Skip to main content

Towards a Cell Therapy for Muscular Dystrophy: Technical and Ethical Issues

  • Chapter
Translational Stem Cell Research

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1217 Accesses

Abstract

Cell therapy is moving into clinical experimentation for a number of genetic diseases, including muscular dystrophy. Cell transplantation offers new hopes for so far incurable diseases but the road to success is still long and difficult, since major obstacles remain to be overcome. These include technical hurdles such as isolation, expansion, genetic correction, and storage of cells, validation and diffusion of the protocols. In addition, serious ethical issues such as patient and donor selection, and, related to these, the increasing costs of these therapies need to be solved before cell therapy may move into a standard therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Cytoskeleton  =  a protein network that controls cell shape and its changes during locomotion or contraction

  2. 2.

    Basal lamina  =  a proteic lamina that ensheets each muscle fiber

  3. 3.

    Dystrophin  =  a cytoskeletal protein, absent in Duchenne muscular dystrophy, that maintains muscle fiber integrity

  4. 4.

    Sarcolemma  =  the plasma membrane of the muscle fiber

  5. 5.

    CD133  =  an antigen present on the surface of certain stem cells

  6. 6.

    Notch  =  a membrane protein regulating cell fate

  7. 7.

    mdx/utrophin null  =  a mouse with very severe muscular dystrophy due to simoultaneous absence of dystrophin and the similar protein utrophin

  8. 8.

    Cyclosporine A  =  an immune suppressive drug

  9. 9.

    GMP  =  Good Manifacturing Practice, a method to produce clinical grade cells, necessary for transplantation in patients

  10. 10.

    Non carrier  =  a sister that does not carry the DMD mutation in one X chromosome and is therefore completely healthy

  11. 11.

    cDNA  =  a fragment of DNA corresponding to the mature messenger RNA and able to produce a complete and functional protein

  12. 12.

    kb  =  kilobase, a measure of the length of nucleic acids

  13. 13.

    Integrating vectors  =  viral vectors (usually RNA based) able to insert into the host cell genome

  14. 14.

    Transposons  =  segments of DNA able to move in the mammalian genome from one site to another

References

  1. Emery AEH. The muscular dystrophies. Lancet 2002; 359:687–96.

    Article  PubMed  CAS  Google Scholar 

  2. Blake DJ, Weir A, Newey SE. Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol Rev 2002; 82:291–330.

    PubMed  CAS  Google Scholar 

  3. Mauro A. Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 1961; 9:493–5.

    Article  PubMed  CAS  Google Scholar 

  4. Holterman CE, Rudnicki MA. Molecular regulation of satellite cell function. Semin Cell Dev Biol 2005; 16:575–84.

    Article  PubMed  CAS  Google Scholar 

  5. Partridge TA, Morgan JE, Coulton GR, Hoffman EP, Kunkel LM. Conversion of mdx ­myofibres from dystrophin negative to positive by injection of normal myoblasts. Nature 1989; 337:176–9.

    Article  PubMed  CAS  Google Scholar 

  6. Mouly V, Aamiri A, Périé S, Mamchaoui K, Barani A, Bigot A et al. Myoblast transfer therapy: is there any light at the end of the tunnel? Acta Myol 2005; 24:128–33.

    PubMed  CAS  Google Scholar 

  7. Skuk D, Roy B, Goulet M, Chapdelaine P, Bouchard JP, Roy R et al. Dystrophin expression in myofibers of Duchenne muscular dystrophy patients following intramuscular injections of normal myogenic cells. Mol Ther 2004; 9:475–82.

    Article  PubMed  CAS  Google Scholar 

  8. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418:41–9.

    Article  PubMed  CAS  Google Scholar 

  9. Torrente Y, Belicchi M, Sampaolesi M, Pisati F, Meregalli M, D’Antona G et al. Human ­circulating AC133(+) stem cells restore dystrophin expression and ameliorate function in dystrophic skeletal muscle. J Clin Invest 2004; 114:182–95.

    PubMed  CAS  Google Scholar 

  10. Cao B, Zheng B, Jankowski RJ, Kimura S, Ikezawa M, Deasy B et al. Muscle stem cells differentiate into haematopoitic lineages but retain myogenic potential. Nat Cell Biol 2003; 7:640–6.

    Article  Google Scholar 

  11. Minasi MG, Riminucci M, De Angelis L, Borello U, Berarducci B, Innocenzi A et al. The meso-angioblast: a multipotent, selfrenewing cell that originates from the dorsal aorta and differentiates into most mesodermal tissues. Development 2002; 129:2773–83.

    PubMed  CAS  Google Scholar 

  12. Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 1998; 279:1528–30.

    Article  PubMed  CAS  Google Scholar 

  13. Gussoni E, Soneoka Y, Strickland CD, Buzney EA, Khan MK, Flint AF et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 1999; 401:390–4.

    PubMed  CAS  Google Scholar 

  14. Ikezawa M, Cao B, Qu Z, Peng H, Xiao X, Pruchnic R et al. Dystrophin delivery in ­dystrophin-deficient DMD-mdx skeletal muscle by isogenic muscle-derived stem cell transplantation. Hum Gene Ther 2003; 14:1535–46.

    Article  PubMed  CAS  Google Scholar 

  15. Corbel SY, Lee A, Yi L, Duenas J, Brazelton TR, Blau HM et al. Contribution of ­hematopoietic stem cells to skeletal muscle. Nat Med 2003; 9:1528–32.

    Article  PubMed  CAS  Google Scholar 

  16. Camargo FD, Green R, Capetanaki Y, Jackson KA, Goodell MA. Single hematopoietic stem cells generate skeletal muscle through myeloid intermediates. Nat Med 2003; 9:1520–7.

    Article  PubMed  CAS  Google Scholar 

  17. Bachrach E, Li S, Perez AL, Schienda J, Liadaki K, Volinski J et al. Systemic delivery of human microdystrophin to regenerating mouse dystrophic muscle by muscle progenitor cells. Proc Natl Acad Sci USA 2004; 101:3581–6.

    Article  PubMed  CAS  Google Scholar 

  18. Dell’Agnola C, Wang Z, Storb R, Tapscott SJ, Kuhr CS, Hauschka SD et al. Hematopoietic stem cell transplantation does not restore dystrophin expression in Duchenne muscular ­dystrophy dogs. Blood 2004; 104:4311–8.

    Article  PubMed  Google Scholar 

  19. Lapidos KA, Chen YE, Earley JU, Heydemann A, Huber JM, Chien M et al. Transplanted hematopoietic stem cells demonstrate impaired sarcoglycan expression after engraftment into cardiac and skeletal muscle. J Clin Invest 2004; 114:1577–85.

    PubMed  CAS  Google Scholar 

  20. Dezawa M, Ishikawa H, Itokazu Y, Yoshihara T, Hoshino M, Takeda S et al. Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science 2005; 8:314–7.

    Article  Google Scholar 

  21. Torrente Y, Belicchi M, Marchesi C, Dantona G, Cogiamanian F, Pisati F et al. Autologous transplantation of muscle-derived CD133+ stem cells in Duchenne muscle patients. Cell Transplant 2007; 16:563–77.

    PubMed  CAS  Google Scholar 

  22. Sampaolesi M, Torrente Y, Innocenzi A, Tonlorenzi R, D’Antona G, Pellegrino MA et al. Cell therapy of alpha sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science 2003; 301:487–92.

    Article  PubMed  CAS  Google Scholar 

  23. Sampaolesi M, Blot S, D’Antona G, Granger N, Tonlorenzi R, Innocenzi A et al. Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 2006; 444:574–9.

    Article  PubMed  CAS  Google Scholar 

  24. Berry SE, Liu J, Chaney EJ, Kaufman SJ. Multipotential mesoangioblast stem cell therapy in the mdx/utrn-/- mouse model for Duchenne muscular dystrophy. Regen Med 2007; 2:275–88.

    Article  PubMed  CAS  Google Scholar 

  25. Dellavalle A, Sampaolesi M, Tonlorenzi R, Tagliafico E, Sacchetti B, Perani L et al. Pericytes of human skeletal muscle are myogenic precursors, distinct from satellite cells. Nat Cell Biol 2007; 9:255–67.

    Article  PubMed  CAS  Google Scholar 

  26. Davies KE, Ground MD. Treating muscular dystrophy with stem cells? Cell 2007; 127:1304–6.

    Article  Google Scholar 

  27. Bretag A. Too much hype, not enough hope: Are balanced reporting and proper controls too much to expect from therapeutic studies in animal models of neuromuscular diseases that presage clinical trials in humans? Neuromuscul Disord 2007; 17:203–5.

    Article  PubMed  Google Scholar 

  28. Harper SQ. Modular flexibility of dystrophin: implications for gene therapy of Duchenne muscular dystrophy. Nat Med 2002; 8:253–61.

    Article  PubMed  CAS  Google Scholar 

  29. Benchaouir R. Restoration of human dystrophin following transplantation of exon-skipping engineered DMD patient stem cells into dystrophic mice. Cell Stem Cell 2007; 1:646–57.

    Article  PubMed  CAS  Google Scholar 

  30. Hoshiya H, Kazuki Y, Abe S, Takiguchi M, Kajitani N, Watanabe Y et al. A highly stable and nonintegrated human artificial chromosome (HAC) containing the 2.4 Mb entire human ­dystrophin gene. Mol Ther 2008; 17:309–17.

    Article  PubMed  Google Scholar 

  31. Aronovich EL, Bell JB, Khan SA, Belur LR, Gunther R, Koniar B et al. Systemic correction of storage disease in MPS I NOD/SCID mice using the sleeping beauty transposon system. Mol Ther 2009; 17:1136–44.

    Article  PubMed  CAS  Google Scholar 

  32. Arkin LM, Sondhi D, Worgall S, Suh LH, Hackett NR, Kaminsky SM et al. Confronting the issues of therapeutic misconception, enrollment decisions, and personal motives in genetic medicine-based clinical research studies for fatal disorders. Hum Gene Ther 2005; 16:1028–36.

    Article  PubMed  CAS  Google Scholar 

  33. Cossu G. Challenges in translational research. EMBO Mol Med 2009; 1:79–80.

    Article  PubMed  CAS  Google Scholar 

  34. Downs S. Ethical issue in bone marrow transplantation. Semin Oncol Nurs 1994; 10:58–63.

    Article  PubMed  CAS  Google Scholar 

  35. Stiller CR. High-tech medicine and the control of health care costs. CMAJ 1989; 140:905–8.

    PubMed  CAS  Google Scholar 

  36. Hyun I, Lindvall O, Ahrlund-Richter L, Cattaneo E, Cavazzana-Calvo M, Cossu G et al. New ISSCR guidelines underscore major principles for responsible translational stem cell research. Cell Stem Cell 2008; 4:607–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cossu, G. (2011). Towards a Cell Therapy for Muscular Dystrophy: Technical and Ethical Issues. In: Hug, K., Hermerén, G. (eds) Translational Stem Cell Research. Stem Cell Biology and Regenerative Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-959-8_6

Download citation

Publish with us

Policies and ethics