Skip to main content

Genetics of Motility Disorder: Gastroesophageal Reflux, Triple A Syndrome, Hirschsprung Disease, and Chronic Intestinal Pseudo-Obstruction

  • Chapter
  • First Online:
Pediatric Neurogastroenterology

Part of the book series: Clinical Gastroenterology ((CG))

  • 1897 Accesses

Abstract

The identification of gene mutations associated with a disease often provides important initial insight into its molecular basis and can hold the key to developing an effective therapeutic strategy. After several decades of identifying single gene mutations causing usually rare GI motility disorders, we are beginning to understand the etiology of complex, multigenic motility disorders. In this chapter we review the current genetic understanding of four motility disorders: gastroesophageal reflux disease, Triple A syndromic achalasia, Hirschsprung disease, and chronic intestinal pseudo obstruction. The molecular and developmental consequences of some of these mutations are described in detail in other chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Orenstein SR, Whitcomb DC, Barmada MM. Challenges of examining complex genetic disorders like GERD. J Pediatr Gastroenterol Nutr. 2005;41 Suppl 1:S17–9.

    PubMed  Google Scholar 

  2. Orenstein SR, Shalaby TM, Barmada MM, Whitcomb DC. Genetics of gastroesophageal reflux disease: a review. J Pediatr Gastroenterol Nutr. 2002;34(5):506–10.

    PubMed  Google Scholar 

  3. Trudgill N. Familial factors in the etiology of gastroesophageal reflux disease, Barrett’s esophagus, and esophageal adenocarcinoma. Chest Surg Clin N Am. 2002;12(1):15–24.

    PubMed  Google Scholar 

  4. Carre IJ, Johnston BT, Thomas PS, Morrison PJ. Familial hiatal hernia in a large five generation family confirming true autosomal dominant inheritance. Gut. 1999;45(5):649–52.

    PubMed  CAS  Google Scholar 

  5. Romero Y, Cameron AJ, Locke III GR, et al. Familial aggregation of gastroesophageal reflux in patients with Barrett’s esophagus and esophageal adenocarcinoma. Gastroenterology. 1997;113(5):1449–56.

    PubMed  CAS  Google Scholar 

  6. Trudgill NJ, Kapur KC, Riley SA. Familial clustering of reflux symptoms. Am J Gastroenterol. 1999;94(5):1172–8.

    PubMed  CAS  Google Scholar 

  7. Cameron AJ, Lagergren J, Henriksson C, Nyren O, Locke III GR, Pedersen NL. Gastroesophageal reflux disease in monozygotic and dizygotic twins. Gastroenterology. 2002;122(1):55–9.

    PubMed  Google Scholar 

  8. Mohammed I, Cherkas LF, Riley SA, Spector TD, Trudgill NJ. Genetic influences in gastro-oesophageal reflux disease: a twin study. Gut. 2003;52(8):1085–9.

    PubMed  CAS  Google Scholar 

  9. Hu FZ, Preston RA, Post JC, et al. Mapping of a gene for severe pediatric gastroesophageal reflux to chromosome 13q14. JAMA. 2000;284(3):325–34.

    PubMed  CAS  Google Scholar 

  10. Hu FZ, Donfack J, Ahmed A, et al. Fine mapping a gene for pediatric gastroesophageal reflux on human chromosome 13q14. Hum Genet. 2004;114(6):562–72.

    PubMed  CAS  Google Scholar 

  11. Champaigne NL, Laird NA, Northup JK, Velagaleti GV. Molecular cytogenetic characterization of an interstitial de novo 13q deletion in a 3-month-old with severe pediatric gastroesophageal reflux. Am J Med Genet A. 2009;149A(4):751–4.

    PubMed  Google Scholar 

  12. Asling B, Jirholt J, Hammond P, et al. Collagen type III alpha I is a gastro-oesophageal reflux disease susceptibility gene and a male risk factor for hiatus hernia. Gut. 2009;58(8):1063–9.

    PubMed  CAS  Google Scholar 

  13. Orenstein SR, Shalaby TM, Finch R, et al. Autosomal dominant infantile gastroesophageal reflux disease: exclusion of a 13q14 locus in five well characterized families. Am J Gastroenterol. 2002;97(11):2725–32.

