Skip to main content

Molecular Nomograms for Predicting Prognosis and Treatment Response

  • Chapter
  • First Online:
Bladder Tumors:

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 788 Accesses

Abstract

Human bladder cancer constitutes a heterogeneous disease characterized by, among its most common variant in Western societies, urothelial carcinoma (UC), two distinct nosologic entities: These are non muscle-invasive UC (NMIUC) and muscle-invasive UC (MIUC), which present specific management questions and are mediated by different molecular pathologic mechanisms. Logically, if differential molecular machinery can be demonstrated to underpin these pathologic states, theoretically, molecular biomarkers can be discovered to prognosticate disease course or predict susceptibility to therapeutic intervention. Thus, while NMIUC may be managed with some success through endoscopic resection, with or without adjuvant immuno- or chemotherapy (Dalbagni 2007), prediction of recurrence or evolution to MIUC is an essential prognostic challenge, as is prediction of metastatic recurrence post cystectomy in de novo MIUC cases. Finally, selection of chemotherapy among locally advanced inoperable or metastatic cases, as well as in the adjuvant or neoadjuvant settings, presents a compelling need for molecularly guided therapy. In this chapter, we present and discuss the opportunity for molecular biomarkers of prognosis or prediction of therapeutic success, focusing on novel, multiplexed molecular biomarkers rather than single targets, and spotlighting cases where such strategies are tailored to the key clinical climacterics outlined above. Molecular data, or a combination of molecular data and traditional clinicopathologic data (Shariat et al. 2008a), can be used to construct models, which upon validation in large patient cohorts, are capable of contributing important prognostic or predictive information for the management of patients. Loosely defined, such a strategy may be called a nomogram (Shariat et al. 2008b).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali-El-Dein OSAHE-HIIANMAG B (2003) Superficial bladder tumours: analysis of prognostic factors and construction of a predictive index. BJU Int 92:393–399

    Article  Google Scholar 

  • Als AB, Dyrskjot L, von der Maase H et al (2007) Emmprin and survivin predict response and survival following cisplatin-containing chemotherapy in patients with advanced bladder cancer. Clin Cancer Res 13:4407–4414

    Article  CAS  PubMed  Google Scholar 

  • Bajorin DF, Dodd PM, Mazumdar M et al (1999) Long-term survival in metastatic transitional-cell carcinoma and prognostic factors predicting outcome of therapy. J Clin Oncol 17:3173–3181

    CAS  PubMed  Google Scholar 

  • Barrett T, Suzek TO, Troup DB et al (2005) NCBI GEO: mining millions of expression profiles–database and tools. Nucleic Acids Res 33:D562–D566

    Article  CAS  PubMed  Google Scholar 

  • Bassi P, Ferrante GD, Piazza N et al (1999) Prognostic factors of outcome after radical cystectomy for bladder cancer: a retrospective study of a homogeneous patient cohort. J Urol 161:1494–1497

    Article  CAS  PubMed  Google Scholar 

  • Billerey C, Chopin D, Aubriot-Lorton M-H et al (2001) Frequent FGFR3 Mutations in Papillary Non-Invasive Bladder (pTa) Tumors. Am J Pathol 158:1955–1959

    CAS  PubMed  Google Scholar 

  • Bochner BH, Kattan MW, Vora KC (2006) Postoperative nomogram predicting risk of recurrence after radical cystectomy for bladder cancer. J Clin Oncol 24:3967–3972

    Article  PubMed  Google Scholar 

  • Botteman MF, Pashos CL, Redaelli A, Laskin B, Hauser R (2003) The health economics of bladder cancer: a comprehensive review of the published literature. Pharmacoeconomics 21:1315–1330

    Article  PubMed  Google Scholar 

  • Butte A (2002) The use and analysis of microarray data. Nat Rev Drug Discov 1:951–960

