Skip to main content

Regeneration of Sensory Cells of Adult Mammalian Inner Ear

  • Chapter
  • First Online:
Stem Cells & Regenerative Medicine

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1954 Accesses

Abstract

Irreversible loss of hair cells and their innervating spiral ganglion neurons is the major reason for hearing loss. Attempts at integrating new supplementary cell sources into the damaged inner ear have been tested extensively. This chapter reviews the history of available cell sources and their achievements, limitations, and future developments for hearing rehabilitation. It addressed issues regarding the “self-repair” of mammalian inner ear sensory epithelium, including (1) recruitment of the in situ proliferation and differentiation of endogenous cells at the damaged site and (2) autologous transplantation, which offer new optimism for helping hearing-impaired individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kelley, M. W. (2006) Regulation of cell fate in the sensory epithelia of the inner ear. Nat. Rev. Neurosci. 7, 837–849.

    Article  PubMed  CAS  Google Scholar 

  2. Fritzsch, B., Beisel, K. W. & Hansen, L. A. (2006) The molecular basis of neurosensory cell formation in ear development: a blueprint for hair cell and sensory neuron regeneration? Bioessays 28, 1181–1193.

    Article  PubMed  CAS  Google Scholar 

  3. Pirvola, U., Ylikoski, J., Trokovic, R., et al. (2002) FGFR1 is required for the development of the auditory sensory epithelium. Neuron 35, 671–680.

    Article  PubMed  CAS  Google Scholar 

  4. Mantela, J., Jiang, Z., Ylikoski, J., et al. (2005) The retinoblastoma gene pathway regulates the postmitotic state of hair cells of the mouse inner ear. Development 132, 2377–2388.

    Article  PubMed  CAS  Google Scholar 

  5. Sage, C., Huang, M., Karimi, K., et al. (2005) Proliferation of functional hair cells in vivo in the absence of the retinoblastoma protein. Science 307, 1114–1118.

    Article  PubMed  CAS  Google Scholar 

  6. Kelley, M. W., Talreja, D. R. & Corwin, J. T. (1995). Replacement of hair cells after laser microbeam irradiation in cultured organs of Corti from embryonic and neonatal mice. J. Neurosci. 15, 3013–3026.

    PubMed  CAS  Google Scholar 

  7. Chen, P., Johnson, J. E., Zoghbi, H. Y., et al. (2002) The role of Math1 in inner ear development: uncoupling the establishment of the sensory primordium from hair cell fate determination. Development 129, 2495–2505.

    Article  PubMed  CAS  Google Scholar 

  8. Woods, C., Montcouquiol, M. & Kelley, M. W. (2004) Math1 regulates development of the sensory epithelium in the mammalian cochlea. Nat. Neurosci. 7, 1310–1318.

    Article  PubMed  CAS  Google Scholar 

  9. Zheng, J. L. & Gao, W. Q. (2000) Overexpression of Math1 induces robust production of extra hair cells in postnatal rat inner ears. Nat. Neurosci. 3, 580–586.

    Article  PubMed  CAS  Google Scholar 

  10. Kawamoto, K., Ishimoto, S., Minoda, R., et al. (2003). Math1 gene transfer generates new cochlear hair cells in mature guinea pigs in vivo. J. Neurosci. 23, 4395–4400.

    PubMed  CAS  Google Scholar 

  11. Gubbels, S. P., Woessner, D. W., Mitchell, J. C., et al. (2008) Functional auditory hair cells produced in the mammalian cochlea by in utero gene transfer. Nature 455, 537–541.

    Article  PubMed  CAS  Google Scholar 

  12. White, P. M., Doetzlhofer, A., Lee, Y. S., et al. (2006) Mammalian cochlear supporting cells can divide and trans-differentiate into hair cells. Nature 441, 984–987.

    Article  PubMed  CAS  Google Scholar 

  13. Raft, S., Koundakjian, E. J., Quinones, H., et al. (2007) Cross-regulation of Ngn1 and Math1 coordinates the production of neurons and sensory hair cells during inner ear development. Development 134, 4405–4415.

    Article  PubMed  CAS  Google Scholar 

  14. Sekiya, T., Kojima, K., Matsumoto, M., et al. (2007) Rebuilding lost hearing using cell transplantation. Neurosurgery 60, 417–433; discussion 433.

    Article  PubMed  Google Scholar 

  15. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., et al. (1998) Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147.

    Article  PubMed  CAS  Google Scholar 

  16. Coleman, B., Hardman, J., Coco, A., et al. (2006) Fate of embryonic stem cells transplanted into the deafened mammalian cochlea. Cell Transplant. 15, 369–380.

    Article  PubMed  CAS  Google Scholar 

  17. Li, H., Roblin, G., Liu, H. et al. (2003) Generation of hair cells by stepwise differentiation of embryonic stem cells. Proc. Natl. Acad. Sci. U.S.A. 100, 13495–13500.