    PubMed  CAS  Google Scholar 

  14. Chourasia D, Achyut BR, Tripathi S, Mittal B, Mittal RD, Ghoshal UC. Genotypic and functional roles of IL-1B and IL-1RN on the risk of gastroesophageal reflux disease: the presence of IL-1B-511*T/IL-1RN*1 (T1) haplotype may protect against the disease. Am J Gastroenterol. 2009;104(11):2704–13.

    PubMed  CAS  Google Scholar 

  15. Siffert W, Rosskopf D, Siffert G, et al. Association of a human G-protein beta3 subunit variant with hypertension. Nat Genet. 1998;18(1):45–8.

    PubMed  CAS  Google Scholar 

  16. Holtmann G, Siffert W, Haag S, et al. G-protein beta 3 subunit 825 CC genotype is associated with unexplained (functional) dyspepsia. Gastroenterology. 2004;126(4):971–9.

    PubMed  CAS  Google Scholar 

  17. de Vries DR, ter Linde JJM, van Herwaarden MA, Smout AJPM, Samsom M. Gastroesophageal reflux disease is associated with the C825T polymorphism in the G-protein beta3 subunit gene (GNB3). Am J Gastroenterol. 2009;104(2):281–5.

    PubMed  Google Scholar 

  18. Allgrove J, Clayden GS, Grant DB, Macaulay JC. Familial glucocorticoid deficiency with achalasia of the cardia and deficient tear production. Lancet. 1978;1(8077):1284–6.

    PubMed  CAS  Google Scholar 

  19. Sarathi V, Shah NS. Triple-A syndrome. Adv Exp Med Biol. 2010;685:1–8.

    PubMed  CAS  Google Scholar 

  20. Di Nardo G, Tullio-Pelet A, Annese V, et al. Idiopathic achalasia is not allelic to alacrima achalasia adrenal insufficiency syndrome at the ALADIN locus. Dig Liver Dis. 2005;37(5):312–5.

    PubMed  Google Scholar 

  21. Brooks B, Kleta R, Stuart C, et al. Genotypic heterogeneity and clinical phenotype in triple A syndrome: a review of the NIH experience 2000–2005. Clin Genet. 2005;68(3):215–21.

    PubMed  CAS  Google Scholar 

  22. Milenkovic T, Zdravkovic D, Savic N, et al. Triple A syndrome: 32 years experience of a single centre (1977–2008). Eur J Pediatr. 2010;169(11):1323–8.

    PubMed  Google Scholar 

  23. Marlais M, Fishman JR, Fell JM, Haddad MJ, Rawat DJ. UK incidence of achalasia: an 11-year national epidemiological study. Arch Dis Child. 2010;96(2):192–4.

    PubMed  Google Scholar 

  24. Handschug K, Sperling S, Yoon SJ, Hennig S, Clark AJ, Huebner A. Triple A syndrome is caused by mutations in AAAS, a new WD-repeat protein gene. Hum Mol Genet. 2001;10(3):283–90.

    PubMed  CAS  Google Scholar 

  25. Weber A, Wienker TF, Jung M, et al. Linkage of the gene for the triple A syndrome to chromosome 12q13 near the type II keratin gene cluster. Hum Mol Genet. 1996;5(12):2061–6.

    PubMed  CAS  Google Scholar 

  26. Huebner A, Kaindl AM, Braun R, Handschug K. New insights into the molecular basis of the triple A syndrome. Endocr Res. 2002;28(4):733–9.

    PubMed  CAS  Google Scholar 

  27. Tullio-Pelet A, Salomon R, Hadj-Rabia S, et al. Mutant WD-repeat protein in triple-A syndrome. Nat Genet. 2000;26(3):332–5.

    PubMed  CAS  Google Scholar 

  28. Cronshaw JM, Krutchinsky AN, Zhang W, Chait BT, Matunis MJ. Proteomic analysis of the mammalian nuclear pore complex. J Cell Biol. 2002;158(5):915–27.

    PubMed  CAS  Google Scholar 

  29. Huebner A, Kaindl AM, Knobeloch KP, Petzold H, Mann P, Koehler K. The triple A syndrome is due to mutations in ALADIN, a novel member of the nuclear pore complex. Endocr Res. 2004;30(4):891–9.

    PubMed  CAS  Google Scholar 

  30. Cronshaw JM, Matunis MJ. The nuclear pore complex protein ALADIN is mislocalized in triple A syndrome. Proc Natl Acad Sci USA. 2003;100(10):5823–7.

    PubMed  CAS  Google Scholar 

  31. Kind B, Koehler K, Lorenz M, Huebner A. The nuclear pore complex protein ALADIN is anchored via NDC1 but not via POM121 and GP210 in the nuclear envelope. Biochem Biophys Res Commun. 2009;390(2):205–10.

    PubMed  CAS  Google Scholar 

  32. Kiriyama T, Hirano M, Asai H, Ikeda M, Furiya Y, Ueno S. Restoration of nuclear-import failure caused by triple A syndrome and oxidative stress. Biochem Biophys Res Commun. 2008;374(4):631–4.

    PubMed  CAS  Google Scholar 

  33. Hirano M, Furiya Y, Asai H, Yasui A, Ueno S. ALADINI482S causes selective failure of nuclear protein import and hypersensitivity to oxidative stress in triple A syndrome. Proc Natl Acad Sci USA. 2006;103(7):2298–303.

    PubMed  CAS  Google Scholar 

  34. Storr HL, Kind B, Parfitt DA, et al. Deficiency of ferritin heavy-chain nuclear import in triple A syndrome implies nuclear oxidative damage as the primary disease mechanism. Mol Endocrinol. 2009;23(12):2086–94.

    PubMed  CAS  Google Scholar 

  35. Kind B, Koehler K, Krumbholz M, Landgraf D, Huebner A. Intracellular ROS level is increased in fibroblasts of triple A syndrome patients. J Mol Med (Berl). 2010;88(12):1233–42.

    CAS  Google Scholar 

  36. Kapur RP. Practical pathology and genetics of Hirschsprung’s disease. Semin Pediatr Surg. 2009;18(4):212–23.

    PubMed  Google Scholar 

  37. Imseis E, Gariepy CE. Hirschsprung disease. In: Kleinman RE, Goulet OJ, Mieli-Vergani G, Sanderson IR, Sherman PM, Schneider BL, editors. Pediatric gastrointestinal disease: pathophysiology, diagnosis, and management. 5th ed. Hamilton, Ontario, Canada: BC Decker Inc; 2008. p. 683–93.

    Google Scholar 

  38. McCallion A, Chakravarti A. RET and Hirschsprung disease and multiple endocrine neoplasia type 2. In: Epstein CJ, Erickson RP, Wynshaw-Boris A, editors. Inborn errors of development: the molecular basis of clinical disorders of morphogenesis. 2nd ed. New York: Oxford University Press; 2008. p. 512–21.

    Google Scholar 

  39. Skinner MA, Safford SD, Reeves JG, Jackson ME, Freemerman AJ. Renal aplasia in humans is associated with RET mutations. Am J Hum Genet. 2008;82(2):344–51.

    PubMed  CAS  Google Scholar 

  40. Arighi E, Popsueva A, Degl’Innocenti D, et al. Biological effects of the dual phenotypic Janus mutation of ret cosegregating with both multiple endocrine neoplasia type 2 and Hirschsprung’s disease. Mol Endocrinol. 2004;18(4):1004–17.

    PubMed  CAS  Google Scholar 

  41. Moore SW, Zaahl M. Familial associations in medullary thyroid carcinoma with Hirschsprung disease: the role of the RET-C620 “Janus” genetic variation. J Pediatr Surg. 2010;45(2):393–6.

    PubMed  Google Scholar 

  42. de Graaff E, Srinivas S, Kilkenny C, et al. Differential activities of the RET tyrosine kinase receptor isoforms during mammalian embryogenesis. Genes Dev. 2001;15(18):2433–44.

    PubMed  Google Scholar 

  43. Jain S, Knoten A, Hoshi M, et al. Organotypic specificity of key RET adaptor-docking sites in the pathogenesis of neurocristopathies and renal malformations in mice. J Clin Invest. 2010;120(3):778–90.

