Skip to main content

Intervention with Multiple Micronutrients Including Dietary and Endogenous Antioxidants for Healthy Aging

  • Chapter
  • First Online:
Aging and Age-Related Disorders
  • 1341 Accesses

Abstract

Many studies suggest that increased oxidative stress and chronic inflammation are associated with aging in all species, including humans. Growing evidence suggests that these two biological events contribute directly to age-associated decline in organ function. The degenerative changes in the cells are initiated by oxidative damage to mitochondria, which produce more free radicals, which reduce proteasome activity, length of telomere, and immune function and improve lysosomal proteolytic activity. The plasma levels of proinflammatory cytokines (tumor necrosis factor-α and interleukin-6) also increase with aging and contribute to the loss of muscle mass and muscle strength. Limited data show that an adaptive response of antioxidant enzymes to increased oxidative stress occurs in rodents but not in humans. In rodents, plasma vitamin C and tissue coenzyme Q10 levels decline, but plasma glutathione and vitamin E levels are elevated as a function of aging. In contrast, in humans the plasma level of vitamin E decreases and retinol does not change. The fact that increased activity of certain antioxidant enzymes and certain antioxidants exists in the presence of elevated levels of oxidative stress and chronic inflammation suggests that the increased levels of antioxidant systems within the physiologic range may not be sufficient to downregulate the level of oxidative stress and chronic inflammation. Doses of antioxidants higher than those within the physiologic range are needed to reduce oxidative stress and chronic inflammation. This is supported by the fact that the individual antioxidants at high doses reduce the rate of aging. For example, supplementation with individual antioxidants such as vitamin E, coenzyme Q10, carotenoids, melatonin, flavonoids, glutathione-elevating agents (N-acetylcysteine), α-lipoic acid, and acetyl-l-carnitine decreased the rate of age-related decline in organ function by reducing oxidative stress and chronic inflammation in rodents. Additional studies on the activities of antioxidant enzymes and levels of dietary and endogenous antioxidants as a function of aging are needed. In the meantime, the author recommends consumption of multiple micronutrients including high doses of dietary and endogenous antioxidants together with changes in diet and lifestyle for maintaining healthy aging. Multiple antioxidants are recommended because many different types of free radicals are produced, and each antioxidant has a different affinity for each of these free radicals, depending upon the cellular environment. In addition, they are distributed differently in different organs and in subcellular compartments within the same cell and exhibit different mechanisms of action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harman D. Aging and disease: extending functional life span. Ann NY Acad Sci. 1996;786:321–336.

    Article  PubMed  CAS  Google Scholar 

  2. Harman D. Aging: phenomena and theories. Ann NY Acad Sci. 1998;854:1–7.

    Article  PubMed  CAS  Google Scholar 

  3. Ames BN, Shigenaga MK, Hagen TM. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA. 1993;90:7915–7922.

    Article  PubMed  CAS  Google Scholar 

  4. Boveris A, Chance B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J. 1973;134:707–716.

    PubMed  CAS  Google Scholar 

  5. Pollack M, Leeuwenburgh C. Molecular mechanisms of oxidative stress in aging: free radicals, aging, antioxidants and disease. In: Sen CK, Packer L, Hanninen O (eds.), Handbook of Oxidants and Antioxidants in Exercise. Elesvier Science B.V., New York, 1999, pp. 881–923.

    Google Scholar 

  6. Droge W. Oxidative stress and aging. Adv Exp Med Biol. 2003;543:191–200.

    Article  PubMed  CAS  Google Scholar 

  7. Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 1979;59:527–605.

    PubMed  CAS  Google Scholar 

  8. Giulivi C, Poderoso JJ, Boveris A. Production of nitric oxide by mitochondria. J Biol Chem. 1998;273:11038–11043.

    Article  PubMed  CAS  Google Scholar 

  9. Hurst JK, Barrette WC Jr. Leukocytic oxygen activation and microbicidal oxidative toxins. Crit Rev Biochem Mol Biol. 1989;24:271–328.

    Article  PubMed  CAS  Google Scholar 

  10. Klebanoff SJ. Oxygen metabolism and the toxic properties of phagocytes. Ann Intern Med. 1980;93:480–489.

    PubMed  CAS  Google Scholar 

  11. Eiserich JP, Cross CE, Jones AD, Halliwell B, van der Vliet A. Formation of nitrating and chlorinating species by reaction of nitrite with hypochlorous acid. A novel mechanism for nitric oxide-mediated protein modification. J Biol Chem. 1996;271:19199–19208.

    Article  PubMed  CAS  Google Scholar 

  12. Eiserich JP, Hristova M, Cross CE, Jones AD, Freeman BA, Halliwell B, van der Vliet A. Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature. 1998;391:393–397.

    Article  PubMed  CAS  Google Scholar 

  13. Coyle JT, Puttfarcken P. Oxidative stress, glutamate, and neurodegenerative disorders. Science. 1993;262:689–695.

    Article  PubMed  CAS  Google Scholar 

  14. Graham DG. Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol Pharmacol. 1978;14:633–643.

    PubMed  CAS  Google Scholar 

  15. Chan PH, Fishman RA. Transient formation of superoxide radicals in polyunsaturated fatty acid-induced brain swelling. J Neurochem. 1980;35:1004–1007.