    Article  CAS  PubMed  Google Scholar 

  • Cai T, Conti G, Nesi G, Lorenzini M, Mondaini N, Bartoletti R (2007) Artificial intelligence for predicting recurrence-free probability of non-invasive high-grade urothelial bladder cell carcinoma. Oncol Rep 18:959–964

    PubMed  Google Scholar 

  • Cairns P, Proctor AJ, Knowles MA (1991) Loss of heterozygosity at the RB locus is frequent and correlates with muscle invasion in bladder carcinoma. Oncogene 6:2305–2309

    CAS  PubMed  Google Scholar 

  • Cappellen D, De Oliveira C, Ricol D et al (1999) Frequent activating mutations of FGFR3 in human bladder and cervix carcinomas. Nat Genet 23:18–20

    CAS  PubMed  Google Scholar 

  • Cheung VG, Morley M, Aguilar F, Massimi A, Kucherlapati R, Childs G (1999) Making and reading microarrays. Nat Genet 21:15–19

    Article  CAS  PubMed  Google Scholar 

  • Chow NH, Chan SH, Tzai TS, Ho CL, Liu HS (2001) Expression profiles of ErbB family receptors and prognosis in primary transitional cell carcinoma of the urinary bladder. Clin Cancer Res 7:1957–1962

    CAS  PubMed  Google Scholar 

  • Cote RJ, Dunn MD, Chatterjee SJ et al (1998) Elevated and absent pRb expression is associated with bladder cancer progression and has cooperative effects with p53. Cancer Res 58:1090–1094

    CAS  PubMed  Google Scholar 

  • Crunkhorn S (2007) Anticancer drugs: Forecasting drug responses. Nat Rev Drug Discov 6:782–783

    Article  CAS  Google Scholar 

  • Czerniak B, Cohen GL, Etkind P et al (1992) Concurrent mutations of coding and regulatory sequences of the Ha-ras gene in urinary bladder carcinomas. Hum Pathol 23:1199–1204

    Article  CAS  PubMed  Google Scholar 

  • Dalbagni G (2007) The management of superficial bladder cancer. Nat Clin Pract Urol 4:254–260

    Article  PubMed  Google Scholar 

  • Dinney CPN, McConkey DJ, Millikan RE et al (2004) Focus on bladder cancer. Cancer Cell 6:111–116

    Article  CAS  PubMed  Google Scholar 

  • Downward J (2003) Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 3:11–22

    Article  CAS  PubMed  Google Scholar 

  • Dowsett M, Dunbier AK (2008) Emerging Biomarkers and New Understanding of Traditional Markers in Personalized Therapy for Breast Cancer. Clin Cancer Res 14:8019–8026

    Article  CAS  PubMed  Google Scholar 

  • Duggan DJ, Bittner M, Chen Y, Meltzer P, Trent JM (1999) Expression profiling using cDNA microarrays. Nat Genet 21:10–14

    Article  CAS  PubMed  Google Scholar 

  • Dyrskjot L (2003) Classification of bladder cancer by microarray expression profiling: towards a general clinical use of microarrays in cancer diagnostics. Expert Rev Mol Diagn 3:635–647

    Article  CAS  PubMed  Google Scholar 

  • Dyrskjot L, Thykjaer T, Kruhoffer M et al (2003) Identifying distinct classes of bladder carcinoma using microarrays. Nat Genet 33:90–96

    Article  CAS  PubMed  Google Scholar 

  • Dyrskjot L, Kruhoffer M, Thykjaer T et al (2004) Gene expression in the urinary bladder: a common carcinoma in situ gene expression signature exists disregarding histopathological classification. Cancer Res 64:4040–4048

    Article  CAS  PubMed  Google Scholar 

  • Dyrskjot L, Zieger K, Kruhoffer M et al (2005) A molecular signature in superficial bladder carcinoma predicts clinical outcome. Clin Cancer Res 11:4029–4036

    Article  CAS  PubMed  Google Scholar 

  • Dyrskjot L, Zieger K, Real FX et al (2007) Gene expression signatures predict outcome in non-muscle-invasive bladder carcinoma: a multicenter validation study. Clin Cancer Res 13:3545–3551

    Article  PubMed  CAS  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    Article  CAS  PubMed  Google Scholar 

  • Ennis RD, Petrylak DP, Singh P et al (2000) The effect of cystectomy, and perioperative methotrexate, vinblastine, doxorubicin and cisplatin chemotherapy on the risk and pattern of relapse in patients with muscle invasive bladder cancer. J Urol 163:1413–1418

    Article  CAS  PubMed  Google Scholar 

  • Esrig D, Elmajian D, Groshen S et al (1994) Accumulation of nuclear p53 and tumor progression in bladder cancer. N Engl J Med 331:1259–1264

    Article  CAS  PubMed  Google Scholar 

  • Fitzpatrick JM, West AB, Butler MR, Lane V, O’Flynn JD (1986) Superficial bladder tumors (stage pTa, grades 1 and 2): the importance of recurrence pattern following initial resection. J Urol 135:920–922

    CAS  PubMed  Google Scholar 

  • Fleming ID, American Joint Committee on Cancer, National Cancer Institute (U.S.) et al (1997) AJCC cancer staging manual, 5th edn. Lippincott-Raven, Philadelphia

    Google Scholar 

  • Ghoneim MA, Abol-Enein H (2008) Management of muscle-invasive bladder cancer: an update. Nat Clin Pract Urol 5:501–508

    Article  PubMed  Google Scholar 

  • Grippo PJ, Sandgren EP (2000) Highly invasive transitional cell carcinoma of the bladder in a simian virus 40 T-antigen transgenic mouse model. Am J Pathol 157:805–813

    CAS  PubMed  Google Scholar 

  • Grossman HB, Natale RB, Tangen CM et al (2003) Neoadjuvant chemotherapy plus cystectomy compared with cystectomy alone for locally advanced bladder cancer. N Engl J Med 349:859–866

    Article  CAS  PubMed  Google Scholar 

  • Gusnanto A, Calza S, Pawitan Y (2007) Identification of differentially expressed genes and false discovery rate in microarray studies. Curr Opin Lipidol 18:187–193

    Article  CAS  PubMed  Google Scholar 

  • Havaleshko DM, Cho H, Conaway M et al (2007) Prediction of drug combination chemosensitivity in human bladder cancer. Mol Cancer Ther 6:578–586

    Article  CAS  PubMed  Google Scholar 

  • Heney NM, Ahmed S, Flanagan MJ et al (1983) Superficial bladder cancer: progression and recurrence. J Urol 130:1083–1086

    CAS  PubMed  Google Scholar 

  • Hernandez S, Lopez-Knowles E, Lloreta J et al (2006) Prospective study of FGFR3 mutations as a prognostic factor in nonmuscle invasive urothelial bladder carcinomas. J Clin Oncol 24:3664–3671

    Article  CAS  PubMed  Google Scholar 

  • Hoglund M, Sall T, Heim S, Mitelman F, Mandahl N, Fadl-Elmula I (2001) Identification of cytogenetic subgroups and karyotypic pathways in transitional cell carcinoma. Cancer Res 61:8241–8246

    CAS  PubMed  Google Scholar 

  • Holmang S, Hedelin H, Anderstrom C, Johansson SL (1995) The relationship among multiple recurrences, progression and prognosis of patients with stages Ta and T1 transitional cell cancer of the bladder followed for at least 20 years. J Urol 153:1823–1826, discussion 6-7

    Article  CAS  PubMed  Google Scholar 

  • Holyoake A, O’Sullivan P, Pollock R et al (2008) Development of a Multiplex RNA Urine Test for the Detection and Stratification of Transitional Cell Carcinoma of the Bladder. Clin Cancer Res 14:742–749

