Skip to main content

Biology of Large Dose per Fraction Irradiation

  • Chapter
  • First Online:
Intraoperative Irradiation

Part of the book series: Current Clinical Oncology ((CCO))

Abstract

Experimental radiobiology has by happenstance focused on the implications of intraoperative and high-dose-per-fraction radiotherapy in more detail than it has standard fractionated radiotherapy. This is because the majority of radiobiological literature of tumor and normal tissue features in vivo and in vitro studies in which the radiation was administered in a single fraction. Similarly, when fractionation is used experimentally, fraction sizes near the clinical 1.8–2 Gy size used for most external beam irradiation therapy (EBRT) are rarely utilized. As a result, much of our radiobiological understanding of tumor and normal tissue response should and does relate well to that observed clinically for intraoperative irradiation therapy (IORT).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thames HD, Withers HR, Peters LJ, Fletcher GH. Changes in early and late radiation responses with altered dose fractionation: implications for dose-survival relationships. Int J Radiat Oncol Biol Phys. 1982;8:219–26.

    PubMed  Google Scholar 

  2. Thames HD, Suit HD. Tumor radioresponsiveness versus fractionation sensitivity. Int J Radiat Oncol Biol Phys. 1986;12:687–91.

    PubMed  CAS  Google Scholar 

  3. Tucker SS, Thames HD, Taylor JM. How well is the probability of tumor cure after fractionated irradiation described by Poisson statistics? Radiat Res. 1990;124:273–82.

    PubMed  CAS  Google Scholar 

  4. Niemierko A, Goitein M. Implementation of a mode006C for estimating tumor control probability for an inhomogeneously irradiated tumor. Radiother Oncol. 1993;29:140–7.

    PubMed  CAS  Google Scholar 

  5. Strandqvist M. Time-dose relationship. Acta Radiol. 1944;Suppl. 55.

    Google Scholar 

  6. Andrews JR, Coppedge TO. The dose-time relationship for the cure of squamous cell carcinoma. Am J Roentgenol. 1951;65:934–9.

    CAS  Google Scholar 

  7. Johnstone PAS, DeLuca AM, Bacher JD, et al. Clinical toxicity of peripheral nerve to intraoperative radiotherapy in a canine model. Int J Radiat Oncol Biol Phys. 1995;32:1031–4.

    PubMed  CAS  Google Scholar 

  8. Vujaskovic Z, Gillette SM, Powers BE, et al. Intraoperative radiation (IORT) injury to sciatic nerve in a large animal model. Radiother Oncol. 1994;30:133–9.

    PubMed  CAS  Google Scholar 

  9. Emami B, Lyman J, Brown A, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21:109–22.

    PubMed  CAS  Google Scholar 

  10. Fajardo LF. Pathology of radiation injury. New York: Masson Publishing USA, Inc; 1982.

    Google Scholar 

  11. Okunieff P, Dols S, Lee J, et al. Angiogenesis determines blood flow, metabolism, growth rate, and ATPase kinetics of tumors growing in an irradiated bed: 31P and 2 H nuclear magnetic resonance studies. Cancer Res. 1991;51:3289–95.

    PubMed  CAS  Google Scholar 

  12. Mazur W, Ali MN, Khan MM, et al. High dose rate intracoronary radiation for inhibition of neointimal formation in the stented and balloon-injured porcine models of restenosis: angiographic, morphometric, and histopathologic analyses. Int J Radiat Oncol Biol Phys. 1996;36:777–88.

    PubMed  CAS  Google Scholar 

  13. Hancock SL, Donaldson SS, Hoppe RT. Cardiac disease following treatment of Hodgkin’s disease in children and adolescents. J Clin Oncol. 1993;11:1208–15.

    PubMed  CAS  Google Scholar 

  14. Johnstone PAS, Sprague M, DeLuca AM, et al. Effects of intraoperative radiotherapy on vascular grafts in a canine model. Int J Radiat Oncol Biol Phys. 1994;29:1015–25.

    PubMed  CAS  Google Scholar 

  15. Rubin P, Cassarett GW. Clinical radiation pathology. Philadelphia: W.B. Saunders; 1968.

    Google Scholar 

  16. Flickinger JC, Lunsford LD, Kondziolka D. Dose prescription and dose-volume effects in radiosurgery. Stereotactic Radiosurg. 1992;3:51–9.

    CAS  Google Scholar 

  17. Flickinger JC, Lunsford LD, Wu A, Kalend A. Predicted dose-volume isoeffect curves for stereotactic radiosurgery with the 60Co gamma unit. Acta Oncol. 1991;30:363–7.

    PubMed  CAS  Google Scholar 

  18. Flickinger JC. An intergrated logistic formula for prediction of complications from radiosurgery. Int J Radiat Oncol Biol Phys. 1989;17:879–85.

    PubMed  CAS  Google Scholar 

  19. Kapp DS, Fischer D, Gutierrez E, Kohorn EI, Schwartz PE. Pretreatment prognositc factors in carcinoma of the uterine cervix: a multivariable analysis of the effect of age, stage, histology and blood counts on survival. Int J Radiat Oncol Biol Phys. 1983;9:445–55.

    PubMed  CAS  Google Scholar 

  20. Roberston JM, Ten Haken RK, Hazuka MB, et al. Dose escalation for non-small cell lung cancer using conformal radiation therapy. Int J Radiat Oncol Biol Phys. 1997;37:1079–85.

    Google Scholar 

  21. Cromheecke M, Vermeij J, Grond AJK, Konings AWT, Oldhoff J, Hoekstra HJ. Tissue tolerance of normal and surgically manipulated canine liver to intraoperative radiation therapy (IORT). Int J Radiat Oncol Biol Phys. 1993;27:1141–6.

    PubMed  CAS  Google Scholar 

  22. Sindelar WF, Tepper JE, Kinsella TJ, et al. Late effects of intraoperative radiation therapy on retroperitoneal tissues, intestine, and bile duct in a large animal model. Int J Radiat Oncol Biol Phys. 1994;29:781–8.

    PubMed  CAS  Google Scholar 

  23. Shaw EG, Gunderson LL, Martin JK, Beart RW, Nagorney DM, Podratz KC. Peripheral nerve and ureteral tolerance to intraoperative radiation therapy: clinical and dose-response analysis. Radiother Oncol. 1990;18:247–55.

    PubMed  CAS  Google Scholar 

  24. Down JD, Tarbell NJ, Thames HD, Mauch PM. Syngeneic and allogeneic bone marrow engraftment after total body irradiation: dependence on dose, dose rate, and fractionation. Blood. 1991;77:661–9.

    PubMed  CAS  Google Scholar 

  25. Tarbell NJ, Amato DA, Down JD, Mauch P, Hellman S. Fractionation and dose rate effects in mice: a model for bone marrow transplantation in man. Int J Radiat Oncol Biol Phys. 1987;13:1065–9.

    PubMed  CAS  Google Scholar 

  26. Hall EJ. Radiation dose-rate: a factor of importance in radiobiology and radiotherapy. Br J Radiol. 1972;45:81–5.

    PubMed  CAS  Google Scholar 

  27. Helzlsouer KJ, Harris EL, Parshad R, Perry HR, Price FM, Sanford KK. DNA repair proficiency: potential susceptibility factor for breast cancer. J Natl Cancer Inst. 1996;88:754–5.

    PubMed  CAS  Google Scholar 

  28. Hart RM, Kimler BF, Evans RG, Park CH. Radiotherapeutic management of medulloblastoma in a pediatric patient with ataxia telangiectasia. Int J Radiat Oncol Biol Phys. 1987;13:1237–40.

    PubMed  CAS  Google Scholar 

  29. Deeg HJ, Socie’ G, Schoch G, et al. Malignancies after marrow transplantation for aplastic anemia and Fanconi anemia: a joint Seattle and Paris analysis of results in 700 patients. Blood. 1996;87:386–92.

    PubMed  CAS  Google Scholar 

  30. Soranson J, Denekamp J. Precipitation of latent renal radiation injury by unilateral nephrectomy. Br J Cancer Suppl. 1986;7:268–72.

    PubMed  CAS  Google Scholar 

  31. Otsuka M, Meistrich ML. Acceleration of late radiation damage of the kidney by unilateral nephrectomy. Int J Radiat Oncol Biol Phys. 1992;22:71–8.

    PubMed  CAS  Google Scholar 

  32. Brock WA, Baker FL, Tofilon PJ. Tumor cell sensitivities to drugs and radiation. In: Chapman JD, Peters LJ, Withers HR, editors. Prediction of tumor treatment response. New York: Pergamon Press; 139. p. 156–1989.

    Google Scholar 

  33. Donaldson SC, Click JM, Wilbur JR. Adriamycin activating a recall phenomenon after radiation therapy. Ann Intern Med. 1974;81:407–8.

    PubMed  CAS  Google Scholar 

  34. Belli JA, Piro AJ. The interaction between radiation and adriamycin damage in mammalian cells. Cancer Res. 1977;37:1624–30.

    PubMed  CAS  Google Scholar 

  35. De Angelis LM, Shapiro WR. Drug/radiation interactions and central nervous system injury. In: Gutin PH, Leibel SA, Sheline GE, editors. Radiation injury to the nervous system. New York: Raven Press; 1991.

    Google Scholar 

  36. Dorie MJ, Bedarida G, Kallman RF. Protection by interleukin 1 against lung toxicity caused by cyclophosphamide and irradiation. Radiat Res. 1991;128:316–9.

    PubMed  CAS  Google Scholar 

  37. Jagannath S, Dicke KA, Armitage JO, et al. High-dose cyclophosphamide, carmustine, and etoposide, and autologous bone marrow transplantation for relapsed Hodgkin’s disease. Ann Intern Med. 1986;104:163–8.

    PubMed  CAS  Google Scholar 

  38. Kyriazis AP, Yagoda A, Kereiakes JG, Kyriazis AA, Whitmore WF. Experimental studies on the radiation-modifying effect of Cis-diamminedichloroplatinum II (DDP) in human bladder transitional cell carcinomas grown in nude mice. Cancer. 1983;52:452–7.

    PubMed  CAS  Google Scholar 

  39. Stewart FA, Luts A, Begg AC. Tolerance of previously irradiated mouse kidneys to cis-­Diamminedichloroplatinum (II). Cancer Res. 1987;47:1016–21.

    PubMed  CAS  Google Scholar 

  40. Shipley WU, Coombs LJ, Einstein AB, Soloway MS, Wajsman Z, Prout GR, et al. Cisplatin and full dose irradiation for patients with invasive bladder carcinoma: a preliminary report of tolerance and local response. J Urol. 1984;132:899–903.

    PubMed  CAS  Google Scholar 

  41. Stewart F, Bohlken S, Begg A, Bartelink H. Renal damage in mice after treatment with cisplatinum alone or in combination with x-irradiation. Int J Radiat Oncol Biol Phys. 1986;12(6):927–33.

    PubMed  CAS  Google Scholar 

  42. Stewart FA, Oussoren Y, Bartelink H. The influence of cisplatin on the response of mouse kidneys to multifraction irradiation. Radiother Oncol. 1989;15:93–102.

    PubMed  CAS  Google Scholar 

  43. Coughlin CT, Richmond RC. Biologic and clinical developments of cisplatin combined with radiation: concepts, utility, projections for new trials, and the emergence of carboplatin. Semin Oncol. 1989;16:31–43.

    PubMed  CAS  Google Scholar 

  44. Dewit L, Oussoren Y, Bartelink H. Early and late damage in the mouse rectum after irradiation and cis-­diamminedichloroplatinum (II). Radiother Oncol. 1987;8:57–69.

    PubMed  CAS  Google Scholar 

  45. Dritschilo A, Piro AJ, Kelman AD. The effect of cis-platinum on the repair of radiation damage in plateau phase Chinese hamster (V-79) cells. Int J Radiat Oncol Biol Phys. 1979;5:1345–9.

    PubMed  CAS  Google Scholar 

  46. Sun JR, Brown JM. Lack of differential radiosensitization of hypoxic cells in a mouse tumor at low radiation doses per fraction by cisplatin. Radiat Res. 1993;133(2):252–6.

    PubMed  CAS  Google Scholar 

  47. Walther MM, Delaney TF, Smith PD, Friauf WS, Thomas GF, Shawker TH, Vargas MP, Choyke PL, Linehan WM, Abraham EH, Okunieff PG, Glatstein E. Phase I trial of photodynamic therapy in the treatment of recurrent superficial transitional cell carcinoma of the bladder. Urology. 1997 Aug;50(2):199–206.

    Google Scholar 

  48. Melvik JE, Pettersen EO. Oxygen- and temperature-dependent cytotoxic and radiosensitizing effects of cis-dichlorodiammineplatinum (II) on human NHIK 3025 cells in vitro. Radiat Res. 1988;114(3):489–99.

    PubMed  CAS  Google Scholar 

  49. Skov KA, Farrell NP, Adomat H. Platinum complexes with one radiosensitizing ligand [PtC12(NH3) (sensitizer)]: radiosensitization and toxicity studies in vitro. Radiat Res. 1987;112(2):273–82.

    PubMed  CAS  Google Scholar 

  50. Pfeffer MR, Teicher BA, Holden S, Al-Achi A, Herman TS. The interaction of cisplatin plus etoposide with radiation  ±  hyperthermia. Int J Radiat Oncol Biol Phys. 1990;19:1439–47.

    PubMed  CAS  Google Scholar 

  51. Teicher BA, Holden SA, Al-Achi A, Herman TS. Classification of antineoplasic treatments by their differential toxicity toward putative oxygenated and hypoxic tumor subpopulations in vivo in the FSaIIC murine fibrosarcoma. Cancer Res. 1990;50:3339–44.

    PubMed  CAS  Google Scholar 

  52. McGinn CJ, Shewach DS, Lawrence TS. Radiosensitizing nucleosides. J Natl Cancer Inst. 1996;88:1193–203.

    PubMed  CAS  Google Scholar 

  53. Gunderson LL, Nelson H, Martenson JA, et al. Locally advanced primary colorectal cancer: intraoperative electron and external beam irradiation  ±  5-FU. Int J Radiat Oncol Biol Phys. 1997;37:601–14.

    PubMed  CAS  Google Scholar 

  54. Milas L, Hunter NR, Mason KA, Kurdoglu B, Peters LJ. Enhancement of tumor radioresponse of a murine mammary carcinoma by paclitaxel. Cancer Res. 1994;54:3506–10.

    PubMed  CAS  Google Scholar 

  55. Milross CG, Mason KA, Hunter NR, Chung WK, Peters LJ, Milas L. Relationship of mitotic arrest and apoptosis to antitumor effect of paclitaxel. J Natl Cancer Inst. 1996;88:1308–14.

    PubMed  CAS  Google Scholar 

  56. Liebmann J, Cook JA, Fisher J, Teague D, Mitchell JB. Changes in radiation survival curve parameter in human tumor and rodent cells exposed to paclitaxel (Taxol). Int J Radiat Oncol Biol Phys. 1994;29:559–64.

    PubMed  CAS  Google Scholar 

  57. Kaufmann SH, Peereboom D, Buckwalter CA, et al. Cytotoxic effects of topotecan combined with various anticancer agents in human cancer cell lines. J Natl Cancer Inst. 1996;88:734–41.

    PubMed  CAS  Google Scholar 

  58. Kim JH, Kim SH, Kolozsvary A, Khyil MS. Potentiation of radiation response in human carcinoma cells in vitro and murine fibrosarcoma in vivo by topotecan, an inhibitor of DNA topoisomerase I. Int J Radiat Oncol Biol Phys. 1992;22:515–8.

    PubMed  CAS  Google Scholar 

  59. Takimoto CH, Arbuck SG. Clinical status and optimal use of topotecan. Oncology 1997;November:1635–46.

    Google Scholar 

  60. Chen AY, Okunieff P, Pommier Y, Mitchell JB. Mammalian DNA topoisomerase I mediates the enhancement of radiation cytotoxicity by camptothecin derivatives. Cancer Res. 1997;57:1529–36.

    PubMed  CAS  Google Scholar 

  61. Hendry JH, Thames HD. Fractionation sensitivity and the oxygen effect. Br J Radiol. 1992;63:79–80.

    Google Scholar 

  62. Grau C, Nordsmark M, Khalil AA, Horsman MR, Overgaard J. Effect of carbon monoxide breathing on hypoxia and radiation response in the SCCVII tumor in vivo. Int J Radiat Oncol Biol Phys. 1994;29:449–54.

    PubMed  CAS  Google Scholar 

  63. Overgaard J. Sensitization of hypoxic tumour cells – clinical experience. Int J Radiat Biol. 1989;56:801–11.

    PubMed  CAS  Google Scholar 

  64. Okunieff PG, Suit HD. Toxicity, radiation sensitivity modification, and combined drug effects of ascorbic acid with misonidazole in vivo on FSaII murine fibrosarcomas. J Natl Cancer Inst. 1987;79:377–81.

    PubMed  CAS  Google Scholar 

  65. Suit HD, Maimonis P, Michaels HB, Sedlacek R. Comparison of hyperbaric oxygen and misonidazole in fractionated irradiation of murine tumors. Radiat Res. 1981;87:360–7.

    PubMed  CAS  Google Scholar 

  66. Rampling R, Cruickshank G, Lewis A, Fitzsimmons SA, Workman P. Direct measurement of pO2 distribution and bioreductive enzymes in human malignant brain tumors. Int J Radiat Oncol Biol Phys. 1994;29:427–31.

    PubMed  CAS  Google Scholar 

  67. Oberhaensli RD, Bore PJ, Rampling RP, Hilton-Jones D, Hands LJ, Radda GK. Biochemical investigation of human tumours in vivo with phosphorus-31 magnetic resonance spectroscopy. Lancet. 1986;5:8–11.

    Google Scholar 

  68. Vaupel P, Kallinowski F, Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 1989;49:6449–65.

    PubMed  CAS  Google Scholar 

  69. Okunieff P, Dunphy EP, Höckel M, Terris DJ, Vaupel P. The role of oxygen tension distribution on the radiation response of human breast carcinoma. Adv Exp Med Biol. 1994;345:485–92.

    PubMed  CAS  Google Scholar 

  70. Koh WJ, Rasey JS, Evans ML, et al. Imaging of hypoxia in human tumors with [F-18]Fluoromisonidazole. Int J Radiat Oncol Biol Phys. 1992;22:199–212.

    PubMed  CAS  Google Scholar 

  71. Teicher BA, Lazo JS, Satorelli AC. Classification of antineoplastic agents by their selective toxicities toward oxygenated and hypoxic tumor cells. Cancer Res. 1981;41:73–81.

    PubMed  CAS  Google Scholar 

  72. Tannock IF. Response of aerobic and hypoxic cells in a solid tumor to Adriamycin and cyclophosphamide and interaction of the drugs with radiation. Cancer Res. 1975;35:1147–53.

    Google Scholar 

  73. Sindelar WF, Kinsella TJ, Chen PW, et al. Intraoperative radiotherapy in retroperitoneal sarcomas: final results of a prospective, randomized, clinical trial. Arch Surg. 1993;128:402–10.

    PubMed  CAS  Google Scholar 

  74. Weinstein GD, Rich TA, Shumate CR, et al. Preoperative infusional chemoradiation and surgery with or without an electron beam intraoperative boost for advance primary rectal cancer. Int J Radiat Oncol Biol Phys. 1995;32:197–204.

    PubMed  CAS  Google Scholar 

  75. Okunieff P, Morgan D, Niemierko A, Suit HD. Radiation dose response of human tumors. Int J Radiat Oncol Biol Phys. 1994;32:1227–38.

    Google Scholar 

  76. Brahme A. Dosimetric precision requirements in radiation therapy. Acta Radiol Oncol. 1984;23:379–91.

    PubMed  CAS  Google Scholar 

  77. Thames HD, Schultheiss TE, Hendry JH, Tucker SL, Dubray BM, Brock WA. Can modest escalations of dose be detected as increased tumor control? Int J Radiat Oncol Biol Phys. 1992;22:241–6.

    PubMed  CAS  Google Scholar 

  78. Williams MV, Denekamp J, Fowler JF. Dose-response relationships for human tumors: implications for clinical trials of dose modifying agents. Int J Radiat Oncol Biol Phys. 1984;10:1703–7.

    PubMed  CAS  Google Scholar 

  79. Coia LR, Aaronson N, Liggood R, Loeffler J, Priestman TJ. A report of the consensus workshop panel on the treatment of brain metastases. Int J Radiat Oncol Biol Phys. 1992;23:223–7.

    PubMed  CAS  Google Scholar 

  80. Withers HR. From bedside to bench and back. In: Dewey WC, Edington M, Fry RJM, Hall EJ, Whitmore GF, editors. Radiation research: a twentieth-century perspective, vol. Volume II. San Diego: Academic Press, Inc; 1992. p. 30–70.

    Google Scholar 

  81. Goitein M, Niemierko A. Intensity modulated therapy and inhomogeneous dose to the tumor: a note of caution. Int J Radiat Oncol Biol Phys. 1996;36:519–22.

    PubMed  CAS  Google Scholar 

  82. Suit HD, Skates S, Taghian A, Okunieff P, Convery K. Clinical implications of heterogeneity of tumor response to radiation therapy. Radiother Oncol. 1992;25:251–60.

    PubMed  CAS  Google Scholar 

  83. Henríquez Hernández LA, Lara PC, Pinar B, et al. Constitutive gene expression profile segregates toxicity in locally advanced breast cancer patients treated with high-dose hyperfractionated radical radiotherapy. Radiat Oncol. 2009;4:17.

    PubMed  Google Scholar 

  84. Meadows SK, Dressman HK, Muramoto GG, et al. Gene expression signatures of radiation response are specific, durable and accurate in mice and humans. PLoS ONE. 2008;3:e1912.

    PubMed  Google Scholar 

  85. Rubin P, Finkelstein J, Shapiro D. Molecular biology mechanisms in the radiation induction of pulmonary injury syndromes: interrelationship between the alveolar macrophage and the septal fibroblast. Int J Radiat Oncol Biol Phys. 1992;24:93–101.

    PubMed  CAS  Google Scholar 

  86. Anscher MS, Peters WP, Reisenbichler H, Petros WP, Jirtle RL. Transforming growth factor β as a predictor of liver and lung fibrosis after autologous bone marrow transplantation for advanced breast cancer. N Engl J Med. 1993;328:1592–8.

    PubMed  CAS  Google Scholar 

  87. Anscher MS, Murase T, Prescott DM, et al. Changes in plasma TGFβ levels during pulmonary radiotherapy as a predictor of the risk of developing radiation pneumonitis. Int J Radiat Oncol Biol Phys. 1994;30:671–6.

    PubMed  CAS  Google Scholar 

  88. Barnes M, Duray P, DeLuca A, Anderson W, Sindelar W, Kinsella T. Tumor induction following intraoperative radiotherapy: late results of the National Cancer Institute canine trials. Int J Radiat Oncol Biol Phys. 1990;19:651–60.

    PubMed  CAS  Google Scholar 

  89. Mauch P. Second malignancies after curative radiation therapy for good prognosis cancers. Int J Radiat Oncol Biol Phys. 1995;33:959–60.

    PubMed  CAS  Google Scholar 

  90. Zietman AL, Suit HD, Okunieff PG, Donnelly SM, Dieman S, Webster S. The life shortening effects of treatment with doxorubicin and/or local irradiation on a cohort of young C3Hf/Sed mice. Eur J Cancer. 1991;27(6):778–81.

    PubMed  CAS  Google Scholar 

  91. Cance WG, Brennan MF, Dudas ME, Huang CM, Cordon-Cardo C. Altered expression of the retinoblastoma gene product in human sarcomas. N Engl J Med. 1990;323:1457–62.

    PubMed  CAS  Google Scholar 

  92. Helton KJ, Fletcher BD, Kun LE, Jenkins 3rd JJ, Pratt CB. Bone tumors other than osteosarcoma after retinoblastoma. Cancer. 1993;71:2847–53.

    PubMed  CAS  Google Scholar 

  93. Fung YK, T’Ang A. The role of the retinoblastoma gene in breast cancer development. Cancer Treat Res. 1992;61:59–68.

    PubMed  CAS  Google Scholar 

  94. Graeber TG, Osmanian C, Jacks T, et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature. 1996;379:88–91.

    PubMed  CAS  Google Scholar 

  95. Norimura T, Nomoto S, Katsuki M, Gondo Y, Kondo S. p53-dependent apoptosis suppresses radiation-induced taratogenesis. Nat Med. 1996;2:577–80.

    PubMed  CAS  Google Scholar 

  96. Harvey M, McArthur CA, Montgomery Jr CA, Butel JS, Bradley A, Donehower LA. Spontaneous and carcinogen-induced tumorigenesis in p53-deficient mice. Nat Genet. 1993;5:225–29.

    PubMed  CAS  Google Scholar 

  97. Donehower LA, Godley LA, Aldaz CM, et al. Deficiency of p53 accelerates mammary tumorigenesis in Wnt-1 transgenic mice and promotes chromosomal instability. Genes Dev. 1995;9:882–95.

    PubMed  CAS  Google Scholar 

  98. Fuks Z, Persaud RS, Alfieri A, et al. Basic fibroblast growth factor protects endothelial cells against radiation-induced programmed cell death in vitro and in vivo. Cancer Res. 1994;54:2582–90.

    PubMed  CAS  Google Scholar 

  99. Suit HD, Sedlacek R, Fagundes L, et al. Time distributions of recurrences of immunogenic and nonimmunogenic tumors following local irradiation. Radiat Res. 1978;73:251–66.

    PubMed  CAS  Google Scholar 

  100. Stone HB, Peters LJ, Milas L. Effect of host immune capability on radiocurability and subsequent transplantability of a murine fibrosarcoma. J Natl Cancer Inst. 1979;63:1229–35.

    PubMed  CAS  Google Scholar 

  101. Nesslinger NJ, Sahota RA, Stone B, et al. Standard treatments induce antigen-specific immune responses in prostate cancer. Clin Cancer Res. 2007;13:1493–502.

    PubMed  CAS  Google Scholar 

  102. Paulos CM, Kaiser A, Wrzesinski C, et al. Toll-like receptors in tumor immunotherapy. Clin Cancer Res. 2007;13(18 Pt 1):5280–9.

    PubMed  CAS  Google Scholar 

  103. Lee Y, Auh SL, Wang Y, et al. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood. 2009;114:589–95.

    PubMed  CAS  Google Scholar 

  104. Shi W, Siemann DW. Augmented antitumor effects of radiation therapy by 4-1BB antibody (BMS-469492) treatment. Anticancer Res. 2006;26(5A):3445–53.

    PubMed  CAS  Google Scholar 

  105. Ding I, Huang KD, Wang X, Greig JR, Miller RW, Okunieff P. Radioprotection of hematopoietic tissue by fibroblast growth factors in fractionated radiation experiments. Acta Oncol. 1997;36:337–40.

    PubMed  CAS  Google Scholar 

  106. Suit HD, Sedlacek R, Silver G, et al. Therapeutic gain factors to fractionated radiation treatment of spontaneous murine tumors using fast neutrons, photons plus O2 at 1 or 3 ATA, or photons plus misonidazole. Radiat Res. 1988;116:482–502.

    PubMed  CAS  Google Scholar 

  107. Suit HD, Brown JM. Relative efficacy of high-pressure oxygen and misonidazole to reduce TCD50 of a mouse mammary carcinoma. Br J Radiol. 1979;52:159–60.

    PubMed  CAS  Google Scholar 

  108. Flickinger JC, Kalend A. Use of normalized total dose to represent the biological effect of fractionated radiotherapy. Radiother Oncol. 1990;17:339–47.

    PubMed  CAS  Google Scholar 

  109. Brenner DJ, Hall EJ. Conditions for the equivalance of continuous to pulsed low dose rate brachytherapy. Int J Radiat Oncol Biol Phys. 1991;20:181–90.

    PubMed  CAS  Google Scholar 

  110. Hall EJ, Marchese M, Hei TK, Zaider M. Radiation response characteristics of human cells grown in vitro. Radiat Res. 1988;114:415–24.

    PubMed  CAS  Google Scholar 

  111. Brenner DJ, Martel MK, Hall EJ. Fractionated regimens for stereotactic radiotherapy of recurrent tumors in the brain. Int J Radiat Oncol Biol Phys. 1991;21:819–24.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Okunieff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Okunieff, P., Sundararaman, S., Metcalfe, S., Chen, Y. (2011). Biology of Large Dose per Fraction Irradiation. In: Gunderson, L., Willett, C., Calvo, F., Harrison, L. (eds) Intraoperative Irradiation. Current Clinical Oncology. Humana Press. https://doi.org/10.1007/978-1-61779-015-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-015-7_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-014-0

  • Online ISBN: 978-1-61779-015-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics