Skip to main content

Antiepileptic Drugs

  • Chapter
  • First Online:
Handbook of Drug Interactions

Abstract

Epilepsy is a chronic neurological disorder characterized by recurrent seizures. Estimates indicate that approximately 120 in 100,000 people in the USA seek medical attention each year as the result of experiencing a seizure. While not every patient that has a seizure has epilepsy, approximately 125,000 new cases of epilepsy are diagnosed every year. Several types of antiepileptic drugs (AEDs) with different modes of action are used in clinical practice to treat patients with epilepsy, depending on the exact underlying cause of the condition. Although these drugs provide relief for most epileptics, many of the drugs have significant side-effects, drug interactions and toxicities. This chapter provides an outline of the pharmacokinetics and pharmacodynamics of AEDs, as well as their toxicities and drug interactions, and wil provide the reader with a general outline which can be used to assist in the treatment of clinical patients as well as a guide to assist forensic toxicologists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hauser, W. A. (1992). Seizure disorders: the changes with age. Epilepsia 33 Suppl 4, S6-14.

    Article  PubMed  Google Scholar 

  2. Hauser, W. A. (1994). The prevalence and incidence of convulsive disorders in children. Epilepsia 35 Suppl 2, S1-6.

    Article  PubMed  Google Scholar 

  3. Leppik, I. E. (1993). Contemporary diagnosis and management of the patient with epilepsy. 1st edit, Handbooks in Health Care, Newtown, Pa., USA.

    Google Scholar 

  4. Dichter, M. A. (1994). Emerging insights into mechanisms of epilepsy: implications for new antiepileptic drug development. Epilepsia 35 Suppl 4, S51-7.

    Article  PubMed  Google Scholar 

  5. Garnett, W. R. (1995). Antiepileptics. In Therapeutic drug monitoring (Schumacher, G. E., ed.), pp. 345–395. Appleton & Lange, Norwalk, Conn.

    Google Scholar 

  6. Schmidt, D. & Haenel, F. (1984). Therapeutic plasma levels of phenytoin, phenobarbital, and carbamazepine: individual variation in relation to seizure frequency and type. Neurology 34, 1252–5.

    PubMed  CAS  Google Scholar 

  7. Schmidt, D., Einicke, I. & Haenel, F. (1986). The influence of seizure type on the efficacy of plasma concentrations of phenytoin, phenobarbital, and carbamazepine. Archives of Neurology 43, 263–5.

    PubMed  CAS  Google Scholar 

  8. Juul-Jensen, P. (1968). Frequency of recurrence after discontinuance of anticonvulsant therapy in patients with epileptic seizures: a new follow-up study after 5 years. Epilepsia 9, 11–6.

    Article  PubMed  CAS  Google Scholar 

  9. Camfield, P. & Camfield, C. (1994). Acute and chronic toxicity of antiepileptic medications: a selective review. Canadian Journal of Neurological Sciences 21, S7-11.

    PubMed  CAS  Google Scholar 

  10. Bowden, C. L. (1996). Role of newer medications for bipolar disorder. Journal of Clinical Psychopharmacology 16, 48 S-55 S.

    Article  PubMed  CAS  Google Scholar 

  11. McNamara, J. O. (2001). Drugs effective in the therapy of the epilepsies. In Goodman & Gilman’s the pharmacological basis of therapeutics 10th / edit. (Goodman, L. S., Gilman, A., Hardman, J. G., Limbird, L. E. & Gilman, A. G., eds.), pp. xxvii, 2148. McGraw-Hill, New York.

    Google Scholar 

  12. Browne, T. & LeDuc, B. (1995). Phenytoin: chemistry and biotransformation. In Antiepileptic drugs 4th edit. (Levy, R. H., Mattson, R. H. & Meldrum, B. S., eds.), pp. 283–300. Raven Press, New York.

    Google Scholar 

  13. Browne, T. R., Kugler, A. R. & Eldon, M. A. (1996). Pharmacology and pharmacokinetics of fosphenytoin. Neurology 46, S3-7.

    PubMed  CAS  Google Scholar 

  14. McLean, M. J. & Macdonald, R. L. (1983). Multiple actions of phenytoin on mouse spinal cord neurons in cell culture. Journal of Pharmacology & Experimental Therapeutics 227, 779–89.

    CAS  Google Scholar 

  15. Treiman, D. & Woodbury, D. (1995). Phenytoin: absorption, distribution, and excretion. In Antiepileptic drugs 4th edit. (Levy, R. H., Mattson, R. H. & Meldrum, B. S., eds.), pp. 301–314. Raven Press, New York.

    Google Scholar 

  16. Kostenbauder, H. B., Rapp, R. P., McGovren, J. P., Foster, T. S., Perrier, D. G., Blacker, H. M., Hulon, W. C. & Kinkel, A. W. (1975). Bioavailability and single-dose pharmacokinetics of intramuscular phenytoin. Clinical Pharmacology & Therapeutics 18, 449–56.

    CAS  Google Scholar 

  17. Vajda, F., Williams, F. M., Davidson, S., Falconer, M. A. & Breckenridge, A. (1974). Human brain, cerebrospinal fluid, and plasma concentrations of diphenylhydantoin and phenobarbital. Clinical Pharmacology & Therapeutics 15, 597–603.

    CAS  Google Scholar 

  18. Wallace, S. & Brodie, M. J. (1976). Decreased drug binding in serum from patients with chronic hepatic disease. European Journal of Clinical Pharmacology 09, 429–32.

    Article  PubMed  CAS  Google Scholar 

  19. Spielberg, S. P., Gordon, G. B., Blake, D. A., Mellits, E. D. & Bross, D. S. (1981). Anticonvulsant toxicity in vitro: possible role of arene oxides. Journal of Pharmacology & Experimental Therapeutics 217, 386–9.

    CAS  Google Scholar 

  20. Tozer, T. N. & Winter, M. E. (1992). Phenytoin. In Applied pharmacokinetics : principles of therapeutic drug monitoring 3rd edit. (Evans, W. E., Schentag, J. J. & Jusko, W. J., eds.), pp. Chapter 25. Applied Therapeutics, Vancouver, WA.

    Google Scholar 

  21. Kaneko, S., Battino, D., Andermann, E., Wada, K., Kan, R., Takeda, A., Nakane, Y., Ogawa, Y., Avanzini, G., Fumarola, C., Granata, T., Molteni, F., Pardi, G., Minotti, L., Canger, R., Dansky, L., Oguni, M., Lopes-Cendas, I., Sherwin, A., Andermann, F., Seni, M. H., Okada, M. & Teranishi, T. (1999). Congenital malformations due to antiepileptic drugs. Epilepsy Research 33, 145–58.

    Article  PubMed  CAS  Google Scholar 

  22. Mattson, R. H. (1996). Parenteral antiepileptic/anticonvulsant drugs. Neurology 46, S8-13.

    PubMed  CAS  Google Scholar 

  23. Liponi, D. F., Winter, M. E. & Tozer, T. N. (1984). Renal function and therapeutic concentrations of phenytoin. Neurology 34, 395–7.

    PubMed  CAS  Google Scholar 

  24. Olsen, K. M., Hiller, F. C., Ackerman, B. H. & McCabe, B. J. (1989). Effect of enteral feedings on oral phenytoin absorption. Nutrition in Clinical Practice 4, 176–8.

    Article  PubMed  CAS  Google Scholar 

  25. Berg, M. J., Fincham, R. W., Ebert, B. E. & Schottelius, D. D. (1988). Decrease of serum folates in healthy male volunteers taking phenytoin. Epilepsia 29, 67–73.

    Article  PubMed  CAS  Google Scholar 

  26. Kutt, H. (1975). Carbamazepine: chemistry and methods of determination. Advances in Neurology 11, 249–61.

    PubMed  CAS  Google Scholar 

  27. Grant, S. M. & Faulds, D. (1992). Oxcarbazepine. A review of its pharmacology and therapeutic potential in epilepsy, trigeminal neuralgia and affective disorders. Drugs 43, 873–88.

    Article  PubMed  CAS  Google Scholar 

  28. MacDonald, R. (1989). Carbamazepine. Mechanisms of action. In Antiepileptic drugs 3rd edit. (Levy, R. H., Mattson, R. H. & Meldrum, B. S., eds.), pp. 447–455. Raven Press, New York.

    Google Scholar 

  29. Waldmeier, P. C., Baumann, P. A., Wicki, P., Feldtrauer, J. J., Stierlin, C. & Schmutz, M. (1995). Similar potency of carbamazepine, oxcarbazepine, and lamotrigine in inhibiting the release of glutamate and other neurotransmitters. Neurology 45, 1907–13.

    PubMed  CAS  Google Scholar 

  30. McLean, M. J., Schmutz, M., Wamil, A. W., Olpe, H. R., Portet, C. & Feldmann, K. F. (1994). Oxcarbazepine: mechanisms of action. Epilepsia 35 Suppl 3, S5-9.

    Article  PubMed  Google Scholar 

  31. Schmutz, M., Brugger, F., Gentsch, C., McLean, M. J. & Olpe, H. R. (1994). Oxcarbazepine: preclinical anticonvulsant profile and putative mechanisms of action. [see comments.]. Epilepsia 35 Suppl 5, S47-50.

    Article  PubMed  Google Scholar 

  32. Morselli, P. (1989). Carbamazepine: absorption, distribution, and excretion. In Antiepileptic drugs 3rd/edit. (Levy, R. H., ed.), pp. 473–490. Raven Press, New York.

    Google Scholar 

  33. Meinardi, H. (1972). CBZ. In Antiepileptic drugs (Woodbury, D. M., Penry, J. K. & Schmidt, R. P., eds.), pp. 487–496. Raven Press, New York.

    Google Scholar 

  34. Bell, W. L., Crawford, I. L. & Shiu, G. K. (1993). Reduced bioavailability of moisture-exposed carbamazepine resulting in status epilepticus. Epilepsia 34, 1102–4.

    Article  PubMed  CAS  Google Scholar 

  35. Riad, L. E., Chan, K. K., Wagner, W. E., Jr. & Sawchuk, R. J. (1986). Simultaneous first- and zero-order absorption of carbamazepine tablets in humans. Journal of Pharmaceutical Sciences 75, 897–900.

    Article  PubMed  CAS  Google Scholar 

  36. Morselli, P. L. & Frigerio, A. (1975). Metabolism and Pharmacokinetics of Carbamazepine. Drug Metabolism Reviews 4, 97–113.

    Article  PubMed  CAS  Google Scholar 

  37. Morselli, P. L., Baruzzi, A., Gerna, M., Bossi, L. & Porta, M. (1977). Carbamazepine and carbamazepine-10, 11-epoxide concentrations in human brain. British Journal of Clinical Pharmacology 4, 535–40.

    PubMed  CAS  Google Scholar 

  38. Wisner, K. L. & Perel, J. M. (1998). Serum levels of valproate and carbamazepine in breastfeeding mother-infant pairs. Journal of Clinical Psychopharmacology 18, 167–9.

    Article  PubMed  CAS  Google Scholar 

  39. Kerr, B. & Levy, R. (1989). Carbamazepine: carbamazepine and carbamazepine-epoxide. In Antiepileptic drugs 3rd/edit. (Levy, R. H., ed.), pp. 505–520. Raven Press, New York.

    Google Scholar 

  40. Hundt, H. K., Aucamp, A. K., Muller, F. O. & Potgieter, M. A. (1983). Carbamazepine and its major metabolites in plasma: a summary of eight years of therapeutic drug monitoring. Therapeutic Drug Monitoring 5, 427–35.

    Article  PubMed  CAS  Google Scholar 

  41. Lloyd, P., Flesch, G. & Dieterle, W. (1994). Clinical pharmacology and pharmacokinetics of oxcarbazepine. Epilepsia 35 Suppl 3, S10-3.

    Article  PubMed  Google Scholar 

  42. Zakrzewska, J. M. & Patsalos, P. N. (1989). Oxcarbazepine: a new drug in the management of intractable trigeminal neuralgia. Journal of Neurology, Neurosurgery & Psychiatry 52, 472–6.

    Article  CAS  Google Scholar 

  43. Bertilsson, L. & Tomson, T. (1986). Clinical pharmacokinetics and pharmacological effects of carbamazepine and carbamazepine-10,11-epoxide. An update. Clinical Pharmacokinetics 11, 177–98.

    Article  PubMed  CAS  Google Scholar 

  44. Bertilsson, L., Hojer, B., Tybring, G., Osterloh, J. & Rane, A. (1980). Autoinduction of carbamazepine metabolism in children examined by a stable isotope technique. Clinical Pharmacology & Therapeutics 27, 83–8.

    Article  CAS  Google Scholar 

  45. Bertilsson, L., Tomson, T. & Tybring, G. (1986). Pharmacokinetics: time-dependent changes--autoinduction of carbamazepine epoxidation. Journal of Clinical Pharmacology 26, 459–62.

    PubMed  CAS  Google Scholar 

  46. Konishi, T., Naganuma, Y., Hongo, K., Murakami, M., Yamatani, M. & Okada, T. (1993). Carbamazepine-induced skin rash in children with epilepsy. European Journal of Pediatrics 152, 605–8.

    Article  PubMed  CAS  Google Scholar 

  47. Van Amelsvoort, T., Bakshi, R., Devaux, C. B. & Schwabe, S. (1994). Hyponatremia associated with carbamazepine and oxcarbazepine therapy: a review. Epilepsia 35, 181–8.

    Article  PubMed  Google Scholar 

  48. Lander, C. M. & Eadie, M. J. (1990). Antiepileptic drug intake during pregnancy and malformed offspring. Epilepsy Research 7, 77–82.

    Article  PubMed  CAS  Google Scholar 

  49. Messenheimer, J. A. (1995). Lamotrigine. Epilepsia 36 Suppl 2, S87-94.

    Article  PubMed  CAS  Google Scholar 

  50. Goa, K. L., Ross, S. R. & Chrisp, P. (1993). Lamotrigine. A review of its pharmacological properties and clinical efficacy in epilepsy. Drugs 46, 152–76.

    Article  PubMed  CAS  Google Scholar 

  51. Rambeck, B. & Wolf, P. (1993). Lamotrigine clinical pharmacokinetics. Clinical Pharmaco­kinetics 25, 433–43.

    Article  PubMed  CAS  Google Scholar 

  52. Richens, A. (1994). Safety of lamotrigine. Epilepsia 35 Suppl 5, S37-40.

    Article  PubMed  Google Scholar 

  53. Messenheimer, J., Mullens, E. L., Giorgi, L. & Young, F. (1998). Safety review of adult clinical trial experience with lamotrigine. Drug Safety 18, 281–96.

    Article  PubMed  CAS  Google Scholar 

  54. Davis, R., Peters, D. H. & McTavish, D. (1994). Valproic acid. A reappraisal of its pharmacological properties and clinical efficacy in epilepsy. Drugs 47, 332–72.

    Article  PubMed  CAS  Google Scholar 

  55. Dreifuss, F. E., Santilli, N., Langer, D. H., Sweeney, K. P., Moline, K. A. & Menander, K. B. (1987). Valproic acid hepatic fatalities: a retrospective review. Neurology 37, 379–85.

    PubMed  CAS  Google Scholar 

  56. May, R. B. & Sunder, T. R. (1993). Hematologic manifestations of long-term valproate therapy. Epilepsia 34, 1098–101.

    Article  PubMed  CAS  Google Scholar 

  57. Bjerkedal, T., Czeizel, A., Goujard, J., Kallen, B., Mastroiacova, P., Nevin, N., Oakley, G., Jr. & Robert, E. (1982). Valproic acid and spina bifida. Lancet 2, 1096.

    Article  PubMed  CAS  Google Scholar 

  58. Pisani, F., Narbone, M. & Trunfio, C. (1995). Ethosuximide: chemistry and biotransformation. In Antiepileptic drugs 4th edit. (Levy, R. H., Mattson, R. H. & Meldrum, B. S., eds.), pp. 655–658. Raven Press, New York.

    Google Scholar 

  59. Glauser, T. (2001). Ethosuximide. In The treatment of epilepsy : principles and practice 3rd edit. (Wyllie, E., ed.), pp. 881–891. Williams & Wilkins, Baltimore.

    Google Scholar 

  60. Horning, M. G., Brown, L., Nowlin, J., Lertratanangkoon, K., Kellaway, P. & Zion, T. E. (1977). Use of saliva in therapeutic drug monitoring. Clinical Chemistry 23, 157–64.

    PubMed  CAS  Google Scholar 

  61. Yamamoto, T., Pipo, J. R., Akaboshi, S. & Narai, S. (2001). Forced normalization induced by ethosuximide therapy in a patient with intractable myoclonic epilepsy. Brain & Development 23, 62–4.

    Article  CAS  Google Scholar 

  62. Gibaldi, M. (1992). Adverse drug effect-reactive metabolites and idiosyncratic drug reactions: Part I. Annals of Pharmacotherapy 26, 416–21.

    PubMed  CAS  Google Scholar 

  63. Dreifuss, F. (1995). Ethosuximide: toxicity. In Antiepileptic drugs 4th edit. (Levy, R. H., Mattson, R. H. & Meldrum, B. S., eds.), pp. 675–679. Raven Press, New York.

    Google Scholar 

  64. Schmidt, B. (1989). Potential new antiepileptic drugs: gabapentin. In Antiepileptic Drugs 3rd edit. (Levy, R. H., Mattson, R. H. & Meldrum, B. S., eds.), pp. 925–935. Raven Press, New York.

    Google Scholar 

  65. Taylor, C. P., Gee, N. S., Su, T. Z., Kocsis, J. D., Welty, D. F., Brown, J. P., Dooley, D. J., Boden, P. & Singh, L. (1998). A summary of mechanistic hypotheses of gabapentin pharmacology. Epilepsy Research 29, 233–49.

    Article  PubMed  CAS  Google Scholar 

  66. McLean, M. J. (2001). Gabapentin. In The treatment of epilepsy: principles and practice 3rd edit. (Wyllie, E., ed.), pp. 915–932. Lippincott Williams & Wilkins, Philadelphia.

    Google Scholar 

  67. Wong, M. O., Eldon, M. A., Keane, W. F., Turck, D., Bockbrader, H. N., Underwood, B. A., Sedman, A. J. & Halstenson, C. E. (1995). Disposition of gabapentin in anuric subjects on hemodialysis. Journal of Clinical Pharmacology 35, 622–6.

    PubMed  CAS  Google Scholar 

  68. Goa, K. L. & Sorkin, E. M. (1993). Gabapentin. A review of its pharmacological properties and clinical potential in epilepsy. Drugs 46, 409–27.

    Article  PubMed  CAS  Google Scholar 

  69. (March 1998). Package insert: topamax. Ortho-McNeil Pharmaceuticals, Raritan, NJ.

    Google Scholar 

  70. Privitera, M., Ficker, D. & Welty, T. (2001). Topiramate. In The treatment of epilepsy: principles and practice 3rd edit. (Wyllie, E., ed.), pp. 939–945. Lippincott Williams & Wilkins, Philadelphia.

    Google Scholar 

  71. Coulter, D., Sombati, S. & DeLorenzo, R. (1993). Selective effects of topiramate on sustained repetitive firing and spontaneous bursting in cultured hippocampal neurons. Epilepsia 34, 123.

    Google Scholar 

  72. Doose, D. R., Walker, S. A., Gisclon, L. G. & Nayak, R. K. (1996). Single-dose pharmacokinetics and effect of food on the bioavailability of topiramate, a novel antiepileptic drug. Journal of Clinical Pharmacology 36, 884–91.

    PubMed  CAS  Google Scholar 

  73. Sachdeo, R. C., Sachdeo, S. K., Walker, S. A., Kramer, L. D., Nayak, R. K. & Doose, D. R. (1996). Steady-state pharmacokinetics of topiramate and carbamazepine in patients with epilepsy during monotherapy and concomitant therapy. Epilepsia 37, 774–80.

    Article  PubMed  CAS  Google Scholar 

  74. Walker, M. C. & Sander, J. W. (1996). Topiramate: a new antiepileptic drug for refractory epilepsy. Seizure 5, 199–203.

    Article  PubMed  CAS  Google Scholar 

  75. Bourgeois, B. F. (1996). Drug interaction profile of topiramate. Epilepsia 37 Suppl 2, S14-S17.

    Article  PubMed  CAS  Google Scholar 

  76. Schachter, S. (2001). Tiagabine. In The treatment of epilepsy: principles and practice 3rd edit. (Wyllie, E., ed.), pp. 930–938. Lippincott Williams & Wilkins, Philadelphia.

    Google Scholar 

  77. Schachter, S. C. (1999). A review of the antiepileptic drug tiagabine. Clinical Neurophar-macology 22, 312–7.

    PubMed  CAS  Google Scholar 

  78. Mengel, H. (1994). Tiagabine. Epilepsia 35 Suppl 5, S81-4.

    Article  PubMed  Google Scholar 

  79. Gustavson, L. E. & Mengel, H. B. (1995). Pharmacokinetics of tiagabine, a gamma-aminobutyric acid-uptake inhibitor, in healthy subjects after single and multiple doses. Epilepsia 36, 605–11.

    Article  PubMed  CAS  Google Scholar 

  80. Bopp, B., Gustavson, L. E. & Johnson, M. (1995). Pharmacokinetics and metabolism of [14 C tiagabine] after oral administration to human subjects. Epilepsia 36, S158.

    Google Scholar 

  81. Leppik, I. E. (1995). Tiagabine: the safety landscape. Epilepsia 36 Suppl 6, S10-S13.

    Article  PubMed  CAS  Google Scholar 

  82. Faught, E. (2001). Felbamate. In The treatment of epilepsy: principles and practice 3rd edit. (Wyllie, E., ed.), pp. 953-960xxvii, 1188. Lippincott Williams & Wilkins, Philadelphia.

    Google Scholar 

  83. White, H. S., Wolf, H. H., Swinyard, E. A., Skeen, G. A. & Sofia, R. D. (1992). A neuropharmacological evaluation of felbamate as a novel anticonvulsant. Epilepsia 33, 564–72.

    Article  PubMed  CAS  Google Scholar 

  84. Adusumalli, V. E., Wichmann, J. K., Kucharczyk, N., Kamin, M., Sofia, R. D., French, J., Sperling, M., Bourgeois, B., Devinsky, O. & Dreifuss, F. E. (1994). Drug concentrations in human brain tissue samples from epileptic patients treated with felbamate. Drug Metabolism & Disposition 22, 168–70.

    CAS  Google Scholar 

  85. Wilensky, A. J., Friel, P. N., Ojemann, L. M., Kupferberg, H. J. & Levy, R. H. (1985). Pharmacokinetics of W-554 (ADD 03055) in epileptic patients. Epilepsia 26, 602–6.

    Article  PubMed  CAS  Google Scholar 

  86. Graves, N. M. (1993). Felbamate. Annals of Pharmacotherapy 27, 1073–81.

    PubMed  CAS  Google Scholar 

  87. McGee, J. H., Butler, W. H., Erikson, D. J. & Sofia, R. D. (1998). Oncogenic studies with felbamate (2-phenyl-1,3-propanediol dicarbamate). Toxicological Sciences 45, 146–51.

    Article  PubMed  CAS  Google Scholar 

  88. Kaufman, D. W., Kelly, J. P., Anderson, T., Harmon, D. C. & Shapiro, S. (1997). Evaluation of case reports of aplastic anemia among patients treated with felbamate. [see comments.]. Epilepsia 38, 1265–9.

    Article  PubMed  CAS  Google Scholar 

  89. Wagner, M. L., Remmel, R. P., Graves, N. M. & Leppik, I. E. (1993). Effect of felbamate on carbamazepine and its major metabolites. Clinical Pharmacology & Therapeutics 53, 536–43.

    Article  CAS  Google Scholar 

  90. Ben-Menachem, E. (2001). Vigabatrin. In The treatment of epilepsy : principles and practice 3rd edit. (Wyllie, E., ed.), pp. 961–968. Lippincott Williams & Wilkins, Philadelphia.

    Google Scholar 

  91. Durham, S. L., Hoke, J. F. & Chen, T. M. (1993). Pharmacokinetics and metabolism of vigabatrin following a single oral dose of [14 C]vigabatrin in healthy male volunteers. Drug Metabolism & Disposition 21, 480–4.

    CAS  Google Scholar 

  92. Grant, S. M. & Heel, R. C. (1991). Vigabatrin. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in epilepsy and disorders of motor control. [erratum appears in Drugs 1991 Aug;42(2):330.]. Drugs 41, 889–926.

    Article  PubMed  CAS  Google Scholar 

  93. (March 2000). Package insert: keppra. UCB Pharma, Smyrna, GA.

    Google Scholar 

  94. Delanty, N. & French, J. (2001). Newer antiepileptic drugs. In The treatment of epilepsy: principles and practice 3rd edit. (Wyllie, E., ed.), pp. 977–983. Lippincott Williams & Wilkins, Philadelphia.

    Google Scholar 

  95. Patsalos, P. N. (2000). Pharmacokinetic profile of levetiracetam: toward ideal characteristics. Pharmacology & Therapeutics 85, 77–85.

    Article  CAS  Google Scholar 

  96. (May 2000). Package insert: zonegran. Elan pharmaceuticals, San Francisco, CA.

    Google Scholar 

  97. Perucca, E. & Bialer, M. (1996). The clinical pharmacokinetics of the newer antiepileptic drugs. Focus on topiramate, zonisamide and tiagabine. Clinical Pharmacokinetics 31, 29–46.

    Article  PubMed  CAS  Google Scholar 

  98. Mimaki, T. (1998). Clinical pharmacology and therapeutic drug monitoring of zonisamide. Therapeutic Drug Monitoring 20, 593–7.

    Article  PubMed  CAS  Google Scholar 

  99. Gidal, B. E., Garnett, W. R. & Graves, N. M. (1999). Epilepsy. In Pharmacotherapy: a pathophysiologic approach 5th edit. (DiPiro, J. T., ed.), pp. 1031–1060. McGraw-Hill, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan L. Kanous II Pharm.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kanous, N.L., Gidal, B.E. (2012). Antiepileptic Drugs. In: Mozayani, A., Raymon, L. (eds) Handbook of Drug Interactions. Humana Press. https://doi.org/10.1007/978-1-61779-222-9_3

Download citation

Publish with us

Policies and ethics