    Article  CAS  PubMed  Google Scholar 

  • Hunter K (2006) Host genetics influence tumour metastasis. Nat Rev Cancer 6:141–146

    Article  CAS  PubMed  Google Scholar 

  • Jebar AH, Hurst CD, Tomlinson DC, Johnston C, Taylor CF, Knowles MA (2005) FGFR3 and Ras gene mutations are mutually exclusive genetic events in urothelial cell carcinoma. Oncogene 24:5218–5225

    Article  CAS  PubMed  Google Scholar 

  • Jemal A, Siegel R, Ward E et al (2008) Cancer statistics, 2008. CA Cancer J Clin 58:71–96

    Article  PubMed  Google Scholar 

  • Joaquim B (2002) JALP-AMACJLG-LJCJJdlCVGED-RHC-FJ. Pretreatment prognostic factors for survival in patients with advanced urothelial tumors treated in a phase I/II trial with paclitaxel, cisplatin, and gemcitabine. Cancer 95:751–757

    Article  CAS  Google Scholar 

  • Karam JA, Lotan Y, Karakiewicz PI et al (2007) Use of combined apoptosis biomarkers for prediction of bladder cancer recurrence and mortality after radical cystectomy. Lancet Oncol 8:128–136

    Article  CAS  PubMed  Google Scholar 

  • Kiemeney LA, Witjes JA, Heijbroek RP, Debruyne FM, Verbeek AL (1994) Dysplasia in normal-looking urothelium increases the risk of tumour progression in primary superficial bladder cancer. Eur J Cancer 30A:1621–1625

    Article  CAS  PubMed  Google Scholar 

  • Kiyoshima K, Oda Y, Kinukawa N, Naito S, Tsuneyoshi M (2005) Overexpression of laminin-5 gamma2 chain and its prognostic significance in urothelial carcinoma of urinary bladder: association with expression of cyclooxygenase 2, epidermal growth factor receptor [corrected] and human epidermal growth factor receptor [corrected] 2. Hum Pathol 36:522–530

    Article  CAS  PubMed  Google Scholar 

  • Kompier LC, van der Aa MN, Lurkin I et al (2009) The development of multiple bladder tumour recurrences in relation to the FGFR3 mutation status of the primary tumour. J Pathol 218:104–112

    Article  CAS  PubMed  Google Scholar 

  • Kononen J, Bubendorf L, Kallioniemi A et al (1998) Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 4:844–847

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Abbas AK, Fausto N, Robbins SL, Cotran RS (2005) Robbins and Cotran pathologic basis of disease, 7th edn. Elsevier Saunders, Philadelphia

    Google Scholar 

  • Lee JK, Havaleshko DM, Cho H et al (2007) A strategy for predicting the chemosensitivity of human cancers and its application to drug discovery. Proc Natl Acad Sci USA 104:13086–13091

    Article  CAS  PubMed  Google Scholar 

  • Lindgren D, Liedberg F, Andersson A et al (2006) Molecular characterization of early-stage bladder carcinomas by expression profiles, FGFR3 mutation status, and loss of 9q. Oncogene 25:2685–2696

    Article  CAS  PubMed  Google Scholar 

  • Lockhart DJ, Dong H, Byrne MC et al (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 14:1675–1680

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Beltran A, Cheng L, Mazzucchelli R et al (2008) Morphological and Molecular Profiles and Pathways in Bladder Neoplasms. Anticancer Res 28:2893–2900

    PubMed  Google Scholar 

  • Lotan Y, Gupta A, Shariat SF et al (2005) Lymphovascular invasion is independently associated with overall survival, cause-specific survival, and local and distant recurrence in patients with negative lymph nodes at radical cystectomy. J Clin Oncol 23:6533–6539

    Article  PubMed  Google Scholar 

  • Lutzeyer W, Rubben H, Dahm H (1982) Prognostic parameters in superficial bladder cancer: an analysis of 315 cases. J Urol 127:250–252