    PubMed  CAS  Google Scholar 

  44. Emison ES, Garcia-Barcelo M, Grice EA, et al. Differential contributions of rare and common, coding and noncoding Ret mutations to multifactorial Hirschsprung disease liability. Am J Hum Genet. 2010;87(1):60–74.

    PubMed  CAS  Google Scholar 

  45. Griseri P, Lantieri F, Puppo F, et al. A common variant located in the 3′UTR of the RET gene is associated with protection from Hirschsprung disease. Hum Mutat. 2007;28(2):168–76.

    PubMed  CAS  Google Scholar 

  46. Amiel J, Sproat-Emison E, Garcia-Barcelo M, et al. Hirschsprung disease, associated syndromes and genetics: a review. J Med Genet. 2008;45(1):1–14.

    PubMed  CAS  Google Scholar 

  47. Baynash AG, Hosoda K, Giaid A, et al. Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons. Cell. 1994;79(7):1277–85.

    PubMed  CAS  Google Scholar 

  48. Yanagisawa H, Yanagisawa M, Kapur RP, et al. Dual genetic pathways of endothelin-mediated intercellular signaling revealed by targeted disruption of endothelin converting enzyme-1 gene. Development. 1998;125(5):825–36.

    PubMed  CAS  Google Scholar 

  49. Verheig JBGM, Hofstra RM. EDNRB, EDN3, and SOX10 and the Shah-Waardenburg Syndrome (WS4). In: Epstein CJ, Erickson RP, Wynshaw-Boris A, editors. Inborn errors of development: the molecular basis of clinical disorders of morphogenesis. 2nd ed. New York: Oxford University Press; 2008. p. 530–6.

    Google Scholar 

  50. Bidaud C, Salomon R, Van Camp G, et al. Endothelin-3 gene mutations in isolated and syndromic Hirschsprung disease. Eur J Hum Genet. 1997;5(4):247–51.

    PubMed  CAS  Google Scholar 

  51. Sánchez-Mejías A, Fernández RM, López-Alonso M, Antiñolo G, Borrego S. New roles of EDNRB and EDN3 in the pathogenesis of Hirschsprung disease. Genet Med. 2009;12(1):39–43.

    Google Scholar 

  52. Hofstra RM, Valdenaire O, Arch E, et al. A loss-of-function mutation in the endothelin-converting enzyme 1 (ECE-1) associated with Hirschsprung disease, cardiac defects, and autonomic dysfunction. Am J Hum Genet. 1999;64(1):304–8.

    PubMed  CAS  Google Scholar 

  53. Auricchio A, Griseri P, Carpentieri ML, et al. Double heterozygosity for a RET substitution interfering with splicing and an EDNRB missense mutation in Hirschsprung disease. Am J Hum Genet. 1999;64(4):1216–21.

    PubMed  CAS  Google Scholar 

  54. Puffenberger EG, Hosoda K, Washington SS, et al. A missense mutation of the endothelin-B receptor gene in multigenic Hirschsprung’s disease. Cell. 1994;79(7):1257–66.

    PubMed  CAS  Google Scholar 

  55. Carrasquillo MM, McCallion AS, Puffenberger EG, Kashuk CS, Nouri N, Chakravarti A. Genome-wide association study and mouse model identify interaction between RET and EDNRB pathways in Hirschsprung disease. Nat Genet. 2002;32(2):237–44.

    PubMed  CAS  Google Scholar 

  56. Emison ES, McCallion AS, Kashuk CS, et al. A common sex-dependent mutation in a RET enhancer underlies Hirschsprung disease risk. Nature. 2005;434(7035):857–63.

    PubMed  CAS  Google Scholar 

  57. Moore SW, Zaahl MG. Multiple endocrine neoplasia syndromes, children, Hirschsprung’s disease and RET. Pediatr Surg Int. 2008;24(5):521–30.

    PubMed  CAS  Google Scholar 

  58. Jennings LJ, Yu M, Rand CM, et al. Variable human phenotype associated with novel deletions of the PHOX2B gene. Pediatr Pulmonol. 2012;47(2):153–61.

    PubMed  Google Scholar 

  59. Parodi S, Vollono C, Baglietto MP, et al. Congenital central hypoventilation syndrome: genotype-phenotype correlation in parents of affected children carrying a PHOX2B expansion mutation. Clin Genet. 2010;78(3):289–93.

    PubMed  CAS  Google Scholar 

  60. Weese-Mayer DE, Rand CM, Berry-Kravis EM, et al. Congenital central hypoventilation syndrome from past to future: model for translational and transitional autonomic medicine. Pediatr Pulmonol. 2009;44(6):521–35.

    PubMed  Google Scholar 

  61. de Pontual L, Zaghloul NA, Thomas S, et al. Epistasis between RET and BBS mutations modulates enteric innervation and causes syndromic Hirschsprung disease. Proc Natl Acad Sci USA. 2009;106(33):13921–6.

    PubMed  Google Scholar 

  62. Pingault V, Ente D, Dastot-Le Moal F, Goossens M, Marlin S, Bondurand N. Review and update of mutations causing Waardenburg syndrome. Hum Mutat. 2010;31(4):391–406.

    PubMed  CAS  Google Scholar 

  63. Freeman SB, Torfs CP, Romitti PA, et al. Congenital gastrointestinal defects in Down syndrome: a report from the Atlanta and National Down Syndrome Projects. Clin Genet. 2009;75(2):180–4.

    PubMed  CAS  Google Scholar 

  64. Arnold S, Pelet A, Amiel J, et al. Interaction between a chromosome 10 RET enhancer and chromosome 21 in the Down syndrome-Hirschsprung disease association. Hum Mutat. 2009;30(5):771–5.

    PubMed  CAS  Google Scholar 

  65. Saunders CJ, Zhao W, Ardinger HH. Comprehensive ZEB2 gene analysis for Mowat-Wilson syndrome in a North American cohort: a suggested approach to molecular diagnostics. Am J Med Genet A. 2009;149A(11):2527–31.

    PubMed  Google Scholar 

  66. Brooks AS, Bertoli-Avella AM, Burzynski GM, et al. Homozygous nonsense mutations in KIAA1279 are associated with malformations of the central and enteric nervous systems. Am J Hum Genet. 2005;77(1):120–6.

    PubMed  CAS  Google Scholar 

  67. Lyons DA, Naylor SG, Mercurio S, Dominguez C, Talbot WS. KBP is essential for axonal structure, outgrowth and maintenance in zebrafish, providing insight into the cellular basis of Goldberg-Shprintzen syndrome. Development. 2008;135(3):599–608.

    PubMed  CAS  Google Scholar 

  68. Tobin JL, Di Franco M, Eichers E, et al. Inhibition of neural crest migration underlies craniofacial dysmorphology and Hirschsprung’s disease in Bardet-Biedl syndrome. Proc Natl Acad Sci USA. 2008;105(18):6714–9.

    PubMed  CAS  Google Scholar 

  69. Sheffield VC, Nishimura D, Stone EM. The molecular genetics of Bardet-Biedl syndrome. Curr Opin Genet Dev. 2001;11(3):317–21.

    PubMed  CAS  Google Scholar 

  70. Shefer S, Salen G, Batta AK, et al. Markedly inhibited 7-dehydrocholesterol-delta 7-reductase activity in liver microsomes from Smith-Lemli-Opitz homozygotes. J Clin Invest. 1995;96(4):1779–85.

    PubMed  CAS  Google Scholar 

  71. DeBarber AE, Eroglu Y, Merkens LS, Pappu AS, Steiner RD. Smith-Lemli-Opitz syndrome. Expert Rev Mol Med. 2011;13:e24.

    PubMed  Google Scholar 

  72. Meier-Ruge WA, Ammann K, Bruder E, et al. Updated results on intestinal neuronal dysplasia (IND B). Eur J Pediatr Surg. 2004;14(06):384–91.

    PubMed  CAS  Google Scholar 

  73. Schimpl G, Uray E, Ratschek M, Höllwarth ME. Constipation and intestinal neuronal dysplasia type B: a clinical follow-up study. J Pediatr Gastroenterol Nutr. 2004;38(3):308–11.

    PubMed  Google Scholar 

  74. Sandgren K, Larsson LT, Ekblad E. Widespread changes in neurotransmitter expression and number of enteric neurons and interstitial cells of Cajal in lethal spotted mice: an explanation for persisting dysmotility after operation for Hirschsprung’s disease? Dig Dis Sci. 2002;47(5):1049–64.

    PubMed  CAS  Google Scholar 

  75. von Boyen GBT, Krammer H-J, Süss A, Dembowski C, Ehrenreich H, Wedel T. Abnormalities of the enteric nervous system in heterozygous endothelin B receptor deficient (spotting lethal) rats resembling intestinal neuronal dysplasia. Gut. 2002;51(3):414–9.

    Google Scholar 

  76. Gath R, Goessling A, Keller KM, et al. Analysis of the RET, GDNF, EDN3, and EDNRB genes in patients with intestinal neuronal dysplasia and Hirschsprung disease. Gut. 2001;48(5):671–5.

    PubMed  CAS  Google Scholar 

  77. Fadda B, Maier WA, Meier-Ruge W, Scharli A, Daum R. Neuronal intestinal dysplasia. Critical 10-years’ analysis of clinical and biopsy diagnosis. Z Kinderchir. 1983;38(5):305–11.

    PubMed  CAS  Google Scholar 

  78. Hanemann CO, Hayward C, Hilton DA. Neurofibromatosis type 1 with involvement of the enteric nerves. J Neurol Neurosurg Psychiatry. 2007;78(10):1163–4.

    PubMed  CAS  Google Scholar 

  79. Bahuau M, Pelet A, Vidaud D, et al. GDNF as a candidate modifier in a type 1 neurofibromatosis (NF1) enteric phenotype. J Med Genet. 2001;38(9):638–43.

    PubMed  CAS  Google Scholar 

  80. Evans CA, Nesbitt IM, Walker J, Cohen MC. MEN 2B syndrome should be part of the working diagnosis of constipation of the newborn. Histopathology. 2008;52(5):646–8.

    PubMed  CAS  Google Scholar 

  81. King SK, Southwell BR, Hutson JM. An association of multiple endocrine neoplasia 2B, a RET mutation; constipation; and low substance P-nerve fiber density in colonic circular muscle. J Pediatr Surg. 2006;41(2):437–42.

    PubMed  Google Scholar 

  82. Zenaty D, Aigrain Y, Peuchmaur M, et al. Medullary thyroid carcinoma identified within the first year of life in children with hereditary multiple endocrine neoplasia type 2A (codon 634) and 2B. Eur J Endocrinol. 2009;160(5):807–13.

    PubMed  CAS  Google Scholar 

  83. Touraine RL, Attié-Bitach T, Manceau E, et al. Neurological phenotype in Waardenburg syndrome type 4 correlates with novel SOX10 truncating mutations and expression in developing brain. Am J Hum Genet. 2000;66(5):1496–503.

    PubMed  CAS  Google Scholar 

  84. Pingault V, Girard M, Bondurand N, et al. SOX10 mutations in chronic intestinal pseudo-obstruction suggest a complex physiopathological mechanism. Hum Genet. 2002;111(2):198–206.

    PubMed  CAS  Google Scholar 

  85. Auricchio A, Brancolini V, Casari G, et al. The locus for a novel syndromic form of neuronal intestinal pseudoobstruction maps to Xq28. Am J Hum Genet. 1996;58(4):743–8.

    PubMed  CAS  Google Scholar 

  86. Gargiulo A, Auricchio R, Barone MV, et al. Filamin A is mutated in X-linked chronic idiopathic intestinal pseudo-obstruction with central nervous system involvement. Am J Hum Genet. 2007;80(4):751–8.

    PubMed  CAS  Google Scholar 

  87. Smith-Hicks CL, Sizer KC, Powers JF, Tischler AS, Costantini F. C-cell hyperplasia, pheochromocytoma and sympathoadrenal malformation in a mouse model of multiple endocrine neoplasia type 2B. EMBO J. 2000;19(4):612–22.

    PubMed  CAS  Google Scholar 

  88. Parisi MA, Baldessari AE, Iida MH, et al. Genetic background modifies intestinal pseudo-obstruction and the expression of a reporter gene in Hox11L1−/− mice. Gastroenterology. 2003;125(5):1428–40.

    PubMed  CAS  Google Scholar 

  89. Puig I, Champeval D, De Santa Barbara P, Jaubert F, Lyonnet S, Larue L. Deletion of Pten in the mouse enteric nervous system induces ganglioneuromatosis and mimics intestinal pseudoobstruction. J Clin Invest. 2009;119(12):3586–96.

    PubMed  CAS  Google Scholar 

  90. O’Donnell AM, Puri P. A role for Pten in paediatric intestinal dysmotility disorders. Pediatr Surg Int. 2011;27(5):491–3.

    PubMed  Google Scholar 

  91. Taketomi T, Yoshiga D, Taniguchi K, et al. Loss of mammalian Sprouty2 leads to enteric neuronal hyperplasia and esophageal achalasia. Nat Neurosci. 2005;8(7):855–7.

    PubMed  CAS  Google Scholar 

  92. Hennig GW, Spencer NJ, Jokela-Willis S, et al. ICC-MY coordinate smooth muscle electrical and mechanical activity in the murine small intestine. Neurogastroenterol Motil. 2010;22(5):e138–51.

    PubMed  CAS  Google Scholar 

  93. Maeda H, Yamagata A, Nishikawa S, et al. Requirement of c-kit for development of intestinal pacemaker system. Development. 1992;116(2):369–75.

    PubMed  CAS  Google Scholar 

  94. Feldstein AE, Miller SM, El-Youssef M, et al. Chronic intestinal pseudoobstruction associated with altered interstitial cells of cajal networks. J Pediatr Gastroenterol Nutr. 2003;36(4):492–7.

    PubMed  Google Scholar 

  95. Anneren G, Meurling S, Olsen L. Megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS), an autosomal recessive disorder: clinical reports and review of the literature. Am J Med Genet. 1991;41(2):251–4.

    PubMed  CAS  Google Scholar 

  96. Lev-Lehman E, Bercovich D, Xu W, Stockton DW, Beaudet AL. Characterization of the human beta4 nAChR gene and polymorphisms in CHRNA3 and CHRNB4. J Hum Genet. 2001;46(7):362–6.

    PubMed  CAS  Google Scholar 

  97. Szigeti R, Chumpitazi BP, Finegold MJ, et al. Absent smooth muscle actin immunoreactivity of the small bowel muscularis propria circular layer in association with chromosome 15q11 deletion in Megacystis-Microcolon-Intestinal Hypoperistalsis Syndrome. Pediatr Dev Pathol. 2010;13(4):322–5.

    PubMed  Google Scholar 

  98. Amiot A, Tchikviladzé M, Joly F, et al. Frequency of mitochondrial defects in patients with chronic intestinal pseudo-obstruction. Gastroenterology. 2009;137(1):101–9.

    PubMed  CAS  Google Scholar 

  99. de Giorgio R, Volta U, Stanghellini V, et al. Neurogenic chronic intestinal pseudo-obstruction: antineuronal antibody-mediated activation of autophagy via Fas. Gastroenterology. 2008;135(2):601–9.

    PubMed  Google Scholar 

  100. Li V, Hostein J, Romero NB, et al. Chronic intestinal pseudoobstruction with myopathy and ophthalmoplegia. A muscular biochemical study of a mitochondrial disorder. Dig Dis Sci. 1992;37(3):456–63.

    PubMed  CAS  Google Scholar 

  101. Cardaioli E, Da Pozzo P, Malfatti E, et al. A second MNGIE patient without typical mitochondrial skeletal muscle involvement. Neurol Sci. 2010;31(4):491–4.

    PubMed  Google Scholar 

  102. Gamez J, Lara MC, Mearin F, et al. A novel thymidine phosphorylase mutation in a Spanish MNGIE patient. J Neurol Sci. 2005;228(1):35–9.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheryl E. Gariepy M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gisser, J.M., Gariepy, C.E. (2013). Genetics of Motility Disorder: Gastroesophageal Reflux, Triple A Syndrome, Hirschsprung Disease, and Chronic Intestinal Pseudo-Obstruction. In: Faure, C., Di Lorenzo, C., Thapar, N. (eds) Pediatric Neurogastroenterology. Clinical Gastroenterology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-709-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-709-9_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-708-2

  • Online ISBN: 978-1-60761-709-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics