Skip to main content

Tat-3L4F: A Novel Peptide for Treating Drug Addiction by Disrupting Interaction Between PTEN and 5-HT2C Receptor

  • Chapter
  • First Online:
5-HT2C Receptors in the Pathophysiology of CNS Disease

Part of the book series: The Receptors ((REC,volume 22))

  • 1096 Accesses

Abstract

Compelling evidence has shown that the 5-HT2C receptor might be a key target for treating drug addiction. While activation of the midbrain ventral tegmental area (VTA) dopamine neurons results in the rewarding effects common to all drugs of abuse, 5-HT2C agonists instead produce inhibition of these neurons. We recently discovered that the tumor suppressor PTEN (phosphatase and tensin homolog deleted on chromosome 10) directly interacts with the third intracellular loop (3L4F) of the serotonin 5-HT2C receptor in VTA dopamine neurons. PTEN counteracts agonist-induced phosphorylation of 5-HT2C receptors and, thereby, their inactivation through its protein phosphatase activity. Moreover, we have shown that the interfering peptide Tat-3L4F effectively disrupts the protein–protein interaction between PTEN and 5-HT2C, suppresses the enhanced firing rate of VTA dopamine neurons induced by Δ9-tetrahydrocannabinol (THC), the psychoactive component of marijuana, and blocks the conditioned place preference (CPP) of THC and nicotine. Since CPP tests rely heavily on learning and memory capability, the blocking effects of Tat-3L4F on CPP may be achieved by suppressing learning and memory. Our further experiments suggest that this is unlikely. Thus, Tat-3L4F may present a potentially safer strategy for treating drug abuse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alex K, Pehek E (2007) Pharmacologic mechanisms of serotonergic regulation of dopamine neurotransmission. Pharmacol Ther 113:296–320.

    Article  PubMed  CAS  Google Scholar 

  • Alves SH, Pinheiro G, Motta V, et al (2004) Anxiogenic effects in the rat elevated plus-maze of 5-HT(2C) agonists into ventral but not dorsal hippocampus. Behav Pharmacol 15:37–43.

    Article  PubMed  CAS  Google Scholar 

  • Backstrom JR, Price RD, Reasoner DT, et al (2000) Deletion of the serotonin 5-HT2c receptor PDZ recognition motif prevents receptor phosphorylation and delays resensitization of receptor responses. J Biol Chem 275:23620–23626.

    Article  PubMed  CAS  Google Scholar 

  • Braida D, Iosue S, Pegorini S, et al (2004) Delta9-tetrahydrocannabinol-induced conditioned place preference and intracerebroventricular self-administration in rats. Eur J Pharmacol 506:63–69.

    Article  PubMed  CAS  Google Scholar 

  • Bubar MJ, Cunningham KA (2006) Serotonin 5-HT2A and 5-HT2C receptors as potential targets for modulation of psychostimulant use and dependence. Curr Top Med Chem 6:1971–1985.

    Article  PubMed  CAS  Google Scholar 

  • Carroll ME, Lac ST, Asencio M, et al (1990) Fluoxetine reduces intravenous cocaine self-administration in rats. Pharmacol Biochem Behav, 35:237–244.

    Article  PubMed  CAS  Google Scholar 

  • Di Matteo V, Di Giovanni G, Di Mascio M, et al (2000) Biochemical and electrophysiological evidence that Ro 60-0175 inhibits mesolimbic dopaminergic function through serotonin2c receptors. Brain Res 865:85–90.

    Article  PubMed  Google Scholar 

  • Di Matteo V, Cacchio M, Di Giulio C, et al (2002) Role of serotonin(2C) receptors in the control of brain dopaminergic function. Pharmacol Biochem Behav 71:727–734.

    Article  PubMed  Google Scholar 

  • Everitt BJ, Robbins TW (2005) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8:1481–1489.

    Article  PubMed  CAS  Google Scholar 

  • Ferrarl FA, Ottani R, Vivoli, D, et al (1999) Learning impairment produced in rats by the cannabinoid agonist HU 210 in a water-maze task, Pharmacol Biochem Beh 64:555–561.

    Article  Google Scholar 

  • Fletcher PJ, Chintoh AR, Sinyard J, et al (2004) Injection of the 5-HT2c receptor agonist Ro60-0175 into the ventral tegmental area reduces cocaine-induced locomotor activity and cocaine self-administration. Neuropsychopharmacology 29:308–318.

    Article  PubMed  CAS  Google Scholar 

  • Flomen R, Knight J, Sham P, et al (2004) Evidence that RNA editing modulates splice site selection in the 5-HT2C receptor gene. Nucleic Acids Res 32:2113–2122.

    Article  PubMed  CAS  Google Scholar 

  • Furnari FB, Lin H, Huang HS, et al (1997) Growth suppression of glioma cells by PTEN requires a functional phosphatase catalytic domain. Proc Natl Acad Sci USA 94:12479–12484.

    Article  PubMed  CAS  Google Scholar 

  • Grottick AJ, Fletcher PJ, Higgins GA (2000) Studies to investigate the role of 5-HT(2C) receptors on cocaine- and food-maintained behavior. J Pharmacol Exp Ther 295:1183–1191.

    PubMed  CAS  Google Scholar 

  • Grottick AJ, Corrigall WA, Higgins GA (2001) Activation of 5-HT2c receptors reduces the locomotor and rewarding effects of nicotine. Psychopharmacology 157:292–298.

    Article  PubMed  CAS  Google Scholar 

  • Halliday G, Tork I (1989) Serotonin-like immunoreactive cells and fibres in the rat ventromedial mesencephalic tegmentum. Brain Res Bull 22:725–735.

    Article  PubMed  CAS  Google Scholar 

  • Hannesson DK, Corcoran ME (2000) The effects of kindling on mnemonic function. Neurosci Biobehav Rev 24:725–751.

    Article  PubMed  CAS  Google Scholar 

  • Higgins GA, Fletcher PJ (2003) Serotonin and drug reward: focus on 5-HT2C receptors. Eur J Pharmacol 480:151–162.

    Article  PubMed  CAS  Google Scholar 

  • Hill MN, Froc DJ, Fox CJ, et al (2004) Prolonged cannabinoid treatment results in spatial working memory deficits and impaired long-term otentiation in the CA1 region of the hippocampus in vivo. Eur J Neurosci 20:859–863.

    Article  PubMed  Google Scholar 

  • Hyman SE, Malenka RC, Nestler EJ (2006) Neural mechanisms of addiction: the role of reward-related learning and memory. Ann Rev Neurosci 29:565–598.

    Article  PubMed  CAS  Google Scholar 

  • Ji SP, Zhang Y, Van Cleemput J, et al (2006) Disruption of PTEN coupling with 5-HT2C receptors suppresses behavioral responses induced by drugs of abuse. Nat Med 12:324–329.

    Article  PubMed  CAS  Google Scholar 

  • Kalivas PW, Volkow ND (2005) The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry 162:1403–1413.

    Article  PubMed  Google Scholar 

  • Kauer JA (2004) Learning mechanisms in addiction: synaptic plasticity in the ventral tegmental area as a result of exposure to drugs of abuse. Annu Rev Physiol 66:447–475.

    Article  PubMed  CAS  Google Scholar 

  • Koob GF, Moal ML (1997) Drug abuse: hedonic homeostatic dysregulation. Science 278:52–58.

    Article  PubMed  CAS  Google Scholar 

  • Lachyankar MB, Sultana N, Schonhoff CM, et al (2000) A role for nuclear PTEN in neuronal differentiation. J Neurosci 20:1404–1413.

    PubMed  CAS  Google Scholar 

  • Laviolette SR, van der Kooy D (2004) The neurobiology of nicotine addiction: bridging the gap from molecule to behavior. Nat Rev Neurosci 5:55–65.

    Article  PubMed  CAS  Google Scholar 

  • Lee FS, Rajagopal R, Chao MV (2002) Distinctive features of Trk neurotrophin receptor transactivation by G protein-coupled receptors. Cytokine Growth Factor Rev 13:11–17.

    Article  PubMed  CAS  Google Scholar 

  • Lee SP, O’Dowd BF, George SR (2003) Homo- and hetero-oligomerization of G protein-coupled receptors. Life Sci 74:173–180.

    Article  PubMed  CAS  Google Scholar 

  • Leslie NR, Downes CP (2004) PTEN function: how normal cells control it and tumour cells lose it. Biochem J 382:1–11.

    Article  PubMed  CAS  Google Scholar 

  • Li X, Zhang Y, Zhang X (2008) Tat-3L4F does not significantly affect spatial learning and memory. Behav Brain Res 193:170–173.

    Article  PubMed  CAS  Google Scholar 

  • McGregor A, Lacosta S, Roberts DC (1993) L-tryptophan decreases the breaking point under a progressive ratio schedule of intravenous cocaine reinforcement in the rat. Pharmacol Biochem Behav 44:651–655.

    Article  PubMed  CAS  Google Scholar 

  • Muller CP, Carey RJ (2006) Intracellular 5-HT2c receptor dephosphorylation: a new target for treating drug addiction. Trends Pharmacol Sci 27:455–458.

    Article  PubMed  Google Scholar 

  • Musatov S, Roberts J, Brooks AI, et al (2004) Inhibition of neuronal phenotype by PTEN in PC12 cells. Proc Natl Acad Sci USA 101:3627–3631.

    Article  PubMed  CAS  Google Scholar 

  • Myers MP, Pass I, Batty IH, et al (1998) The lipid phosphatase activity of PTEN is critical for its tumor supressor function. Proc Natl Acad Sci USA 95:13513–13518.

    Article  PubMed  CAS  Google Scholar 

  • Nestler EJ (2004) Historical review: molecular and cellular mechanisms of opiate and cocaine addiction. Trends Pharmacol Sci 25:210–218.

    Article  PubMed  CAS  Google Scholar 

  • Ning K, Pei L, Liao M, et al (2004) Dual neuroprotective signaling mediated by downregulating two distinct phosphatase activities of PTEN. J Neurosci 24:4052–4060.

    Article  PubMed  CAS  Google Scholar 

  • Remondes M, Schuman EM. (2004) Role for a cortical input to hippocampal area CA1 in the consolidation of a long-term memory. Nature 431:699–703.

    Article  PubMed  CAS  Google Scholar 

  • Richardson NR, Roberts DC (1991) Fluoxetine pretreatment reduces breaking points on a progressive ratio schedule reinforced by intravenous cocaine self-administration in the rat. Life Sci 49:833–840.

    Article  PubMed  CAS  Google Scholar 

  • Robbins TW, Everitt BJ (1999) Drug addiction: bad habits add up. Nature 398:567–570.

    Article  PubMed  CAS  Google Scholar 

  • Robbins TW, Everitt BJ (2002) Limbic–striatal memory systems and drug addiction. Neurobiol Learn Memory 78:625–636.

    Article  CAS  Google Scholar 

  • Simpson L, Parsons R (2001) PTEN: Life as a tumor suppressor. Exp Cell Res 264:29–41.

    Article  PubMed  CAS  Google Scholar 

  • Waite K, Eng C (2002) Protean PTEN: form and function. Am J Hum Genet 70:829–844.

    Article  PubMed  CAS  Google Scholar 

  • Wood MD (2003) Therapeutic potential of 5-HT2C receptor antagonists in the treatment of anxiety disorders. Curr Drug Targets CNS Neurol Disord 2:383–387.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi T, Sheen W, Morales M (2007) Glutamatergic neurons are present in the rat ventral tegmental area. Eur J Neurosci 25:106–118.

    Article  PubMed  Google Scholar 

  • Zangen A, Solinas M, Ikemoto S, et al (2006) Two brain sites for cannabinoid reward. J Neurosci 26:4901–4907.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hu, A., Jia, L., Maillet, JC., Zhang, X. (2011). Tat-3L4F: A Novel Peptide for Treating Drug Addiction by Disrupting Interaction Between PTEN and 5-HT2C Receptor. In: Di Giovanni, G., Esposito, E., Di Matteo, V. (eds) 5-HT2C Receptors in the Pathophysiology of CNS Disease. The Receptors, vol 22. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-941-3_16

Download citation

Publish with us

Policies and ethics