    CAS  PubMed  Google Scholar 

  • Masters JR, Vani UD, Grigor KM et al (2003) Can p53 staining be used to identify patients with aggressive superficial bladder cancer? J Pathol 200:74–81

    Article  PubMed  Google Scholar 

  • Millan-Rodriguez F, Chechile-Toniolo G, Salvador-Bayarri J, Palou J, Vicente-Rodriguez J (2000) Multivariate analysis of the prognostic factors of primary superficial bladder cancer. J Urol 163:73–78

    Article  CAS  PubMed  Google Scholar 

  • Milowsky MI, Stadler WM, Bajorin DF (2008) Integration of neoadjuvant and adjuvant chemotherapy and cystectomy in the treatment of muscle-invasive bladder cancer. BJU Int 102:1339–1344

    Article  CAS  PubMed  Google Scholar 

  • Mitra AP, Birkhahn M, Cote RJ (2007) p53 and retinoblastoma pathways in bladder cancer. World J Urol 25:563–571

    Article  CAS  PubMed  Google Scholar 

  • Mo L (2007) Hyperactivation of Ha-ras oncogene, but not Ink4a/Arf deficiency, triggers bladder tumorigenesis. J Clin Investig 117:314–325

    Article  CAS  PubMed  Google Scholar 

  • Modlich O, Prisack HB, Pitschke G et al (2004) Identifying superficial, muscle-invasive, and metastasizing transitional cell carcinoma of the bladder: use of cDNA array analysis of gene expression profiles. Clin Cancer Res 10:3410–3421

    Article  CAS  PubMed  Google Scholar 

  • Neal DE, Sharples L, Smith K, Fennelly J, Hall RR, Harris AL (1990) The epidermal growth factor receptor and the prognosis of bladder cancer. Cancer 65:1619–1625

    Article  CAS  PubMed  Google Scholar 

  • Neoadjuvant chemotherapy in invasive bladder cancer (2003) a systematic review and meta-analysis. Lancet 361:1927–1934

    Article  CAS  Google Scholar 

  • Orlow I, Lacombe L, Hannon GJ et al (1995) Deletion of the p16 and p15 Genes in Human Bladder Tumors. J Natl Cancer Inst 87:1524–1529

    Article  CAS  PubMed  Google Scholar 

  • Orlow I, LaRue H, Osman I et al (1999) Deletions of the INK4A gene in superficial bladder tumors. Association with recurrence. Am J Pathol 155:105–113

    CAS  PubMed  Google Scholar 

  • Oxford G, Theodorescu D (2003) The role of Ras superfamily proteins in bladder cancer progression. J Urol 170:1987–1993

    Article  CAS  PubMed  Google Scholar 

  • Paik S, Shak S, Tang G et al (2004) A Multigene Assay to Predict Recurrence of Tamoxifen-Treated, Node-Negative Breast Cancer. N Engl J Med 351:2817–2826

    Article  CAS  PubMed  Google Scholar 

  • Paik S, Tang G, Shak S et al (2006) Gene Expression and Benefit of Chemotherapy in Women With Node-Negative, Estrogen Receptor-Positive Breast Cancer. J Clin Oncol 24:3726–3734

    Article  CAS  PubMed  Google Scholar 

  • Pasin E, Josephson DY, Mitra AP, Cote RJ, Stein JP (2008) Superficial bladder cancer: an update on etiology, molecular development, classification, and natural history. Rev Urol 10:31–43

    PubMed  Google Scholar 

  • Paull KD, Shoemaker RH, Hodes L et al (1989) Display and analysis of patterns of differential activity of drugs against human tumor cell lines: development of mean graph and COMPARE algorithm. J Natl Cancer Inst 81:1088–1092

    Article  CAS  PubMed  Google Scholar 

  • Pawitan Y, Michiels S, Koscielny S, Gusnanto A, Ploner A (2005) False discovery rate, sensitivity and sample size for microarray studies. Bioinformatics 21:3017–3024