    Article  PubMed  CAS  Google Scholar 

  18. De Coppi, P., Bartsch, G., Jr., Siddiqui, M. M., et al. (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat. Biotechnol. 25, 100–106.

    Article  PubMed  Google Scholar 

  19. Annas, G. J. & Elias, S. (1989) The politics of transplantation of human fetal tissue. N. Engl. J. Med. 320, 1079–1082.

    Article  PubMed  CAS  Google Scholar 

  20. Jeon, S. J., Oshima, K., Heller, S. et al. (2007) Bone marrow mesenchymal stem cells are progenitors in vitro for inner ear hair cells. Mol. Cell. Neurosci. 34, 59–68.

    Article  PubMed  CAS  Google Scholar 

  21. Tan, B. T., Lee, M. M. & Ruan, R. (2008) Bone-marrow-derived cells that home to acoustic deafened cochlea preserved their hematopoietic identity. J. Comp. Neurol. 509, 167–179.

    Article  PubMed  Google Scholar 

  22. Iguchi, F., Nakagawa, T., Tateya, I., et al. (2003) Trophic support of mouse inner ear by neural stem cell transplantation. Neuroreport 14, 77–80.

    Article  PubMed  Google Scholar 

  23. Hu, Z., Wei, D., Johansson, C. B., et al. (2005) Survival and neural differentiation of adult neural stem cells transplanted into the mature inner ear. Exp. Cell Res. 302, 40–47.

    Article  PubMed  CAS  Google Scholar 

  24. Tateya, I., Nakagawa, T., Iguchi, F., et al. (2003) Fate of neural stem cells grafted into injured inner ears of mice. Neuroreport 14, 1677–1681.

    Article  PubMed  Google Scholar 

  25. Wei, D., Levic, S., Nie, L., et al. (2008) Cells of adult brain germinal zone have properties akin to hair cells and can be used to replace inner ear sensory cells after damage. Proc. Natl. Acad. Sci. U.S.A. 105, 21000–21005.

    Article  PubMed  CAS  Google Scholar 

  26. Wei, D., Jin, Z., Jarlebark, L., Scarfone, E., et al. (2007) Survival, synaptogenesis, and regeneration of adult mouse spiral ganglion neurons in vitro. Dev. Neurobiol. 67, 108–122.

    Article  PubMed  CAS  Google Scholar 

  27. Rask-Andersen, H., Bostrom, M., Gerdin, et al. (2005) Regeneration of human auditory nerve. In vitro/in video demonstration of neural progenitor cells in adult human and guinea pig spiral ganglion. Hear. Res. 203, 180–191.

    Article  PubMed  CAS  Google Scholar 

  28. Miller, J. M., Miller, A. L., Yamagata, T., et al. (2002) Protection and regrowth of the auditory nerve after deafness: neurotrophins, antioxidants and depolarization are effective in vivo. Audiol. Neurootol. 7, 175–179.

    Article  PubMed  CAS  Google Scholar 

  29. Shinohara, T., Bredberg, G., Ulfendahl, M., et al. (2002) Neurotrophic factor intervention restores auditory function in deafened animals. Proc. Natl. Acad. Sci. U.S.A. 99, 1657–1660.

    Article  PubMed  CAS  Google Scholar 

  30. Corrales, C. E., Pan, L., Li, H., et al. (2006) Engraftment and differentiation of embryonic stem cell-derived neural progenitor cells in the cochlear nerve trunk: growth of processes into the organ of Corti. J. Neurobiol. 66, 1489–1500.

    Article  PubMed  Google Scholar 

  31. Coleman, B., Fallon, J. B., Pettingill, L. N., et al. (2007) Auditory hair cell explant co-cultures promote the differentiation of stem cells into bipolar neurons. Exp. Cell. Res. 313, 232–243.

    Article  PubMed  CAS  Google Scholar 

  32. Kondo, T., Johnson, S. A., Yoder, M. C., et al. (2005) Sonic hedgehog and retinoic acid synergistically promote sensory fate specification from bone marrow-derived pluripotent stem cells. Proc. Natl. Acad. Sci. U.S.A. 102, 4789–4794.

    Article  PubMed  CAS  Google Scholar 

  33. Matsumoto, M., Nakagawa, T., Kojima, K., Sakamoto, T., et al. (2008) Potential of embryonic stem cell-derived neurons for synapse formation with auditory hair cells. J. Neurosci. Res. 86, 3075–3085.

    Article  PubMed  CAS  Google Scholar 

  34. Shi, F., Corrales, C. E., Liberman, M. C., et al. (2007) BMP4 induction of sensory neurons from human embryonic stem cells and reinnervation of sensory epithelium. Eur. J. Neurosci. 26, 3016–3023.