    Article  PubMed  CAS  Google Scholar 

  16. Lafon-Cazal M, Pietri S, Culcasi M, Bockaert J. NMDA-dependent superoxide production and neurotoxicity. Nature. 1993;364:535–537.

    Article  PubMed  CAS  Google Scholar 

  17. Kiyosawa H, Suko M, Okudaira H, Murata K, Miyamoto T, Chung MH, Kasai H, Nishimura S. Cigarette smoking induces formation of 8-hydroxydeoxyguanosine, one of the oxidative DNA damages in human peripheral leukocytes. Free Radic Res Commun. 1990;11:23–27.

    Article  PubMed  CAS  Google Scholar 

  18. Reznick AZ, Cross CE, Hu ML, Suzuki YJ, Khwaja S, Safadi A, Motchnik PA, Packer L, Halliwell B. Modification of plasma proteins by cigarette smoke as measured by protein carbonyl formation. Biochem J. 1992;286(Pt 2):607–611.

    PubMed  CAS  Google Scholar 

  19. Duthie GG, Arthur JR, James WP. Effects of smoking and vitamin E on blood antioxidant status. Am J Clin Nutr. 1991;53:1061S–1063S.

    PubMed  CAS  Google Scholar 

  20. Schectman G, Byrd JC, Hoffmann R. Ascorbic acid requirements for smokers: analysis of a population survey. Am J Clin Nutr. 1991;53:1466–1470.

    PubMed  CAS  Google Scholar 

  21. Winterbourn CC. Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicol Lett. 1995;82–83:969–974.

    Article  PubMed  Google Scholar 

  22. Pamplona R. Membrane phospholipids, lipoxidative damage and molecular integrity: a causal role in aging and longevity. Biochim Biophys Acta. 2008;1777(10):1249–1262.

    Article  PubMed  CAS  Google Scholar 

  23. Squier TC. Oxidative stress and protein aggregation during biological aging. Exp Gerontol. 2001;36:1539–1550.

    Article  PubMed  CAS  Google Scholar 

  24. Bahadorani S, Mukai S, Egli D, Hilliker AJ. Overexpression of metal-responsive transcription factor (MTF-1) in Drosophila melanogaster ameliorates life-span reductions associated with oxidative stress and metal toxicity. Neurobiol Aging. 2008;31:1215–1226.

    Article  PubMed  CAS  Google Scholar 

  25. Sohal RS, Agarwal S, Sohal BH. Oxidative stress and aging in the Mongolian gerbil (Meriones unguiculatus). Mech Ageing Dev. 1995;81:15–25.

    Article  PubMed  CAS  Google Scholar 

  26. Hagen TM, Yowe DL, Bartholomew JC, Wehr CM, Do KL, Park JY, Ames BN. Mitochondrial decay in hepatocytes from old rats: membrane potential declines, heterogeneity and oxidants increase. Proc Natl Acad Sci USA. 1997;94:3064–3069.

    Article  PubMed  CAS  Google Scholar 

  27. Sohal RS. Hydrogen peroxide production by mitochondria may be a biomarker of aging. Mech Ageing Dev. 1991;60:189–198.

    Article  PubMed  CAS  Google Scholar 

  28. Miquel J. An update on the oxygen stress-mitochondrial mutation theory of aging: genetic and evolutionary implications. Exp Gerontol. 1998;33:113–126.

    Article  PubMed  CAS  Google Scholar 

  29. Yakes FM, Van Houten B. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci USA. 1997;94:514–519.

    Article  PubMed  CAS  Google Scholar 

  30. Aerts AM, Zabrocki P, Govaert G, Mathys J, Carmona-Gutierrez D, Madeo F, Winderickx J, Cammue BP, Thevissen K. Mitochondrial dysfunction leads to reduced chronological lifespan and increased apoptosis in yeast. FEBS Lett. 2008;583(1):113–117.

    Article  PubMed  CAS  Google Scholar 

  31. Navarro A, Boveris A. The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol. 2007;292:C670–C686.

    Article  PubMed  CAS  Google Scholar 

  32. Boveris A, Navarro A. Brain mitochondrial dysfunction in aging. IUBMB Life. 2008;60:308–314.

    Article  PubMed  CAS  Google Scholar 

  33. van der Loo B, Koppensteiner R, Luscher TF. [How do blood vessels age? Mechanisms and clinical implications]. Vasa. 2004;33:3–11.

    PubMed  Google Scholar 

  34. van der Loo B, Schildknecht S, Zee R, Bachschmid MM. Signaling processes in endothelial aging in relation to chronic oxidative stress and their potential therapeutic implications. Exp Physiol. 2008;94:305–310.

    PubMed  Google Scholar 

  35. Hack V, Breitkreutz R, Kinscherf R, Rohrer H, Bartsch P, Taut F, Benner A, Droge W. The redox state as a correlate of senescence and wasting and as a target for therapeutic intervention. Blood. 1998;92:59–67.

    PubMed  CAS  Google Scholar 

  36. Droge W. Aging-related changes in the thiol/disulfide redox state: implications for the use of thiol antioxidants. Exp Gerontol. 2002;37:1333–1345.

    Article  PubMed  CAS  Google Scholar 

  37. Pope S, Land JM, Heales SJ. Oxidative stress and mitochondrial dysfunction in neurodegeneration; cardiolipin a critical target? Biochim Biophys Acta. 2008;1777:794–799.

    Article  PubMed  CAS  Google Scholar 

  38. Prasad KN, Cole WC, Prasad KC. Risk factors for Alzheimer’s disease: role of multiple antioxidants, non-steroidal anti-inflammatory and cholinergic agents alone or in combination in prevention and treatment. J Am Coll Nutr. 2002;21:506–522.

    PubMed  CAS  Google Scholar 

  39. Prasad KN, Cole WC, Kumar B. Multiple antioxidants in the prevention and treatment of Parkinson’s disease. J Am Coll Nutr. 1999;18:413–423.

    PubMed  CAS  Google Scholar 

  40. Combaret L, Dardevet D, Bechet D, Taillandier D, Mosoni L, Attaix D. Skeletal muscle proteolysis in aging. Curr Opin Clin Nutr Metab Care. 2009;12:37–41.

    Article  PubMed  Google Scholar 

  41. Shringarpure R, Davies KJ. Protein turnover by the proteasome in aging and disease. Free Radic Biol Med. 2002;32:1084–1089.

    Article  PubMed  CAS  Google Scholar 

  42. Dirks AJ, Hofer T, Marzetti E, Pahor M, Leeuwenburgh C. Mitochondrial DNA mutations, energy metabolism and apoptosis in aging muscle. Ageing Res Rev. 2006;5:179–195.

    Article  PubMed  CAS  Google Scholar 

  43. Davies KJ, Shringarpure R. Preferential degradation of oxidized proteins by the 20S proteasome may be inhibited in aging and in inflammatory neuromuscular diseases. Neurology. 2006;66:S93–S96.

    Article  PubMed  CAS  Google Scholar 

  44. Kawanishi S, Oikawa S. Mechanism of telomere shortening by oxidative stress. Ann NY Acad Sci. 2004;1019:278–284.

    Article  PubMed  CAS  Google Scholar 

  45. Kurz DJ, Decary S, Hong Y, Trivier E, Akhmedov A, Erusalimsky JD. Chronic oxidative stress compromises telomere integrity and accelerates the onset of senescence in human endothelial cells. J Cell Sci. 2004;117:2417–2426.

    Article  PubMed  CAS  Google Scholar 

  46. Haendeler J, Hoffmann J, Diehl JF, Vasa M, Spyridopoulos I, Zeiher AM, Dimmeler S. Antioxidants inhibit nuclear export of telomerase reverse transcriptase and delay replicative senescence of endothelial cells. Circ Res. 2004;94:768–775.

    Article  PubMed  CAS  Google Scholar 

  47. Furumoto K, Inoue E, Nagao N, Hiyama E, Miwa N. Age-dependent telomere shortening is slowed down by enrichment of intracellular vitamin C via suppression of oxidative stress. Life Sci. 1998;63:935–948.

    Article  PubMed  CAS  Google Scholar 

  48. Tanaka Y, Moritoh Y, Miwa N. Age-dependent telomere-shortening is repressed by phosphorylated alpha-tocopherol together with cellular longevity and intracellular oxidative-stress reduction in human brain microvascular endotheliocytes. J Cell Biochem. 2007;102:689–703.

    Article  PubMed  CAS  Google Scholar 

  49. Viel JJ, McManus DQ, Smith SS, Brewer GJ. Age- and concentration-dependent neuroprotection and toxicity by TNF in cortical neurons from beta-amyloid. J Neurosci Res. 2001;64:454–465.

    Article  PubMed  CAS  Google Scholar 

  50. Patel JR, Brewer GJ. Age-related differences in NFkappaB translocation and Bcl-2/Bax ratio caused by TNFalpha and Abeta42 promote survival in middle-age neurons and death in old neurons. Exp Neurol. 2008;213:93–100.

    Article  PubMed  CAS  Google Scholar 

  51. Patel JR, Brewer GJ. Age-related changes to tumor necrosis factor receptors affect neuron survival in the presence of beta-amyloid. J Neurosci Res. 2008;86:2303–2313.

    Article  PubMed  CAS  Google Scholar 

  52. You T, Nicklas BJ. Chronic inflammation: role of adipose tissue and modulation by weight loss. Curr Diabetes Rev. 2006;2:29–37.

    Article  PubMed  Google Scholar 

  53. Ungvari Z, Orosz Z, Labinskyy N, Rivera A, Xiangmin Z, Smith K, Csiszar A. Increased mitochondrial H2O2 production promotes endothelial NF-kappaB activation in aged rat arteries. Am J Physiol Heart Circ Physiol. 2007;293:H37–H47.

    Article  PubMed  CAS  Google Scholar 

  54. Csiszar A, Wang M, Lakatta EG, Ungvari Z. Inflammation and endothelial dysfunction during aging: role of NF-kappaB. J Appl Physiol. 2008;105:1333–1341.

    Article  PubMed  CAS  Google Scholar 

  55. Visser M, Pahor M, Taaffe DR, Goodpaster BH, Simonsick EM, Newman AB, Nevitt M, Harris TB. Relationship of interleukin-6 and tumor necrosis factor-alpha with muscle mass and muscle strength in elderly men and women: the Health ABC Study. J Gerontol A Biol Sci Med Sci. 2002;57:M326–M332.

    Article  PubMed  Google Scholar 

  56. Schaap LA, Pluijm SM, Deeg DJ, Visser M. Inflammatory markers and loss of muscle mass (sarcopenia) and strength. Am J Med. 2006;119(526):e9–e17.

    PubMed  Google Scholar 

  57. Ferrucci L, Harris TB, Guralnik JM, Tracy RP, Corti MC, Cohen HJ, Penninx B, Pahor M, Wallace R, Havlik RJ. Serum IL-6 level and the development of disability in older persons. J Am Geriatr Soc. 1999;47:639–646.

    PubMed  CAS  Google Scholar 

  58. Pollack M, Leeuwenburg. Molecular mechanisms of oxidative stress in aging:free radicals, aging, antioxidants and disease. In: Sen CK, Packer L, Hanninen O (eds.), Handbook of Oxidants and Antioxidants in Exercise, pp. 881–923. Elesvier Science B.V., New York, 1999.

    Google Scholar 

  59. Alvarez E, Machado A, Sobrino F, Santa Maria C. Nitric oxide and superoxide anion production decrease with age in resident and activated rat peritoneal macrophages. Cell Immunol. 1996;169:152–155.

    Article  PubMed  CAS  Google Scholar 

  60. Alvarez E, Santa Maria C. Influence of the age and sex on respiratory burst of human monocytes. Mech Ageing Dev. 1996;90:157–161.

    Article  PubMed  CAS  Google Scholar 

  61. Santa Maria C, Ayala A, Revilla E. Changes in superoxide dismutase activity in liver and lung of old rats. Free Radic Res. 1996;25:401–405.

    Article  PubMed  CAS  Google Scholar 

  62. Lavie L, Weinreb O. Age- and strain-related changes in tissue transglutaminase activity in murine macrophages: the effects of inflammation and induction by retinol. Mech Ageing Dev. 1996;90:129–143.

    Article  PubMed  CAS  Google Scholar 

  63. Khare V, Sodhi A, Singh SM. Age-dependent alterations in the tumoricidal functions of tumor-associated macrophages. Tumour Biol. 1999;20:30–43.

    Article  PubMed  CAS  Google Scholar 

  64. Wallace PK, Eisenstein TK, Meissler JJ Jr, Morahan PS. Decreases in macrophage mediated antitumor activity with aging. Mech Ageing Dev. 1995;77:169–184.

    Article  PubMed  CAS  Google Scholar 

  65. Khare V, Sodhi A, Singh SM. Effect of aging on the tumoricidal functions of murine peritoneal macrophages. Nat Immun. 1996;15:285–294.

    PubMed  Google Scholar 

  66. Irimajiri N, Bloom ET, Makinodan T. Suppression of murine natural killer cell activity by adherent cells from aging mice. Mech Ageing Dev. 1985;31:155–162.

    Article  PubMed  CAS  Google Scholar 

  67. Leeuwenburgh C, Fiebig R, Chandwaney R, Ji LL. Aging and exercise training in skeletal muscle: responses of glutathione and antioxidant enzyme systems. Am J Physiol. 1994;267:R439–R445.

    PubMed  CAS  Google Scholar 

  68. Yu B (ed.). Free Radicals in Aging. CRC Press, Boca Raton, 1993.

    Google Scholar 

  69. Yan XD, Kumar B, Nahreini P, Hanson AJ, Prasad JE, Prasad KN. Prostaglandin-induced neurodegeneration is associated with increased levels of oxidative markers and reduced by a mixture of antioxidants. J Neurosci Res. 2005;81:85–90.

    Article  PubMed  CAS  Google Scholar 

  70. Tokunaga K, Kanno K, Ochi M, Nishimiya T, Shishino K, Murase M, Makino H, Tokui S. [Lipid peroxide and antioxidants in the elderly]. Rinsho Byori. 1998;46:783–789.

    PubMed  CAS  Google Scholar 

  71. Kasapoglu M, Ozben T. Alterations of antioxidant enzymes and oxidative stress markers in aging. Exp Gerontol. 2001;36:209–220.

    Article  PubMed  CAS  Google Scholar 

  72. Pansarasa O, Bertorelli L, Vecchiet J, Felzani G, Marzatico F. Age-dependent changes of antioxidant activities and markers of free radical damage in human skeletal muscle. Free Radic Biol Med. 1999;27:617–622.

    Article  PubMed  CAS  Google Scholar 

  73. Evereklioglu C, Er H, Doganay S, Cekmen M, Turkoz Y, Otlu B, Ozerol E. Nitric oxide and lipid peroxidation are increased and associated with decreased antioxidant enzyme activities in patients with age-related macular degeneration. Doc Ophthalmol. 2003;106:129–136.

    Article  PubMed  Google Scholar 

  74. Gibson GE, Haroutunian V, Zhang H, Park LC, Shi Q, Lesser M, Mohs RC, Sheu RK, Blass JP. Mitochondrial damage in Alzheimer’s disease varies with apolipoprotein E genotype. Ann Neurol. 2000;48:297–303.

    Article  PubMed  CAS  Google Scholar 

  75. Koppal T, Drake J, Yatin S, Jordan B, Varadarajan S, Bettenhausen L, Butterfield DA. Peroxynitrite-induced alterations in synaptosomal membrane proteins: insight into oxidative stress in Alzheimer’s disease. J Neurochem. 1999;72:310–317.

    Article  PubMed  CAS  Google Scholar 

  76. Lovell MA, Xie C, Markesbery WR. Decreased glutathione transferase activity in brain and ventricular fluid in Alzheimer’s disease. Neurology. 1998;51:1562–1566.

    Article  PubMed  CAS  Google Scholar 

  77. Ambani LM, Van Woert MH, Murphy S. Brain peroxidase and catalase in Parkinson disease. Arch Neurol. 1975;32:114–118.

    Article  PubMed  CAS  Google Scholar 

  78. Kish SJ, Morito C, Hornykiewicz O. Glutathione peroxidase activity in Parkinson’s disease brain. Neurosci Lett. 1985;58:343–346.

    Article  PubMed  CAS  Google Scholar 

  79. De AK, Darad R. Age-associated changes in antioxidants and antioxidative enzymes in rats. Mech Ageing Dev. 1991;59:123–128.

    Article  PubMed  CAS  Google Scholar 

  80. Panda AK, Ruth RP, Padhi SN. Effect of age and sex on the ascorbic acid content of kidney, skeletal muscle and pancreas of common Indian toad, Bufo melanostictus. Exp Gerontol. 1984;19:95–100.

    Article  PubMed  CAS  Google Scholar 

  81. Rikans LE, Moore DR. Effect of aging on aqueous-phase antioxidants in tissues of male Fischer rats. Biochim Biophys Acta. 1988;966:269–275.

    Article  PubMed  CAS  Google Scholar 

  82. Hussain S, Slikker W Jr, Ali SF. Age-related changes in antioxidant enzymes, superoxide dismutase, catalase, glutathione peroxidase and glutathione in different regions of mouse brain. Int J Dev Neurosci. 1995;13:811–817.

    Article  PubMed  CAS  Google Scholar 

  83. Ohkuwa T, Sato Y, Naoi M. Glutathione status and reactive oxygen generation in tissues of young and old exercised rats. Acta Physiol Scand. 1997;159:237–244.

    Article  PubMed  CAS  Google Scholar 

  84. Barja de Quiroga G, Perez-Campo R,, Lopez Torres M. Anti-oxidant defences and peroxidation in liver and brain of aged rats. Biochem J. 1990;272:247–250.

    PubMed  CAS  Google Scholar 

  85. Farooqui MY, Day WW, Zamorano DM. Glutathione and lipid peroxidation in the aging rat. Comp Biochem Physiol B. 1987;88:177–180.

    PubMed  CAS  Google Scholar 

  86. Ravindranath V, Shivakumar BR, Anandatheerthavarada HK. Low glutathione levels in brain regions of aged rats. Neurosci Lett. 1989;101:187–190.

    Article  PubMed  CAS  Google Scholar 

  87. Favilli F, Iantomasi T, Marraccini P, Stio M, Lunghi B, Treves C, Vincenzini MT. Relationship between age and GSH metabolism in synaptosomes of rat cerebral cortex. Neurobiol Aging. 1994;15:429–433.

    Article  PubMed  CAS  Google Scholar 

  88. de la Asuncion JG, Millan A, Pla R, Bruseghini L, Esteras A, Pallardo FV, Sastre J, Vina J. Mitochondrial glutathione oxidation correlates with age-associated oxidative damage to mitochondrial DNA. Faseb J. 1996;10:333–338.

    PubMed  Google Scholar 

  89. Viveros MP, Arranz L, Hernanz A, Miquel J, De la Fuente M. A model of premature aging in mice based on altered stress-related behavioral response and immunosenescence. Neuroimmunomodulation. 2007;14:157–162.

    Article  PubMed  CAS  Google Scholar 

  90. Perry TL, Godin DV, Hansen S. Parkinson’s disease: a disorder due to nigral glutathione deficiency? Neurosci Lett. 1982;33:305–310.

    Article  PubMed  CAS  Google Scholar 

  91. Riederer P, Sofic E, Rausch WD, Schmidt B, Reynolds GP, Jellinger K, Youdim MB. Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem. 1989;52:515–520.

    Article  PubMed  CAS  Google Scholar 

  92. Sofic E, Lange KW, Jellinger K, Riederer P. Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson’s disease. Neurosci Lett. 1992;142:128–130.

    Article  PubMed  CAS  Google Scholar 

  93. Zaman Z, Roche S, Fielden P, Frost PG, Niriella DC, Cayley AC. Plasma concentrations of vitamins A and E and carotenoids in Alzheimer’s disease. Age Ageing. 1992;21:91–94.

    Article  PubMed  CAS  Google Scholar 

  94. Matsuo M, Gomi F, Dooley MM. Age-related alterations in antioxidant capacity and lipid peroxidation in brain, liver, and lung homogenates of normal and vitamin E-deficient rats. Mech Ageing Dev. 1992;64:273–292.

    Article  PubMed  CAS  Google Scholar 

  95. Laganiere S, Yu BP. Effect of chronic food restriction in aging rats. I. Liver subcellular membranes. Mech Ageing Dev. 1989;48:207–219.

    Article  PubMed  CAS  Google Scholar 

  96. Vatassery GT, Angerhofer CK, Knox CA. Effect of age on vitamin E concentrations in various regions of the brain and a few selected peripheral tissues of the rat, and on the uptake of radioactive vitamin E by various regions of rat brain. J Neurochem. 1984;43:409–412.

    Article  PubMed  CAS  Google Scholar 

  97. Sawada M, Carlson JC. Changes in superoxide radical and lipid peroxide formation in the brain, heart and liver during the lifetime of the rat. Mech Ageing Dev. 1987;41:125–137.

    Article  PubMed  CAS  Google Scholar 

  98. Albano CB, Muralikrishnan D, Ebadi M. Distribution of coenzyme Q homologues in brain. Neurochem Res. 2002;27:359–368.

    Article  PubMed  CAS  Google Scholar 

  99. Panemangalore M, Lee CJ. Evaluation of the indices of retinol and alpha-tocopherol status in free-living elderly. J Gerontol. 1992;47:B98–B104.

    Article  PubMed  CAS  Google Scholar 

  100. Wu D, Han SN, Meydani M, Meydani SN. Effect of concomitant consumption of fish oil and vitamin E on production of inflammatory cytokines in healthy elderly humans. Ann NY Acad Sci. 2004;1031:422–424.

    Article  PubMed  Google Scholar 

  101. Han SN, Wu D, Ha WK, Beharka A, Smith DE, Bender BS, Meydani SN. Vitamin E supplementation increases T helper 1 cytokine production in old mice infected with influenza virus. Immunology. 2000;100:487–493.

    Article  PubMed  CAS  Google Scholar 

  102. Han SN, Meydani M, Wu D, Bender BS, Smith DE, Vina J, Cao G, Prior RL, Meydani SN. Effect of long-term dietary antioxidant supplementation on influenza virus infection. J Gerontol A Biol Sci Med Sci. 2000;55:B496–B503.

    Article  PubMed  CAS  Google Scholar 

  103. Asha Devi S, Prathima S, Subramanyam MV. Dietary vitamin E and physical exercise: II. Antioxidant status and lipofuscin-like substances in aging rat heart. Exp Gerontol. 2003;38:291–297.

    Article  PubMed  CAS  Google Scholar 

  104. Devi SA, Kiran TR. Regional responses in antioxidant system to exercise training and dietary vitamin E in aging rat brain. Neurobiol Aging. 2004;25:501–508.

    Article  PubMed  CAS  Google Scholar 

  105. Jolitha AB, Subramanyam MV, Asha Devi S. Modification by vitamin E and exercise of oxidative stress in regions of aging rat brain: studies on superoxide dismutase isoenzymes and protein oxidation status. Exp Gerontol. 2006;41:753–763.

    Article  PubMed  CAS  Google Scholar 

  106. Wu D, Han SN, Meydani M, Meydani SN. Effect of concomitant consumption of fish oil and vitamin E on T cell mediated function in the elderly: a randomized double-blind trial. J Am Coll Nutr. 2006;25:300–306.

    PubMed  CAS  Google Scholar 

  107. Santos-Gonzalez M, Gomez Diaz C, Navas P, Villalba JM. Modifications of plasma proteome in long-lived rats fed on a coenzyme Q10-supplemented diet. Exp Gerontol. 2007;42:798–806.

    Article  PubMed  CAS  Google Scholar 

  108. Quiles JL, Ochoa JJ, Huertas JR, Mataix J. Coenzyme Q supplementation protects from age-related DNA double-strand breaks and increases lifespan in rats fed on a PUFA-rich diet. Exp Gerontol. 2004;39:189–194.

    Article  PubMed  CAS  Google Scholar 

  109. McDonald SR, Sohal RS, Forster MJ. Concurrent administration of coenzyme Q10 and alpha-tocopherol improves learning in aged mice. Free Radic Biol Med. 2005;38:729–736.

    Article  PubMed  CAS  Google Scholar 

  110. Lass A, Sohal RS. Effect of coenzyme Q(10) and alpha-tocopherol content of mitochondria on the production of superoxide anion radicals. Faseb J. 2000;14:87–94.

    PubMed  CAS  Google Scholar 

  111. Sohal RS, Forster MJ. Coenzyme Q, oxidative stress and aging. Mitochondrion. 2007;7(Suppl):S103–S111.

    Article  PubMed  CAS  Google Scholar 

  112. Tan JS, Wang JJ, Flood V, Rochtchina E, Smith W, Mitchell P. Dietary antioxidants and the long-term incidence of age-related macular degeneration: the Blue Mountains Eye Study. Ophthalmology. 2008;115:334–341.

    Article  PubMed  Google Scholar 

  113. Evans JR, Henshaw K. Antioxidant vitamin and mineral supplements for preventing age-related macular degeneration. Cochrane Database Syst Rev. 2008;1:CD000253.

    PubMed  Google Scholar 

  114. Raghavendra V, Kulkarni SK. Possible antioxidant mechanism in melatonin reversal of aging and chronic ethanol-induced amnesia in plus-maze and passive avocidance memory tasks. Free Radic Biol Med. 2001;30:595–602.

    Article  PubMed  CAS  Google Scholar 

  115. von Gall C, Weaver DR. Loss of responsiveness to melatonin in the aging mouse suprachiasmatic nucleus. Neurobiol Aging. 2008;29:464–470.

    Article  CAS  Google Scholar 

  116. Singh A, Naidu PS, Kulkarni SK. Reversal of aging and chronic ethanol-induced cognitive dysfunction by quercetin a bioflavonoid. Free Radic Res. 2003;37:1245–1252.

    Article  PubMed  CAS  Google Scholar 

  117. Patil CS, Singh VP, Satyanarayan PS, Jain NK, Singh A, Kulkarni SK. Protective effect of flavonoids against aging- and lipopolysaccharide-induced cognitive impairment in mice. Pharmacology. 2003;69:59–67.

    Article  PubMed  CAS  Google Scholar 

  118. Guayerbas N, Puerto M, Alvarez P, de la Fuente M. Improvement of the macrophage functions in prematurely ageing mice by a diet supplemented with thiolic antioxidants. Cell Mol Biol (Noisy-le-grand). 2004;50 Online Pub:OL677–OL681.

    CAS  Google Scholar 

  119. Guayerbas N, Puerto M, Hernanz A, Miquel J, De la Fuente M. Thiolic antioxidant supplementation of the diet reverses age-related behavioural dysfunction in prematurely ageing mice. Pharmacol Biochem Behav. 2005;80:45–51.

    Article  PubMed  CAS  Google Scholar 

  120. Long J, Gao F, Tong L, Cotman CW, Ames BN, Liu J. Mitochondrial decay in the brains of old rats: ameliorating effect of alpha-lipoic acid and acetyl-L-carnitine. Neurochem Res. 2008;34(4):755–763.

    Article  PubMed  CAS  Google Scholar 

  121. Liu J, Killilea DW, Ames BN. Age-associated mitochondrial oxidative decay: improvement of carnitine acetyltransferase substrate-binding affinity and activity in brain by feeding old rats acetyl-L-carnitine and/or R-alpha -lipoic acid. Proc Natl Acad Sci USA. 2002;99:1876–1881.

    Article  PubMed  CAS  Google Scholar 

  122. Age-Related Eye Disease Study Research Group. A randomized, placebo-contolled, clinical trial of high-dose supplementation with vitamins C and E, beta-carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Opthamol. 2001;119:1417–1436.

    Article  Google Scholar 

  123. Alvarado C, Alvarez P, Jimenez L, De la Fuente M. Improvement of leukocyte functions in young prematurely aging mice after a 5-week ingestion of a diet supplemented with biscuits enriched in antioxidants. Antioxid Redox Signal. 2005;7:1203–1210.

    Article  PubMed  CAS  Google Scholar 

  124. Alvarado C, Alvarez P, Puerto M, Gausseres N, Jimenez L, De la Fuente M. Dietary supplementation with antioxidants improves functions and decreases oxidative stress of leukocytes from prematurely aging mice. Nutrition. 2006;22:767–777.

    Article  PubMed  CAS  Google Scholar 

  125. De la Fuente M. Effects of antioxidants on immune system ageing. Eur J Clin Nutr. 2002;56(Suppl 3):S5–S8.

    Article  PubMed  CAS  Google Scholar 

  126. Richwine AF, Godbout JP, Berg BM, Chen J, Escobar J, Millard DK, Johnson RW. Improved psychomotor performance in aged mice fed diet high in antioxidants is associated with reduced ex vivo brain interleukin-6 production. Brain Behav Immun. 2005;19:512–520.

    Article  PubMed  CAS  Google Scholar 

  127. Albanes D, Heinonen OP, Huttunen JK, Taylor PR, Virtamo J, Edwards BK, Haapakoski J, Rautalahti M, Hartman AM, Palmgren J, et al. Effects of alpha-tocopherol and beta-carotene supplements on cancer incidence in the Alpha-Tocopherol Beta-Carotene Cancer Prevention Study. Am J Clin Nutr. 1995;62:1427S–1430S.

    PubMed  CAS  Google Scholar 

  128. The Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group. The effect of vitamin E and beta-carotene on the incidence of lung cancer and other cancers in male smokers. N Eng J Med. 1994;330:1029–1035.

    Article  Google Scholar 

  129. Omenn GS, Goodman GE, Thornquist MD, Balmes J, Cullen MR, Glass A, Keogh JP, Meyskens FL, Valanis B, Williams JH, Barnhart S, Hammar S. Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N Engl J Med. 1996;334:1150–1155.

    Article  PubMed  CAS  Google Scholar 

  130. Bairati I, Meyer F, Gelinas M, Fortin A, Nabid A, Brochet F, Mercier JP, Tetu B, Harel F, Abdous B, Vigneault E, Vass S, Del Vecchio P, Roy J. Randomized trial of antioxidant vitamins to prevent acute adverse effects of radiation therapy in head and neck cancer patients. J Clin Oncol. 2005;23:5805–5813.

    Article  PubMed  CAS  Google Scholar 

  131. Lonn E, Bosch J, Yusuf S, Sheridan P, Pogue J, Arnold JM, Ross C, Arnold A, Sleight P, Probstfield J, Dagenais GR. Effects of long-term vitamin E supplementation on cardiovascular events and cancer: a randomized controlled trial. JAMA. 2005;293:1338–1347.

    Article  PubMed  Google Scholar 

  132. Weinberg RB, VanderWerken BS, Anderson RA, Stegner JE, Thomas MJ. Pro-oxidant effect of vitamin E in cigarette smokers consuming a high polyunsaturated fat diet. Arterioscler Thromb Vasc Biol. 2001;21:1029–1033.

    Article  PubMed  CAS  Google Scholar 

  133. Krinsky NI. Antioxidant functions of carotenoids. Free Radic Biol Med. 1989;7:617–635.

    Article  PubMed  CAS  Google Scholar 

  134. Hazuka MB, Edwards-Prasad J, Newman F, Kinzie JJ, Prasad KN. Beta-carotene induces morphological differentiation and decreases adenylate cyclase activity in melanoma cells in culture. J Am Coll Nutr. 1990;9:143–149.

    PubMed  CAS  Google Scholar 

  135. Zhang LX, Cooney RV, Bertram JS. Carotenoids up-regulate connexin43 gene expression independent of their provitamin A or antioxidant properties. Cancer Res. 1992;52:5707–5712.

    PubMed  CAS  Google Scholar 

  136. Carter CA, Pogribny M, Davidson A, Jackson CD, McGarrity LJ, Morris SM. Effects of retinoic acid on cell differentiation and reversion toward normal in human endometrial adenocarcinoma (RL95-2) cells. Anticancer Res. 1996;16:17–24.

    PubMed  CAS  Google Scholar 

  137. Meyskens F Jr. Role of Vitamin A and Its Derivatives in the Treatment of Human Cancer. In: Prasad KN, Williams RM (eds.), Nutrients in Cancer Prevention and Treatment, pp. 349–362. Humana Press, Totowa, 1995.

    Google Scholar 

  138. Vile GF, Winterbourn CC. Inhibition of adriamycin-promoted microsomal lipid peroxidation by beta-carotene, alpha-tocopherol and retinol at high and low oxygen partial pressures. FEBS Lett. 1988;238:353–356.

    Article  PubMed  CAS  Google Scholar 

  139. Niki E. Interaction of ascorbate and alpha-tocopherol. Ann NY Acad Sci. 1987;498:186–199.

    Article  PubMed  CAS  Google Scholar 

  140. Ingold KU, Burton GW, Foster DO, Hughes L, Lindsay DA, Webb A. Biokinetics of and discrimination between dietary RRR- and SRR-alpha-tocopherols in the male rat. Lipids. 1987;22:163–172.

    Article  PubMed  CAS  Google Scholar 

  141. Carini R, Poli G, Dianzani MU, Maddix SP, Slater TF, Cheeseman KH. Comparative evaluation of the antioxidant activity of alpha-tocopherol, alpha-tocopherol polyethylene glycol 1000 succinate and alpha-tocopherol succinate in isolated hepatocytes and liver microsomal suspensions. Biochem Pharmacol. 1990;39:1597–1601.

    Article  PubMed  CAS  Google Scholar 

  142. Prasad KN, Kumar B, Yan XD, Hanson AJ, Cole WC. Alpha-tocopheryl succinate, the most effective form of vitamin E for adjuvant cancer treatment: a review. J Am Coll Nutr. 2003;22:108–117.

    PubMed  CAS  Google Scholar 

  143. Sies H, Sharov VS, Klotz LO, Briviba K. Glutathione peroxidase protects against peroxynitrite-mediated oxidations. A new function for selenoproteins as peroxynitrite reductase. J Biol Chem. 1997;272:27812–27817.

    Article  PubMed  CAS  Google Scholar 

  144. Witschi A, Reddy S, Stofer B, Lauterburg BH. The systemic availability of oral glutathione. Eur J Clin Pharmacol. 1992;43:667–669.

    Article  PubMed  CAS  Google Scholar 

  145. Niki E. Mechanisms and dynamics of antioxidant action of ubiquinol. Mol Aspects Med. 1997;18(Suppl):S63–S70.

    Article  PubMed  CAS  Google Scholar 

  146. Stoyanovsky DA, Osipov AN, Quinn PJ, Kagan VE. Ubiquinone-dependent recycling of vitamin E radicals by superoxide. Arch Biochem Biophys. 1995;323:343–351.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kedar N. Prasad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LCC

About this chapter

Cite this chapter

Prasad, K.N. (2010). Intervention with Multiple Micronutrients Including Dietary and Endogenous Antioxidants for Healthy Aging. In: Bondy, S., Maiese, K. (eds) Aging and Age-Related Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-602-3_3

Download citation

Publish with us

Policies and ethics