    Article  CAS  PubMed  Google Scholar 

  • Pevsner J (2003) Bioinformatics and functional genomics. Wiley-Liss, Hoboken, NJ

    Google Scholar 

  • Potti A, Dressman HK, Bild A et al (2006) Genomic signatures to guide the use of chemotherapeutics. Nat Med 12:1294–1300

    Article  CAS  PubMed  Google Scholar 

  • Quackenbush J (2002) Microarray data normalization and transformation. Nat Genet 32(Suppl):496–501

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar SV, Richardson PG, Hideshima T, Anderson KC (2005) Proteasome inhibition as a novel therapeutic target in human cancer. J Clin Oncol 23:630–639

    Article  CAS  PubMed  Google Scholar 

  • Roberts PC (2008) Gene expression microarray data analysis demystified. Biotechnol Annu Rev 14:29–61

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Carbayo M (2003) Use of high-throughput DNA microarrays to identify biomarkers for bladder cancer. Clin Chem 49:23–31

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Carbayo M, Cordon-Cardo C (2003) Applications of array technology: identification of molecular targets in bladder cancer. Br J Cancer 89:2172–2177

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Carbayo M, Socci ND, Charytonowicz E et al (2002) Molecular profiling of bladder cancer using cDNA microarrays: defining histogenesis and biological phenotypes. Cancer Res 62:6973–6980

    CAS  PubMed  Google Scholar 

  • Sanchez-Carbayo M, Socci ND, Lozano JJ et al (2003) Gene discovery in bladder cancer progression using cDNA microarrays. Am J Pathol 163:505–516

    CAS  PubMed  Google Scholar 

  • Sanchez-Carbayo M, Socci ND, Lozano J, Saint F, Cordon-Cardo C (2006a) Defining molecular profiles of poor outcome in patients with invasive bladder cancer using oligonucleotide microarrays. J Clin Oncol 24:778–789

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Carbayo M, Socci ND, Lozano JJ, Haab BB, Cordon-Cardo C (2006b) Profiling Bladder Cancer Using Targeted Antibody Arrays. Am J Pathol 168:93–103

    Article  CAS  PubMed  Google Scholar 

  • Sangar VK, Ragavan N, Matanhelia SS, Watson MW, Blades RA (2005) The economic consequences of prostate and bladder cancer in the UK. BJU Int 95:59–63

    Article  PubMed  Google Scholar 

  • Santos E, Tronick SR, Aaronson SA, Pulciani S, Barbacid M (1982) T24 human bladder carcinoma oncogene is an activated form of the normal human homologue of BALB- and Harvey-MSV transforming genes. Nature 298:343–347

    Article  CAS  PubMed  Google Scholar 

  • Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470

    Article  CAS  PubMed  Google Scholar 

  • Sensen CW (2005) Handbook of genome research: genomics, proteomics, metabolomics, bioinformatics, ethical, and legal issues. Wiley-VCH, Weinheim

    Google Scholar 

  • Shaffer JP (1995) Multiple Hypothesis Testing. Annu Rev Psychol 46:561–584

    Article  Google Scholar 

  • Shariat SF, Tokunaga H, Zhou J et al (2004) p53, p21, pRB, and p16 expression predict clinical outcome in cystectomy with bladder cancer. J Clin Oncol 22:1014–1024

    Article  CAS  PubMed  Google Scholar 

  • Shariat SF, Zippe C, Ludecke G et al (2005) Nomograms including nuclear matrix protein 22 for prediction of disease recurrence and progression in patients with Ta, T1 or CIS transitional cell carcinoma of the bladder. J Urol 173:1518–1525

    Article  CAS  PubMed  Google Scholar 

  • Shariat SF, Karakiewicz PI, Ashfaq R et al (2008a) Multiple biomarkers improve prediction of bladder cancer recurrence and mortality in patients undergoing cystectomy. Cancer 112:315–325

