fisher PB (2001) Differentiation therapy of human cancer: basic science and clinical applications. Pharmacol Ther 90 (2-3):105–156.

    Article  PubMed  CAS  Google Scholar 

  144. Caliaro MJ, Marmouget C, Guichard S, Mazars P, Valette A, Moisand A, Bugat R, Jozan S (1994) Response of four human ovarian carcinoma cell lines to all-trans retinoic acid: relationship with induction of differentiation and retinoic acid receptor expression. Int J Cancer 56 (5):743–748.

    Article  PubMed  CAS  Google Scholar 

  145. Yang YT, Balch C, Kulp SK, Mand MR, Nephew KP, Chen CS (2009) A rationally designed histone deacetylase inhibitor with distinct antitumor activity against ovarian cancer. Neoplasia 11 (6):552–563, 553 p following 563.

    Google Scholar 

  146. Hendrix MJ, Seftor EA, Seftor RE, Kasemeier-Kulesa J, Kulesa PM, Postovit LM (2007) Reprogramming metastatic tumour cells with embryonic microenvironments. Nat Rev Cancer 7 (4):246–255.

    Article  PubMed  CAS  Google Scholar 

  147. Seftor EA, Brown KM, Chin L, Kirschmann DA, Wheaton WW, Protopopov A, Feng B, Balagurunathan Y, Trent JM, Nickoloff BJ, Seftor RE, Hendrix MJ (2005) Epigenetic transdifferentiation of normal melanocytes by a metastatic melanoma microenvironment. Cancer Res 65 (22):10164–10169.

    Article  PubMed  CAS  Google Scholar 

  148. Lotem J, Sachs L (2006) Epigenetics and the plasticity of differentiation in normal and cancer stem cells. Oncogene 25 (59):7663–7672.

    Article  PubMed  CAS  Google Scholar 

  149. Feinberg AP (2007) Phenotypic plasticity and the epigenetics of human disease. Nature 447 (7143):433–440.

    Article  PubMed  CAS  Google Scholar 

  150. Kobel S, Lutolf M (2010) High-throughput methods to define complex stem cell niches Biotechniques 48(4):ix–xxii.

    Google Scholar 

  151. Bissell MJ, Labarge MA (2005) Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment? Cancer Cell 7 (1):17–23.

    PubMed  CAS  Google Scholar 

  152. Hamano Y, Zeisberg M, Sugimoto H, Lively JC, Maeshima Y, Yang C, Hynes RO, Werb Z, Sudhakar A, Kalluri R (2003) Physiological levels of tumstatin, a fragment of collagen IV alpha3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via alphaV beta3 integrin. Cancer Cell 3 (6):589–601.

    Article  PubMed  CAS  Google Scholar 

  153. Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Oh EY, Gaber MW, Finklestein D, Allen M, Frank A, Bayazitov IT, Zakharenko SS, Gajjar A, Davidoff A, Gilbertson RJ (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11 (1):69–82.

    Article  PubMed  CAS  Google Scholar 

  154. Yang ZJ, Wechsler-Reya RJ (2007) Hit ‘em where they live: targeting the cancer stem cell niche. Cancer Cell 11 (1):3–5.

    Article  PubMed  CAS  Google Scholar 

  155. Hendrix MJ, Seftor EA, Hess AR, Seftor RE (2003) Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat Rev Cancer 3 (6):411–421.

    Article  PubMed  CAS  Google Scholar 

  156. McAllister JC, Zhan Q, Weishaupt C, Hsu MY, Murphy GF (2010) The embryonic morphogen, Nodal, is associated with channel-like structures in human malignant melanoma xenografts. J Cutan Pathol 37 Suppl 1:19–25.

    Article  PubMed  Google Scholar 

  157. Jablonka E, Lamb MJ (2002) The changing concept of epigenetics. Ann N Y Acad Sci 981:82–96.

    Article  PubMed  Google Scholar 

  158. Balch C, Fang F, Matei DE, Huang TH, Nephew KP (2009) Minireview: epigenetic changes in ovarian cancer. Endocrinology 150 (9):4003–4011.

    Article  PubMed  CAS  Google Scholar 

  159. Balch C, Huang TH, Brown R, Nephew KP (2004) The epigenetics of ovarian cancer drug resistance and resensitization. Am J Obstet Gynecol 191 (5):1552–1572.

    Article  PubMed  CAS  Google Scholar 

  160. Balch C, Matei D, Huang TH-M, Nephew KP (2010) Role of epigenomics in ovarian and endometrial cancers. Epigenomics 2 (3):419–447.

    Google Scholar 

  161. Matei DE, Nephew KP (2010) Epigenetic therapies for chemoresensitization of epithelial ovarian cancer. Gynecol Oncol 116 (2):195–201.

    Article  PubMed  CAS  Google Scholar 

  162. Balch C, Montgomery JS, Paik HI, Kim S, Huang TH, Nephew KP (2005) New anti-cancer strategies: epigenetic therapies and biomarkers. Front Biosci 10:1897–1931.

    Article  PubMed  CAS  Google Scholar 

  163. Lyko F, Brown R (2005) DNA methyltransferase inhibitors and the development of epigenetic cancer therapies. J Natl Cancer Inst 97 (20):1498–1506.

    Article  PubMed  CAS  Google Scholar 

  164. Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128 (4):683–692.

    Article  PubMed  CAS  Google Scholar 

  165. Modesitt SC, Sill M, Hoffman JS, Bender DP (2008) A phase II study of vorinostat in the treatment of persistent or recurrent epithelial ovarian or primary peritoneal carcinoma: a Gynecologic Oncology Group study. Gynecol Oncol 109 (2):182–186.

    Article  PubMed  CAS  Google Scholar 

  166. Balch C, Yan P, Craft T, Young S, Skalnik DG, Huang TH, Nephew KP (2005) Antimitogenic and chemosensitizing effects of the methylation inhibitor zebularine in ovarian cancer. Mol Cancer Ther 4 (10):1505–1514.

    Article  PubMed  CAS  Google Scholar 

  167. Plumb JA, Strathdee G, Sludden J, Kaye SB, Brown R (2000) Reversal of drug resistance in human tumor xenografts by 2′-deoxy-5-azacytidine-induced demethylation of the hMLH1 gene promoter. Cancer Res 60 (21):6039–6044.

    PubMed  CAS  Google Scholar 

  168. Staub J, Chien J, Pan Y, Qian X, Narita K, Aletti G, Scheerer M, Roberts LR, Molina J, Shridhar V (2007) Epigenetic silencing of HSulf-1 in ovarian cancer:implications in chemoresistance. Oncogene 26 (34):4969–4978.

    Article  PubMed  CAS  Google Scholar 

  169. Steele N, Finn P, Brown R, Plumb JA (2009) Combined inhibition of DNA methylation and histone acetylation enhances gene re-expression and drug sensitivity in vivo. Br J Cancer 100 (5):758–763.

    Article  PubMed  CAS  Google Scholar 

  170. Strathdee G, MacKean MJ, Illand M, Brown R (1999) A role for methylation of the hMLH1 promoter in loss of hMLH1 expression and drug resistance in ovarian cancer. Oncogene 18 (14):2335–2341.

    Article  PubMed  CAS  Google Scholar 

  171. Su HY, Lai HC, Lin YW, Liu CY, Chen CK, Chou YC, Lin SP, Lin WC, Lee HY, Yu MH (2010) Epigenetic silencing of SFRP5 is related to malignant phenotype and chemoresistance of ovarian cancer through Wnt signaling pathway. Int J Cancer 127 (3):555–567.

    Article  PubMed  CAS  Google Scholar 

  172. Fang F, Balch C, Schilder J, Breen T, Zhang S, Shen C, Li L, Kulesavage C, Snyder AJ, Nephew KP, Matei DE (2010) A phase I and pharmacodynamic study of decitabine in combination with carboplatin in patients with recurrent, platinum-resistant, epithelial ovarian cancer. Cancer 116:4043–4053.

    Article  CAS  Google Scholar 

  173. Jimeno A, Feldmann G, Suarez-Gauthier A, Rasheed Z, Solomon A, Zou GM, Rubio-Viqueira B, Garcia-Garcia E, Lopez-Rios F, Matsui W, Maitra A, Hidalgo M (2009) A direct pancreatic cancer xenograft model as a platform for cancer stem cell therapeutic development. Mol Cancer Ther 8 (2):310–314.

    Article  PubMed  CAS  Google Scholar 

  174. Minucci S, Pelicci PG (2006) Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6 (1):38–51.

    Article  PubMed  CAS  Google Scholar 

  175. Chobanian NH, Greenberg VL, Gass JM, Desimone CP, Van Nagell JR, Zimmer SG (2004) Histone deacetylase inhibitors enhance paclitaxel-induced cell death in ovarian cancer cell lines independent of p53 status. Anticancer Res 24 (2B):539–545.

    Google Scholar 

  176. Lin CT, Lai HC, Lee HY, Lin WH, Chang CC, Chu TY, Lin YW, Lee KD, Yu MH (2008) Valproic acid resensitizes cisplatin-resistant ovarian cancer cells. Cancer Sci 99 (6):1218–1226.

    Article  PubMed  CAS  Google Scholar 

  177. Muscolini M, Cianfrocca R, Sajeva A, Mozzetti S, Ferrandina G, Costanzo A, Tuosto L (2008) Trichostatin A up-regulates p73 and induces Bax-dependent apoptosis in cisplatin-resistant ovarian cancer cells. Mol Cancer Ther 7 (6):1410–1419.

    Article  PubMed  CAS  Google Scholar 

  178. Nawrocki ST, Carew JS, Douglas L, Cleveland JL, Humphreys R, Houghton JA (2007) Histone deacetylase inhibitors enhance lexatumumab-induced apoptosis via a p21Cip1-dependent decrease in survivin levels. Cancer Res 67 (14):6987–6994.

    Article  PubMed  CAS  Google Scholar 

  179. Ozaki K, Kishikawa F, Tanaka M, Sakamoto T, Tanimura S, Kohno M (2008) Histone deacetylase inhibitors enhance the chemosensitivity of tumor cells with cross-resistance to a wide range of DNA-damaging drugs. Cancer Sci 99 (2):376–384.

    Article  PubMed  CAS  Google Scholar 

  180. Strait KA, Warnick CT, Ford CD, Dabbas B, Hammond EH, Ilstrup SJ (2005) Histone deacetylase inhibitors induce G2-checkpoint arrest and apoptosis in cisplatinum-resistant ovarian cancer cells associated with overexpression of the Bcl-2-related protein Bad. Mol Cancer Ther 4 (4):603–611.

    Article  PubMed  CAS  Google Scholar 

  181. Zuco V, Benedetti V, De Cesare M, Zunino F (2010) Sensitization of ovarian carcinoma cells to the atypical retinoid ST1926 by the histone deacetylase inhibitor, RC307: enhanced DNA damage response. Int J Cancer 126 (5):1246–1255.

    PubMed  CAS  Google Scholar 

  182. Park SJ, Kim MJ, Kim HB, Sohn HY, Bae JH, Kang CD, Kim SH (2009) Trichostatin A sensitizes human ovarian cancer cells to TRAIL-induced apoptosis by down-regulation of c-FLIPL via inhibition of EGFR pathway. Biochem Pharmacol 77 (8):1328–1336.

    Article  PubMed  CAS  Google Scholar 

  183. Zhang B, Strauss AC, Chu S, Li M, Ho Y, Shiang KD, Snyder DS, Huettner CS, Shultz L, Holyoake T, Bhatia R (2010) Effective targeting of quiescent chronic myelogenous leukemia stem cells by histone deacetylase inhibitors in combination with imatinib mesylate. Cancer Cell 17 (5):427–442.

    Article  PubMed  CAS  Google Scholar 

  184. Robertson FM, Woodward WA, Pickei R, Ye Z, Bornmann W, Pal A, Peng Z, Hall CS, Cristofanilli M (2010) Suberoylanilide hydroxamic acid blocks self-renewal and homotypic aggregation of inflammatory breast cancer spheroids. Cancer 116 (11 Suppl):2760–2767.

    Article  PubMed  CAS  Google Scholar 

  185. You JS, Kang JK, Seo DW, Park JH, Park JW, Lee JC, Jeon YJ, Cho EJ, Han JW (2009) Depletion of embryonic stem cell signature by histone deacetylase inhibitor in NCCIT cells: involvement of Nanog suppression. Cancer Res 69 (14):5716–5725.

    Article  PubMed  CAS  Google Scholar 

  186. Sneath RJ, Mangham DC (1998) The normal structure and function of CD44 and its role in neoplasia. Mol Pathol 51 (4):191–200.

    Article  PubMed  CAS  Google Scholar 

  187. Bourguignon LY, Peyrollier K, Xia W, Gilad E (2008) Hyaluronan-CD44 interaction activates stem cell marker Nanog, Stat-3-mediated MDR1 gene expression, and ankyrin-regulated multidrug efflux in breast and ovarian tumor cells. J Biol Chem 283 (25):17635–17651.

    Article  PubMed  CAS  Google Scholar 

  188. Parrott JA, Kim G, Skinner MK (2000) Expression and action of kit ligand/stem cell factor in normal human and bovine ovarian surface epithelium and ovarian cancer. Biol Reprod 62 (6):1600–1609.

    Article  PubMed  CAS  Google Scholar 

  189. Murdoch C, Muthana M, Coffelt SB, Lewis CE (2008) The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8 (8):618–631.

    Article  PubMed  CAS  Google Scholar 

  190. Inoue M, Kyo S, Fujita M, Enomoto T, Kondoh G (1994) Coexpression of the c-kit receptor and the stem cell factor in gynecological tumors. Cancer Res 54 (11):3049–3053.

    PubMed  CAS  Google Scholar 

  191. Bussing I, Slack FJ, Grosshans H (2008) let-7 microRNAs in development, stem cells and cancer. Trends Mol Med 14 (9):400–409.

    Article  PubMed  CAS  Google Scholar 

  192. Han J (2006) MyD88 beyond Toll. Nat Immunol 7 (4):370–371.

    Article  PubMed  CAS  Google Scholar 

  193. Chambers I, Tomlinson SR (2009) The transcriptional foundation of pluripotency. Development 136 (14):2311–2322.

    Article  PubMed  CAS  Google Scholar 

  194. Yoshida A, Rzhetsky A, Hsu LC, Chang C (1998) Human aldehyde dehydrogenase gene family. Eur J Biochem 251 (3):549–557.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth P. Nephew .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fang, F., Balch, C., Li, M., Pilrose, J.M., Nephew, K.P. (2011). Cancer Stem Cells in Ovarian Cancer. In: Allan, A. (eds) Cancer Stem Cells in Solid Tumors. Stem Cell Biology and Regenerative Medicine. Humana Press. https://doi.org/10.1007/978-1-61779-246-5_9

Download citation

Publish with us

Policies and ethics