    Article  PubMed  Google Scholar 

  35. Sekiya, T., Kojima, K., Matsumoto, M., et al. (2006) Cell transplantation to the auditory nerve and cochlear duct. Exp. Neurol. 198, 12–24.

    Article  PubMed  Google Scholar 

  36. Collado, M. S. & Holt, J. R. (2009) Can neurosphere production help restore inner ear transduction? Proc. Natl. Acad. Sci. U.S.A. 106, 8–9.

    Article  PubMed  CAS  Google Scholar 

  37. Mackay-Sim, A. & Kittel, P. (1991) Cell dynamics in the adult mouse olfactory epithelium: a quantitative autoradiographic study. J. Neurosci. 11, 979–984.

    PubMed  CAS  Google Scholar 

  38. Doyle, K. L., Kazda, A., Hort, Y., et al. (2007) Differentiation of adult mouse olfactory precursor cells into hair cells in vitro. Stem Cells 25, 621–627.

    Article  PubMed  CAS  Google Scholar 

  39. Takahashi, K., Tanabe, K., Ohnuki, M., et al. (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872.

    Article  PubMed  CAS  Google Scholar 

  40. Yu, J., Vodyanik, M. A., Smuga-Otto, K., et al. (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920.

    Article  PubMed  CAS  Google Scholar 

  41. Park, I. H., Zhao, R., West, J. A., et al. (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, 141–146.

    Article  PubMed  CAS  Google Scholar 

  42. Yamanaka, S. (2009) A fresh look at iPS cells. Cell 137, 13–17.

    Article  PubMed  CAS  Google Scholar 

  43. Corwin, J. T. & Cotanche, D. A. (1988) Regeneration of sensory hair cells after acoustic trauma. Science 240, 1772–1774.

    Article  PubMed  CAS  Google Scholar 

  44. Ryals, B. M. & Rubel, E. W. (1988) Hair cell regeneration after acoustic trauma in adult Coturnix quail. Science 240, 1774–1776.

    Article  PubMed  CAS  Google Scholar 

  45. Forge, A., Li, L., Corwin, J. T., et al. (1993) Ultrastructural evidence for hair cell regeneration in the mammalian inner ear. Science 259, 1616–1619.

    Article  PubMed  CAS  Google Scholar 

  46. Warchol, M. E., Lambert, P. R., Goldstein, B. J., et al. (1993) Regenerative proliferation in inner ear sensory epithelia from adult guinea pigs and humans. Science 259, 1619–1622.

    Article  PubMed  CAS  Google Scholar 

  47. Li, H., Liu, H. & Heller, S. (2003) Pluripotent stem cells from the adult mouse inner ear. Nat. Med. 9, 1293–1299.

    Article  PubMed  CAS  Google Scholar 

  48. Shou, J., Zheng, J. L. & Gao, W. Q. (2003) Robust generation of new hair cells in the mature mammalian inner ear by adenoviral expression of Hath1. Mol. Cell. Neurosci. 23, 169–179.

    Article  PubMed  CAS  Google Scholar 

  49. Izumikawa, M., Minoda, R., Kawamoto, K., et al. (2005) Auditory hair cell replacement and hearing improvement by Atoh1 gene therapy in deaf mammals. Nat. Med. 11, 271–276.

    Article  PubMed  CAS  Google Scholar 

  50. Raphael, Y., Kim, Y. H., Osumi, Y., et al. (2007) Non-sensory cells in the deafened organ of Corti: approaches for repair. Int. J. Dev. Biol. 51, 649–654.

    Article  PubMed  Google Scholar 

  51. Zhai, S., Shi, L., Wang, B. E., et al. (2005). Isolation and culture of hair cell progenitors from postnatal rat cochleae. J. Neurobiol. 65, 282–293.

    Article  PubMed  CAS  Google Scholar 

  52. Diensthuber, M., Oshima, K. & Heller, S. (2009) Stem/progenitor cells derived from the cochlear sensory epithelium give rise to spheres with distinct morphologies and features. J. Assoc. Res. Otolaryngol. 10, 173–190

    Article  PubMed  Google Scholar 

  53. Holt, J. R. (2002). Viral-mediated gene transfer to study the molecular physiology of the Mammalian inner ear. Audiol. Neurootol. 7, 157–160.

    Article  PubMed  CAS  Google Scholar 

  54. Suzuki, M., Yagi, M., Brown, J. N., et al. (2000) Effect of transgenic GDNF expression on gentamicin-induced cochlear and vestibular toxicity. Gene Ther. 7, 1046–1054.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongguang Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wei, D., Yamoah, E.N. (2011). Regeneration of Sensory Cells of Adult Mammalian Inner Ear. In: Appasani, K., Appasani, R. (eds) Stem Cells & Regenerative Medicine. Stem Cell Biology and Regenerative Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-860-7_6

Download citation

Publish with us

Policies and ethics