    Article  PubMed  Google Scholar 

  • Shariat SF, Margulis V, Lotan Y, Montorsi F, Karakiewicz PI (2008b) Nomograms for bladder cancer. Eur Urol 54:41–53

    Article  PubMed  Google Scholar 

  • Shergill IS, Shergill NK, Arya M, Patel HR (2004) Tissue microarrays: a current medical research tool. Curr Med Res Opin 20:707–712

    Article  CAS  PubMed  Google Scholar 

  • Shoemaker RH (2006) The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer 6:813–823

    Article  CAS  PubMed  Google Scholar 

  • Simon R (2008) The Use of Genomics in Clinical Trial Design. Clin Cancer Res 14:5984–93

    Article  PubMed  Google Scholar 

  • Slaton JW, Swanson DA, Grossman HB, Dinney CP (1999) A stage specific approach to tumor surveillance after radical cystectomy for transitional cell carcinoma of the bladder. J Urol 162:710–714

    Article  CAS  PubMed  Google Scholar 

  • Soukup M, Cho H, Lee JK (2005) Robust classification modeling on microarray data using misclassification penalized posterior. Bioinformatics 21(Suppl 1):i423–i430

    Article  CAS  PubMed  Google Scholar 

  • Spruck CH III, Ohneseit PF, Gonzalez-Zulueta M et al (1994) Two Molecular Pathways to Transitional Cell Carcinoma of the Bladder. Cancer Res 54:784–788

    CAS  PubMed  Google Scholar 

  • Stein J, Skinner D (2006) Radical cystectomy for invasive bladder cancer: long-term results of a standard procedure. World J Urol 24:296–304

    Article  PubMed  Google Scholar 

  • Stein JP, Lieskovsky G, Cote R et al (2001) Radical Cystectomy in the Treatment of Invasive Bladder Cancer: Long-Term Results in 1, 054 Patients. J Clin Oncol 19:666–675

    CAS  PubMed  Google Scholar 

  • Sternberg CN, Yagoda A, Scher HI et al (1985) Preliminary results of M-VAC (methotrexate, vinblastine, doxorubicin and cisplatin) for transitional cell carcinoma of the urothelium. J Urol 133:403–407

    CAS  PubMed  Google Scholar 

  • Sylvester RJ, van der Meijden AP, Oosterlinck W et al (2006) Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials. Eur Urol 49:466–5, discussion 75-7

    Article  PubMed  Google Scholar 

  • Takata R, Katagiri T, Kanehira M et al (2005) Predicting response to methotrexate, vinblastine, doxorubicin, and cisplatin neoadjuvant chemotherapy for bladder cancers through genome-wide gene expression profiling. Clin Cancer Res 11:2625–2636

    Article  CAS  PubMed  Google Scholar 

  • Takata R, Katagiri T, Kanehira M et al (2007) Validation study of the prediction system for clinical response of M-VAC neoadjuvant chemotherapy. Cancer Sci 98:113–117

    Article  CAS  PubMed  Google Scholar 

  • van Oers JM, Zwarthoff EC, Rehman I et al (2009) FGFR3 Mutations Indicate Better Survival in Invasive Upper Urinary Tract and Bladder Tumours. Eur Urol 55(3):650–657

    Article  PubMed  CAS  Google Scholar 

  • van Rhijn BWG, Lurkin I, Radvanyi F, Kirkels WJ, van der Kwast TH, Zwarthoff EC (2001) The Fibroblast Growth Factor Receptor 3 (FGFR3) Mutation Is a Strong Indicator of Superficial Bladder Cancer with Low Recurrence Rate. Cancer Res 61:1265–1268

    PubMed  Google Scholar 

  • von der Maase H, Hansen SW, Roberts JT et al (2000) Gemcitabine and Cisplatin Versus Methotrexate, Vinblastine, Doxorubicin, and Cisplatin in Advanced or Metastatic Bladder Cancer: Results of a Large, Randomized, Multinational, Multicenter, Phase III Study. J Clin Oncol 18:3068–3077

    PubMed  Google Scholar 

  • von der Maase H, Sengelov L, Roberts JT et al (2005) Long-term survival results of a randomized trial comparing gemcitabine plus cisplatin, with methotrexate, vinblastine, doxorubicin, plus cisplatin in patients with bladder cancer. J Clin Oncol 23:4602–4608

    Article  PubMed  CAS  Google Scholar 

  • Wang J (2008) Computational biology of genome expression and regulation–a review of microarray bioinformatics. J Environ Pathol Toxicol Oncol 27:157–179

    CAS  PubMed  Google Scholar 

  • Wang R, Morris DS, Tomlins SA et al (2009) Development of a Multiplex Quantitative PCR Signature to Predict Progression in Non-Muscle-Invasive Bladder Cancer. Cancer Res 69:3810–3818

    Article  CAS  PubMed  Google Scholar 

  • Weight CJ, Garcia JA, Hansel DE et al (2009) Lack of pathologic down-staging with neoadjuvant chemotherapy for muscle-invasive urothelial carcinoma of the bladder: a contemporary series. Cancer 115:792–799

    Article  PubMed  Google Scholar 

  • Weinstein JN, Myers TG, O’Connor PM et al (1997) An information-intensive approach to the molecular pharmacology of cancer. Science 275:343–349

    Article  CAS  PubMed  Google Scholar 

  • Wiemer JC, Prokudin A (2004) Bioinformatics in proteomics: application, terminology, and pitfalls. Pathol Res Pract 200:173–178

    Article  CAS  PubMed  Google Scholar 

  • Wild PJ, Herr A, Wissmann C et al (2005) Gene expression profiling of progressive papillary noninvasive carcinomas of the urinary bladder. Clin Cancer Res 11:4415–4429

    Article  CAS  PubMed  Google Scholar 

  • Williams PD, Cheon S, Havaleshko DM, Jeong H, Cheng F, Theodorescu D, Lee JK. Concordant gene expression signatures predict clinical outcomes of cancer patients undergoing systemic therapy. Cancer Res. 2009 Nov 1;69(21):8302-9. Epub 2009 Oct 20

    Google Scholar 

  • Wu TD (2001) Analysing gene expression data from DNA microarrays to identify candidate genes. J Pathol 195:53–65

    Article  CAS  PubMed  Google Scholar 

  • Wu XR (2005) Urothelial tumorigenesis: a tale of divergent pathways. Nat Rev Cancer 5:713–725

    Article  CAS  PubMed  Google Scholar 

  • Xia X (2007) Bioinformatics and the cell: modern computational approaches in genomics, proteomics, and transcriptomics. Springer, New York

    Google Scholar 

  • Zhang ZT, Pak J, Shapiro E, Sun TT, Wu XR (1999) Urothelium-specific expression of an oncogene in transgenic mice induced the formation of carcinoma in situ and invasive transitional cell carcinoma. Cancer Res 59:3512–3517

    CAS  PubMed  Google Scholar 

  • Zhang ZT, Pak J, Huang HY et al (2001) Role of Ha-ras activation in superficial papillary pathway of urothelial tumor formation. Oncogene 20:1973–1980

    Article  CAS  PubMed  Google Scholar 

  • Zieger K (2008) High throughput molecular diagnostics in bladder cancer - on the brink of clinical utility. Mol Oncol 1:384–394

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Christopher Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Smith, S.C., Theodorescu, D. (2011). Molecular Nomograms for Predicting Prognosis and Treatment Response. In: Lokeshwar, V., Merseburger, A., Hautmann, S. (eds) Bladder Tumors:. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-60761-928-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-928-4_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-927-7

  • Online ISBN: 978-1-60761-928-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics