Skip to main content

Cell-Based Therapy for Stroke

  • Chapter
  • First Online:
Progenitor Cell Therapy for Neurological Injury

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Stroke is the leading cause of serious long-term disability and ranks third among all causes of mortality in the US. The only approved treatment for acute ischemic stroke is thrombolysis; no neuroprotective or neurorestorative therapies exist. Preclinical and early clinical trials have demonstrated the proof of concept in terms of efficacy, and the early safety trials are encouraging. This chapter reviews the data supporting potential mechanisms of action of progenitor cell therapy for stroke. Importantly, the translational barriers as well as considerations on the dosing regimen(s) are outlined. Finally, the outcome of the Stem Cell Therapies as an Emerging Paradigm in Stroke (STEPS) conference are reviewed, pointing the way to new investigations/trials in stroke research using stem and progenitor cell therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ASC:

Adipose-derived stem cell

BBB:

Blood–brain barrier

BDNF:

Brain-derived growth factor

BLI:

Bioluminescence imaging

BM:

Bone marrow

FDA:

US Food and Drug Administration

FGF:

Fibroblast growth factor

GDNF:

Glial-derived growth factor

hESC:

Human embryonic stem cell

HMPAO:

Hexamethylpropylene amine oxime

IA:

Intra-arterial

IC:

Intracerebral

ICV:

Intracerebroventricular/intracisternal

IGF:

Insulin-like growth factor

IL:

Interleukin

IV:

Intravenous

MAPC:

Multipotent adult progenitor cell

MCAO:

Middle cerebral artery occlusion

MNC:

Mononuclear cell

MRI:

Magnetic resonance imaging

MSC:

Mesenchymal stromal (stem) cell

NGF:

Nerve growth factor

NIH:

National Institutes of Health

NSC:

Neural stem cell

PET:

Positron emission tomography

SPECT:

Single-photon emission computed tomography

STEPS:

Stem cell Therapies as an Emerging Paradigm in Stroke

tPA:

Tissue plasminogen activator

UCBC:

Umbilical cord blood cell

VEGF:

Vascular endothelial growth factor

References

  • Amariglio EN, Hakim I, Brok-Simoni F et al (1991) Identity of rearranged LINE/c-MYC junction sequences specific for the canine transmissible venereal tumor. Proc Natl Acad Sci USA 88:8136–8139

    Article  PubMed  CAS  Google Scholar 

  • Amariglio N, Hirshberg A, Scheithauer BW et al (2009) Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med 6:e1000029

    Article  PubMed  CAS  Google Scholar 

  • Andrews EM, Tsai SY, Johnson SC et al (2008) Human adult bone marrow-derived somatic cell therapy results in functional recovery and axonal plasticity following stroke in the rat. Exp Neurol 211:588–592

    Article  PubMed  CAS  Google Scholar 

  • Arien-Zekav H, Lecht S, Bercu MM et al (2009) Neuroprotection by cord blood neural progenitors involves antioxidants, neurotrophic and angiogenic factors. Exp Neurol 216:83–94

    Article  CAS  Google Scholar 

  • Arnhold S, Lenartz D, Kruttwig K et al (2000) Differentiation of green fluorescent protein-labeled embryonic stem cell-derived neural precursor cells into Thy-1-positive neurons and glia after transplantation into adult rat striatum. J Neurosurg 93:1026–1032

    Article  PubMed  CAS  Google Scholar 

  • Bang OY, Lee JS, Lee PH et al (2005) Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol 57:874–882

    Article  PubMed  Google Scholar 

  • Bani-Yaghoub M, Felker JM, Naus CC (1999) Human NT2/D1 cells differentiate into functional astrocytes. Neuroreport 10:3843–3846

    Article  PubMed  CAS  Google Scholar 

  • Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system – a technical review. NMR Biomed 15:435–455

    Article  PubMed  Google Scholar 

  • Borlongan CV, Tajima Y, Trojanowski JQ et al (1998) Transplantation of cryopreserved human embryonal carcinoma-derived neurons (NT2N cells) promotes functional recovery in ischemic rats. Exp Neurol 149:310–321

    Article  PubMed  CAS  Google Scholar 

  • Borlongan CV, Hadman M, Sanberg CD et al (2004) Central nervous system entry of peripherally injected umbilical cord blood cells is not required for neuroprotection in stroke. Stroke 35:2385–2389

    Article  PubMed  Google Scholar 

  • Brenneman M, Sharma S, Savitz SI et al (2010) Autologous bone marrow mononuclear cells enhance recovery after acute ischemic stroke in young and middle-aged rats. J Cereb Blood Flow Metab 30:140–149

    Article  PubMed  Google Scholar 

  • Brustle O, Jones KN, Learish RD et al (1999) Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 285:754–756

    Article  PubMed  CAS  Google Scholar 

  • Buhnemann C, Scholz A, Dihne M et al (2006) Neuronal differentiation of transplanted embryonic stem cell-derived precursors in stroke lesions of adult rats. Brain 129:3238–3248

    Article  PubMed  Google Scholar 

  • Callera F and Demela CM (2007) Magnetic Resonance tracking of magnetically labeled autologous bone marrow CD34+ cells transplanted into the spinal cord via lumber puncture technique in patients with chronic spinal cord injury: CD34+ cells migration into the injured site. Stem Cell Dev 16:461–466

    Article  Google Scholar 

  • Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98:1076–1084

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Li Y, Wang L et al (2001a) Therapeutic benefits of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 32:1005–1011

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Li Y, Wang L et al (2001b) Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats. J Neurol Sci 189:49–57

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Zhang ZG, Li Y et al (2003a) Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res 92:692–699

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Li Y, Katakowski M et al (2003b) Intravenous bone marrow stromal therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J Neurosci Res 73:778–786

    Article  PubMed  CAS  Google Scholar 

  • Chu K, Kim M, Park KI et al (2004) Human neural stem cells improve sensorimotor deficits in the adult rat brain with experimental focal ischemia. Brain Res 1016:145–153

    Article  PubMed  CAS  Google Scholar 

  • Chu K, Park KI, Lee ST et al (2005) Combined treatment of vascular endothelial growth factor and human neural stem cells in experimental focal cerebral ischemia. Neurosci Res 53:384–390

    Article  PubMed  CAS  Google Scholar 

  • Copeland N, Harris D, Gaballa MA (2009) Human umbilical cord blood stem cells, myocardial infarction and stroke. Clin Med 9:342–345

    PubMed  Google Scholar 

  • Copone C, Fregerio S, Fumagalli S et al (2007) Neurosphere-derived cells exert a neuroprotective action by changing ischemic microenvironment. PLoS ONE 2:e373

    Article  CAS  Google Scholar 

  • Correa PL, Mesquita CT, Felix RM et al (2007) Assessment of intra-arterial injected autologous bone marrow mononuclear cell distribution by radioactive labeling in acute ischemic stroke. Clin Nucl Med 32:839–841

    Article  PubMed  Google Scholar 

  • Crigler L, Robey RC, Asawachaicharn A et al (2006) Human mesenchymal stem cell sub-population express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp Neurol 198:54–64

    Article  PubMed  CAS  Google Scholar 

  • Daadi MM, Li Z, Steinberg GK et al (2009a) Molecular and magnetic resonance imaging of human embryonic stem cell-derived neural stem cell grafts in ischemic rat brain. Mol Ther 7:1282–1291

    Article  CAS  Google Scholar 

  • Daadi M, Arac A, Steinberg GK et al (2009b) Grafts of human embryonic stem cell-derived neural stem cells promote neuroanatomical rewiring and connectivity with host in hypoxia ischemia model of neonates. Stroke 40:45

    Google Scholar 

  • Daadi MM, Davis AS, Steinberg GK et al (2010) Human neural stem cell grafts modify microglial response and enhance axonal sprouting in neonatal hypoxic-ischemic brain injury. Stroke 41:516–523

    Article  PubMed  Google Scholar 

  • Denes A, Vidyasagar R, Allan SM et al (2007) Proliferating resident microglia after focal cerebral ischemia in mice. J Cereb Blood Flow Metab 27:1941–1953

    Article  PubMed  CAS  Google Scholar 

  • Ding DC, Shyu WC, Li H et al (2007) Enhancement of neuroplasticity through upregulation of beta1-integrin in human umbilical cord-derived stromal cell implanted stroke model. Neurobiol Dis 27:339–353

    Article  PubMed  CAS  Google Scholar 

  • Ding G, Jiang Q, Li L et al (2008) Magnetic resonance imaging investigation of axonal remodeling and angiogenesis after embolic stroke in sildenafil-treated rats. J Cereb Blood Flow Metab 28:1440–1448

    Article  PubMed  CAS  Google Scholar 

  • Erdo F, Buhrle C, Blunk, J et al (2003) Host-dependent tumorigenesis of embryonic stem cell transplantation in experimental stroke. J Cereb Blood Flow Metab 23:780–785

    PubMed  Google Scholar 

  • Ferreira L (2009) Nanoparticles as tools to study and control stem cells. J Cell Biochem 108:746–752

    Article  PubMed  CAS  Google Scholar 

  • Flax JD, Aurora S, Yang C et al (1998) Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nat Biotechnol 16:1033–1039

    Article  PubMed  CAS  Google Scholar 

  • Gera A, Steinberg GK, Guzman R (2010) In vivo neural stem cell imaging: current modalities and future directions. Regen Med 5:73–86

    Article  PubMed  Google Scholar 

  • Gerschat S, Schira J, Kury P et al (2008) Unrestricted somatic stem cells from human umbilical cord blood can be differentiated into neurons with a dopaminergic phenotype. Stem cells Dev 17:221–232

    Article  CAS  Google Scholar 

  • Giraldi-Guimarães A, Rezende-Lima M, Mendez-Otero R et al (2009) Treatment with bone marrow mononuclear cells induces functional recovery and decreases neurodegeneration after sensorimotor cortical ischemia in rats. Brain Res 1266:108–120

    Article  CAS  Google Scholar 

  • Guzman R, Bliss T, Los Angles A et al (2008a) Neural progenitor cells transplanted into the uninjured brain undergo targeted migration after stroke onset. J Neurosci Res 86:873–882

    Article  PubMed  CAS  Google Scholar 

  • Guzman R, De Los Angeles A, Cheshier S et al (2008b) Intracarotid injection of fluorescence activated cell-sorted CD49d-positive neural stem cells improves targeted cell delivery and behavior after stroke in a mouse stroke model. Stroke 39:1300–1306

    Article  PubMed  Google Scholar 

  • Hara K, Matsukawa N, Borlongan CV et al (2007) Transplantation of post-mitotic human neuroteratocarcinoma-overexpressing Nurr1 cells provides therapeutic benefits in experimental stroke: in vitro evidence of expedited neuronal differentiation and GDNF secretion. J Neurosci Res 85:1240–1251

    Article  PubMed  CAS  Google Scholar 

  • Hara K, Yasuhara T, Borlongan CV et al (2008) Neural progenitor NT2N cell lines from teratocarcinoma for transplantation therapy in stroke. Prog Neurobiol 85:318–334

    Article  PubMed  CAS  Google Scholar 

  • Hau S, Reich DM, Scholz M et al (2008) Evidence for neuroprotective properties of human umbilical cord blood cells after neuronal hypoxia in vitro. BMC Neurosci 9:30

    Article  PubMed  CAS  Google Scholar 

  • Hauger O, Frost EE, van Heeswijk R et al (2006) MR evaluation of the glomerular homing of magnetically labeled mesenchymal stem cells in a rat model of nephropathy. Radiology 238:200–210

    Article  PubMed  Google Scholar 

  • Hayase M, Kitada M, Dezawa M et al (2009) Committed neural progenitor cells derived from genetically modified bone marrow stromal cells ameliorate deficits in a rat model of stroke. J Cereb Blood Flow Metab 29:1409–1420

    Article  PubMed  CAS  Google Scholar 

  • Hogduijn MJ, Crop MJ, Peeters AM et al (2007) Human heart, spleen, and peri-renal fat derived stem cells have immunomodulatory capacities. Stem Cells Dev 16:587–604

    Article  CAS  Google Scholar 

  • Honma T, Honmou O, Iihoshi S et al (2006) Intravenous infusion of immortalized human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. Exp Neurol 199:56–66

    Article  PubMed  CAS  Google Scholar 

  • Iihoshi S, Honmou O, Houkin K et al (2004) A therapeutic window for intravenous administration of autologous bone marrow after cerebral ischemia in adult rats. Brain Res 1007:1–9

    Article  PubMed  CAS  Google Scholar 

  • Ikeda R, Kurokawa MS, Chiba S et al (2005) Transplantation of neural cells derived from retinoic acid-treated cynomolgus monkey embryonic stem cells successfully improved motor function of hemiplegic mice with experimental brain injury. Neurobiol Dis 20:38–48

    Article  PubMed  CAS  Google Scholar 

  • Ishibashi S, Sakaguchi M, Mizusawa HJ et al (2004) Human neural stem/progenitor cells, expanded in long-term neurosphere culture, promote functional recovery after focal ischemia in Mongolian gerbils. Neurosci Res 78:215–223

    Article  CAS  Google Scholar 

  • Jiang Q, Zhang ZG, Ding GL et al (2005) Investigation of neural progenitor cell induced angiogenesis after embolic stroke in rat using MRI. Neuroimage 28:698–707

    Article  PubMed  Google Scholar 

  • Jiang Q, Zhang ZG, Ding GL et al (2006) MRI detects white matter reorganization after neural progenitor cell treatment of stroke. Neuroimage 32:1080–1089

    Article  PubMed  Google Scholar 

  • Jiang L, Newman M, Saporta S et al (2008) MIP-1alpha and MCP-1 induce migration of human umbilical cord blood cells in models of stroke. Cur Neurovasc Res 5:118–124

    Article  CAS  Google Scholar 

  • Jiang L, Womble T, Willing AE et al (2010) Human umbilical cord blood cells decrease microglial survival in vitro. Stem Cells Dev 19:221–228

    Article  PubMed  CAS  Google Scholar 

  • Kang SK, Jun ES, Bay YC, et al (2003) Interactions between human adipose stromal cells and mouse neural stem cells in vitro. Brain Res Dev Brain Res 145:141–149

    Article  PubMed  CAS  Google Scholar 

  • Keene CD, Ortiz-Gonzalez XR, Jiang Y et al (2003) Neural differentiation and incorporation of bone marrow-derived multipotent adult progenitor cells after single cell transplantation into blastocyst stage mouse embryos. Cell Transplant 12:201–213

    PubMed  Google Scholar 

  • Kelly S, Bliss TM, Steinberg GK (2004). Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proc Natl Acad Sci USA 101:11839–11844

    Article  PubMed  CAS  Google Scholar 

  • Kiessling F (2008) Noninvasive cell tracking. Handb Exp Pharmacol (185 Pt 2):305–321

    Article  PubMed  CAS  Google Scholar 

  • Kim SU (2004) Human neural stem cells genetically modified for brain repair in neurological disorders. Neuropathology 24:154–171

    Article  Google Scholar 

  • Kim SU (2007) Genetically engineered human neural stem cells for brain repair in neurological diseases. Brain Dev 29:193–201

    Article  PubMed  CAS  Google Scholar 

  • Kim DE, Schellingerhout D, Weissleder R et al (2004) Imaging of stem cell recruitment to ischemic infarcts in a murine model. Stroke 35:952–957

    Article  PubMed  Google Scholar 

  • Kim JM, Le ST, Chu K et al (2007) Systemic transplantation of human adipose stem cells attenuated cerebral inflammation and degeneration in a hemorrhagic stroke model. Brain Res 1183:43–50

    Article  PubMed  CAS  Google Scholar 

  • Kim D, Chun BG, Kim YK et al (2008a) In vivo tracking of human mesenchymal stem cells in experimental stroke. Cell transplant 16:1007–1101

    Article  PubMed  Google Scholar 

  • Kim SS, Yoo SW, Park TS et al (2008b) Neural induction with neurogenin1 increases the therapeutic effects of mesenchymal stem cells in the ischemic brain. Stem Cells 26:2217–2228

    Article  PubMed  Google Scholar 

  • Kim SU, Nagai A, Park IH et al (2008c) Production and characterization of immortal human neural stem cell line with multipotent differentiation property. Methods Mol Biol 438:103–121

    Article  PubMed  CAS  Google Scholar 

  • Koch P, Opitz T, Brustle O et al (2009) A rosette-type, self-renewing human ES cell-derived neural stem cell with potential for in vitro instruction and synaptic integration. Proc Natl Acad Sci USA 106:3225–3230

    Article  PubMed  CAS  Google Scholar 

  • Koh SH, Kim KS, Choi MR et al (2008) Implantation of human umbilical cord-derived mesenchymal stem cells as a neuroprotective therapy for ischemic stroke in rats. Brain Res 1229:233–248

    Article  PubMed  CAS  Google Scholar 

  • Kondziolka D, Wechsler L, Goldstein S et al (2000) Transplantation of cultured human neuronal cells for patients with stroke. Neurology 55:565–569

    Article  PubMed  CAS  Google Scholar 

  • Kondziolka D, Steinberg GK, Wechsler L et al (2005) Neurotransplantation for patients with subcortical motor stroke: a phase 2 randomized trial. J Neurosurg 103:38–45

    Article  PubMed  Google Scholar 

  • Kraitchman DL, Tatsumi M, Gilson WD et al (2005) Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation 112:1451–1461

    Article  PubMed  Google Scholar 

  • Kranz A, Wagner DC, Boltze J et al (2010) Transplantation of placenta-derived mesenchymal stromal cells upon experimental stroke in rats. Brain Res 1315:128–136

    Article  PubMed  CAS  Google Scholar 

  • Kurozumi K, Nakamura K, Tamiya T et al (2004) BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model. Mol Ther 9:189–197. Erratum in: Mol Ther 9:766

    Article  PubMed  CAS  Google Scholar 

  • Lee HJ, Kim KS, Kim SU et al (2007a) Brain transplantation of immortalized human neural stem cells promotes functional recovery in mouse intracerebral hemorrhage stroke model. Stem Cells 25:1204–1212

    Article  PubMed  CAS  Google Scholar 

  • Lee HJ, Kim KS, Kim SU et al (2007b) Human neural stem cells over-expressing VEGF provide neuroprotection, angiogenesis and functional recovery in mouse stroke model. PLoS One 2:e156

    Article  PubMed  CAS  Google Scholar 

  • Lee S.T, Chu K, Roh J. K et al (2008) Anti-inflammatory mechanism of intravascular neural stem cell transplantation in haemorrhagic stroke. Brain 131:616–629

    Article  PubMed  Google Scholar 

  • Li Y, Chopp M, Chen J et al (2000) Intrastriatal transplantation of bone marrow nonhemapoitic cells improves functional recovery after stroke in adult mice. J Cereb Blood Flow Metab 20:1311–1319

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Chen J, Wang L et al (2001) Treatment of stroke in rat with intracarotid administration of bone marrow stromal cells. Neurology 56:1666–1672

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Chen J, Chen XG et al (2002) Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery. Neurology 59:514–523

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Mcintosh K, Chen J et al (2006) Allogenic bone marrow stromal cells promote glial-axonal remodeling without immunological sensitization after stroke in rats. Exp Neurol 198:313–325

    Article  PubMed  CAS  Google Scholar 

  • Liao W, Xie J, Han ZC et al (2009) Therapeutic effect of human umbilical cord multipotent mesenchymal stromal cells in a rat model of stroke. Transplantation 87:350–359

    Article  PubMed  Google Scholar 

  • Lindvall O, Kokaia Z (2006) Stem cells for the treatment of neurological disorders. Nature 441:1094–1096

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Honmou O, Harada K et al (2006) Neuroprotection by PLGF gene-modified human mesenchymal stem cells after cerebral ischemia. Brain 129:2734–2745

    Article  PubMed  CAS  Google Scholar 

  • Mäkinen S, Kekarainen T, Nystedt J et al (2006) Human umbilical cord blood cells do not improve sensorimotor or cognitive outcome following transient middle cerebral artery occlusion in rats. Brain Res 1123:207–215

    Article  PubMed  CAS  Google Scholar 

  • Mendonça ML, Freitas GR, Silva SA et al (2006) Safety of intra-arterial autologous bone marrow mononuclear cell transplantation for acute ischemic stroke. Arq Bras Cardiol 86:52–55

    Article  PubMed  Google Scholar 

  • Messina DJ, Alder L, Tresco PA (2003) Comparison of pure and mixed populations of human fetal-derived neural progenitors transplanted into intact adult rat brain. Exp Neurol 184:816–829

    Article  PubMed  Google Scholar 

  • Modo M, Stroemer RP, Tang E et al (2002) Effects of implantation site of stem cell grafts on behavioral recovery from stroke damage. Stroke 33:2270–2278

    Article  PubMed  Google Scholar 

  • Modo M, Beech JS, Meade TJ et al (2009) A chronic 1 year assessment of MRI contrast agent-labelled neural stem cell transplants in stroke. Neuroimage 47:T133–T142

    Article  PubMed  Google Scholar 

  • Moore DF, Li H, Baird AE et al (2005) Using peripheral blood mononuclear cells to determine a gene expression profile of acute ischemic stroke: a pilot investigation. Circulation 111:212–221

    Article  PubMed  CAS  Google Scholar 

  • Nasef A, Mathieu N, Fouillard L et al (2007) Immunosuppressive effects of mesenchymal stem cells: involvement of HLA-G. Transplantation 84:231–237

    Article  PubMed  CAS  Google Scholar 

  • Nelson PT, Kondziolka D, Trojanowski JQ et al (2002) Clonal human (hNT) neuron grafts for stroke therapy: neuropathology in a patient 27 months after implantation. Am J Pathol 160:1201–1206

    Article  PubMed  Google Scholar 

  • Ohtaki H, Ylostalo JH, Prockop DJ et al (2008) Stem/progenitor cells from bone marrow decrease neuronal death in global ischemia by modulation of inflammatory/immune responses. Proc Natl Acad Sci USA 105:14638–14643

    Article  PubMed  CAS  Google Scholar 

  • Olanow CW, Goetz CG, Kordower JH et al (2003) A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann Neurol 54:403–414

    Article  PubMed  Google Scholar 

  • Onda T, Honmou O, Harada K et al (2008) Therapeutic benefits by human mesenchymal stem cells (hMSCs) and Ang-1 gene-modified hMSCs after cerebral ischemia. J Cereb Blood Flow Metab 28:329–340

    Article  PubMed  CAS  Google Scholar 

  • Park DH, Eve DJ, Musso Iii J et al (2009) Inflammation and stem cell migration to the injured brain in higher organisms. Stem Cell Dev 18:693–702

    Article  CAS  Google Scholar 

  • Parr AM, Tator CH, Keating A (2007) Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury. Bone Marrow Transplant 40:609–619

    Article  PubMed  CAS  Google Scholar 

  • Pavlichenko N, Sokolova I, Vijde S et al (2008) Mesenchymal stem cells transplantation could be beneficial for treatment of experimental ischemic stroke in rats. Brain Res 1233:203–213

    Article  PubMed  CAS  Google Scholar 

  • Pluchino S, Zanotti L, Rossi B et al (2005) Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature 436:266–271

    Article  PubMed  CAS  Google Scholar 

  • Pollock K, Stroemer P, Sinden JD et al (2006) A conditionally immortal clonal stem cell line from human cortical neuroepithelium for the treatment of ischemic stroke. Exp Neurol 199:143–155

    Article  PubMed  Google Scholar 

  • Rabinovich SS, Seledtsov VI, Banul NV et al (2005) Cell therapy of brain stroke. Bull Exp Biol Med 139:126–128

    Article  PubMed  CAS  Google Scholar 

  • Reubinoff BE, Itsykson P, Turetsky T et al (2001) Neural progenitors from human embryonic stem cells. Nat Biotechnol 19:1134–1140

    Article  PubMed  CAS  Google Scholar 

  • Reumers V, Deroose CM, Baekelandt V et al (2008) Noninvasive and quantitative monitoring of adult neuronal stem cell migration in mouse brain using bioluminescence imaging. Stem Cells 26:2382–2390

    Article  PubMed  Google Scholar 

  • Rice HE, Hsu EW, Sheng H et al (2007) Superparamagnetic iron oxide labeling and transplantation of adipose – derived stem cells in middle cerebral artery occlusion injured mice. Am J Roentgenol 188:1101–1108

    Google Scholar 

  • Roh JK, Jung KH, Chu K (2008) Adult stem cell transplantation in stroke: its limitations and prospects. Curr Stem Cell Res Ther 3:185–196

    Article  PubMed  CAS  Google Scholar 

  • Savitz SI, Dinsmore J, Wu J et al (2005) Neurotransplantation of fetal porcine cells in patients with basal ganglia infarcts: a preliminary safety and feasibility study. Cerebrovasc Dis 20:101–107

    Article  PubMed  Google Scholar 

  • Shen LH, Li Y, Chen J et al (2006) Intracarotid transplantation of bone marrow stromal cells increases axon-myelin remodeling after stroke. Neuroscience 137:393–399

    Article  PubMed  CAS  Google Scholar 

  • Sohur US, Emsley JG, Mitchell BD et al (2006) Adult neurogenesis and cellular brain repair with neural progenitors, precursors and stem cells. Philos Trans R Soc Lond B Biol Sci 361:1477–1497

    Article  PubMed  CAS  Google Scholar 

  • Song S, Song S, Zhang H et al (2007) Comparison of neuron-like cells derived from bone marrow stem cells to those differentiated from adult brain neural stem cells. Stem Cell Dev 16:747–756

    Article  CAS  Google Scholar 

  • Stem Cell Therapies as an Emerging Paradigm in Stroke Participants (2009) Stem Cell Therapies as an Emerging Paradigm in Stroke (STEPS): bridging basic and clinical science for cellular and neurogenic factor therapy in treating stroke. Stroke 40:510–515

    Article  Google Scholar 

  • Stroemer P, Hope A, Sinden J et al (2008) Development of a human neural stem cell line for use in recovery from disability after stroke. Front Biosci 13:2290–2292

    Article  PubMed  CAS  Google Scholar 

  • Sykova E, Jendelova P (2007) In vivo tracking of stem cells in brain and spinal cord injury. Prog Brain Res 161:367–383

    Article  PubMed  CAS  Google Scholar 

  • Taguchi A, Soma T, Tanaka H et al (2004) Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model. J Clin Invest 114:330–338

    PubMed  CAS  Google Scholar 

  • Theus MH, Wei L, Cui L et al (2008) In vitro hypoxic preconditioning of embryonic stem cells as a strategy of promoting cell survival and functional benefits after transplantation into the ischemic rat brain. Exp Neurol 210:656–670

    Article  PubMed  CAS  Google Scholar 

  • Ukai R, Honmou O, Harada K et al (2007) Mesenchymal stem cells derived from peripheral blood protects against ischemia. J Neurotrauma 24:508–520

    Article  PubMed  Google Scholar 

  • Veizovic T, Beech JS, Stroemer RP et al (2001) Resolution of stroke deficits following contralateral grafts of conditionally immortal neuroepithelial stem cells. Stroke 32:1012–1019

    Article  PubMed  CAS  Google Scholar 

  • Vendrame M, Cassady J, Newcomb J et al (2004) Infusion of human umbilical cord blood cells in a rat model of stroke dose-dependently rescues behavioral deficits and reduces infarct volume. Stroke 35:2390–2395

    Article  PubMed  Google Scholar 

  • Vendrame M, Gemma C, Willing AE et al (2005) Anti-inflammatory effects of human cord blood cells in a rat model of stroke. Stem Cells Dev 14:595–604

    Article  PubMed  CAS  Google Scholar 

  • Walczak P, Zhang J, Gilad AA et al (2008) Dual-modality monitoring of targeted intraarterial delivery of mesenchymal stem cells after transient ischemia. Stroke 39:1569–1574

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Deng Y, Zhou GQ (2008) SDF-1alpha/CXCR4-mediated migration of systemically transplanted bone marrow stromal cells towards ischemic brain lesion in a rat model. Brain Res 1195:104–112

    Article  PubMed  CAS  Google Scholar 

  • Wei L, Cui L, Snider BJ et al (2005) Transplantation of embryonic stem cells overexpressing Bcl-2 promotes functional recovery after transient cerebral ischemia. Neurobiol Dis 19:183–193

    Article  PubMed  CAS  Google Scholar 

  • Wei X, Zhao L, Du Y et al (2009) Adipose stromal cells-secreted neuroprotective media against neuronal apoptosis. Neurosci Lett 462:76–79

    Article  PubMed  CAS  Google Scholar 

  • Willing AE, Lixian J, Milliken M et al (2003a) Intravenous versus intrastriatal cord blood administration in a rodent model of stroke. J Neurosci Res 73:296–307

    Article  PubMed  CAS  Google Scholar 

  • Willing AE, Vendrame M, Mallery J et al (2003b) Mobilized peripheral blood cells administered intravenously produce functional recovery in stroke. Cell Transplant 12:449–454

    PubMed  Google Scholar 

  • Xiao J, Nan Z., Low W. C et al (2005) Transplantation of a novel cell line population of umbilical cord blood stem cells ameliorates neurological deficits associated with ischemic brain injury. Stem Cells Dev 14:722–733

    Article  PubMed  CAS  Google Scholar 

  • Xin H, Li Y, Shen LH, Chopp M et al (2010) Increasing tPA activity in astrocytes induced by multipotent mesenchymal stromal cells facilitate neurite outgrowth after stroke in the mouse. PLoS One 3;5:pe9027

    Article  CAS  Google Scholar 

  • Yashuhara T, Hara K, Maki M, et al (2010) Mannitol facilitates neurotrophic factor upregulation and behavioral recovery in neonatal hypoxic-ischemic rats with human umbilical cord blood grafts. J Cell Mol Med 14: 914–921

    Google Scholar 

  • Yamashita T, Deguchi K, Abe K (2006) Neuroprotection and neurosupplementation in ischaemic brain. Biochem Soc Trans 34:1310–1312

    Article  PubMed  CAS  Google Scholar 

  • Yu G, Burlongan CV, Stahl CE et al (2009) Systemic delivery of umbilical cord blood cells for stroke therapy: a review. Restor Neurol Neurosci 27:41–54

    PubMed  CAS  Google Scholar 

  • Zhang ZG, Jiang Q, Zhang R et al (2003) Magnetic resonance imaging and neurosphere therapy of stroke in rat. Ann Neurol 53:259–263

    Article  PubMed  Google Scholar 

  • Zhang C, Li Y, Chen J et al (2006) Bone marrow stromal cells upregulate expression of bone morphogenetic proteins 2 and 4, gap junction protein connexin-43 and synaptophysin after stroke in rats. Neuroscience 141:687–695

    Article  PubMed  CAS  Google Scholar 

  • Zheng H, Fu G, Dai T et al (2007) Migration of endothelial progenitor cells mediated by stromal cell-derived factor-1alpha/CXCR4 via PI3K/Akt/eNOS signal transduction pathway. J Cardiovasc Pharmacol 50:274–280

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Misra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Misra, V., Yang, B., Sharma, S., Savitz, S. (2011). Cell-Based Therapy for Stroke. In: Charles, S. (eds) Progenitor Cell Therapy for Neurological Injury. Stem Cell Biology and Regenerative Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-965-9_7

Download citation

Publish with us

Policies and ethics