Skip to main content

Free Radical–Mediated Damage to Brain in Alzheimer’s Disease: Role of Acrolein and Preclinical Promise of Antioxidant Polyphenols

  • Chapter
  • First Online:
Aging and Age-Related Disorders

Abstract

Brain aging is associated with accumulation of oxidation-induced damage, likely due to the imbalance between antioxidant defenses and intracellular generation of reactive oxygen species (ROS). Alzheimer’s disease (AD) is the most frequent neurodegenerative disease with multiple causes, and aging is considered as the major risk factor for the development of this disease. From early stages, oxidative damage is strongly implicated in the pathophysiology of this disorder. Lipid peroxidation generates various by-products such as F2α-isoprostane, 4-hydroxynonenal, malondialdehyde, and acrolein with the latter being the most reactive. In the neuroblastoma SK-N-SH cell line, our results show that acrolein can induce cell toxicity through a nonapoptotic pathway. Moreover, acrolein can alter the redox state by depleting glutathione levels. Considering the role of oxidative stress and the toxic effect of by-products of lipid oxidation, intake of compounds with antioxidant activities such as polyphenolic compounds may be beneficial in the prevention of AD. In this chapter, we will review the role of free radical–mediated damage in AD and in transgenic mouse models and present the main intracellular target of polyphenolic compounds underlying their potential neuroprotective effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hamilton ML, Van Remmen H, Drake JA, et al. Does oxidative damage to DNA increase with age? Proc Natl Acad Sci USA. 2001;98:10469–10474.

    PubMed  CAS  Google Scholar 

  2. Reich EE, Markesbery WR, Roberts LJ II, et al. Brain regional quantification of F-ring and D-/E-ring isoprostanes and neuroprostanes in Alzheimer’s disease. Am J Pathol. 2001;158:293–297.

    PubMed  CAS  Google Scholar 

  3. Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med. 1991;11:81–128.

    PubMed  CAS  Google Scholar 

  4. Dei R, Takeda A, Niwa H, et al. Lipid peroxidation and advanced glycation end products in the brain in normal aging and in Alzheimer’s disease. Acta Neuropathol. 2002;104:113–122.

    PubMed  CAS  Google Scholar 

  5. Poon HF, Calabrese V, Scapagnini G, et al. Free radicals and brain aging. Clin Geriatr Med. 2004;20:329–359.

    PubMed  Google Scholar 

  6. Smith CD, Carney JM, Starke-Reed PE, et al. Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc Natl Acad Sci USA. 1991;88:10540–10543.

    PubMed  CAS  Google Scholar 

  7. Poon HF, Farr SA, Banks WA, et al. Proteomic identification of less oxidized brain proteins in aged senescence-accelerated mice following administration of antisense oligonucleotide directed at the Abeta region of amyloid precursor protein. Brain Res Mol Brain Res. 2005;138:8–16.

    PubMed  CAS  Google Scholar 

  8. Floyd RA, Hensley K. Oxidative stress in brain aging. Implications for therapeutics of neurodegenerative diseases. Neurobiol Aging. 2002;23:795–807.

    PubMed  CAS  Google Scholar 

  9. Berlett BS, Stadtman ER. Protein oxidation in aging, disease, and oxidative stress. J Biol Chem. 1997;272:20313–20316.

    PubMed  CAS  Google Scholar 

  10. Widmer R, Ziaja I, Grune T. Protein oxidation and degradation during aging: role in skin aging and neurodegeneration. Free Radic Res. 2006;40:1259–1268.

    PubMed  CAS  Google Scholar 

  11. Mount C, Downton C. Alzheimer disease: progress or profit? Nat Med. 2006;12:780–784.

    PubMed  CAS  Google Scholar 

  12. Sherrington R, Rogaev EI, Liang Y, et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature. 1995;375:754–760.

    PubMed  CAS  Google Scholar 

  13. Levy-Lahad E, Wasco W, Poorkaj P, et al. Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science. 1995;269:973–977.

    PubMed  CAS  Google Scholar 

  14. Chartier-Harlin MC, Crawford F, Hamandi K, et al. Screening for the beta-amyloid precursor protein mutation (APP717: Val-Ile) in extended pedigrees with early onset Alzheimer’s disease. Neurosci Lett. 1991;129:134–135.

    PubMed  CAS  Google Scholar 

  15. Strittmatter WJ, Saunders AM, Schmechel D, et al. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci USA. 1993;90:1977–1981.

    PubMed  CAS  Google Scholar 

  16. Poirier J, Davignon J, Bouthillier D, et al. Apolipoprotein E polymorphism and Alzheimer’s disease. Lancet. 1993;342:697–699.

    PubMed  CAS  Google Scholar 

  17. Mahley RW. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science. 1988;240:622–630.

    PubMed  CAS  Google Scholar 

  18. Burt TD, Agan BK, Marconi VC, et al. Apolipoprotein (apo) E4 enhances HIV-1 cell entry in vitro, and the APOE epsilon4/epsilon4 genotype accelerates HIV disease progression. Proc Natl Acad Sci USA. 2008;105:8718–8723.

    PubMed  CAS  Google Scholar 

  19. Greenberg SM, Rebeck GW, Vonsattel JP, et al. Apolipoprotein E epsilon 4 and cerebral hemorrhage associated with amyloid angiopathy. Ann Neurol. 1995;38:254–259.

    PubMed  CAS  Google Scholar 

  20. Josephs KA, Tsuboi Y, Cookson N, et al. Apolipoprotein E epsilon 4 is a determinant for Alzheimer-type pathologic features in tauopathies, synucleinopathies, and frontotemporal degeneration. Arch Neurol. 2004;61:1579–1584.

    PubMed  Google Scholar 

  21. Martinez M, Brice A, Vaughan JR, et al. Apolipoprotein E4 is probably responsible for the chromosome 19 linkage peak for Parkinson’s disease. Am J Med Genet B Neuropsychiatr Genet. 2005;136B:72–74.

    PubMed  Google Scholar 

  22. Masterman T, Hillert J. The telltale scan: APOE epsilon4 in multiple sclerosis. Lancet Neurol. 2004;3:331.

    PubMed  Google Scholar 

  23. Herz J. Apolipoprotein E receptors in the nervous system. Curr Opin Lipidol. 2009;20:190–196.

    PubMed  CAS  Google Scholar 

  24. Dahlgren KN, Manelli AM, Stine WB Jr, et al. Oligomeric and fibrillar species of amyloid-beta peptides differentially affect neuronal viability. J Biol Chem. 2002;277:32046–32053.

    PubMed  CAS  Google Scholar 

  25. Manelli AM, Stine WB, Van Eldik LJ, et al. ApoE and Abeta1-42 interactions: effects of isoform and conformation on structure and function. J Mol Neurosci. 2004;23:235–246.

    PubMed  CAS  Google Scholar 

  26. Rogaeva E, Meng Y, Lee JH, et al. The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat Genet. 2007;39:168–177.

    PubMed  CAS  Google Scholar 

  27. Dodson SE, Gearing M, Lippa CF, et al. LR11/SorLA expression is reduced in sporadic Alzheimer disease but not in familial Alzheimer disease. J Neuropathol Exp Neurol. 2006;65:866–872.

    PubMed  CAS  Google Scholar 

  28. Bohm C, Seibel NM, Henkel B, et al. SorLA signaling by regulated intramembrane proteolysis. J Biol Chem. 2006;281:14547–14553.

    PubMed  Google Scholar 

  29. Montine KS, Olson SJ, Amarnath V, et al. Immunohistochemical detection of 4-hydroxy-2-nonenal adducts in Alzheimer’s disease is associated with inheritance of APOE4. Am J Pathol. 1997;150:437–443.

    PubMed  CAS  Google Scholar 

  30. Genetic testing and Alzheimer’s disease. Health News. 1998;4:5.

    Google Scholar 

  31. Ramassamy C, Averill D, Beffert U, et al. Oxidative damage and protection by antioxidants in the frontal cortex of Alzheimer’s disease is related to the apolipoprotein E genotype. Free Radic Biol Med. 1999;27:544–553.

    PubMed  CAS  Google Scholar 

  32. Ramassamy C, Averill D, Beffert U, et al. Oxidative insults are associated with apolipoprotein E genotype in Alzheimer’s disease brain. Neurobiol Dis. 2000;7:23–37.

    PubMed  CAS  Google Scholar 

  33. Ramassamy C, Krzywkowski P, Averill D, et al. Impact of apoE deficiency on oxidative insults and antioxidant levels in the brain. Brain Res Mol Brain Res. 2001;86:76–83.

    PubMed  CAS  Google Scholar 

  34. Nunomura A, Castellani RJ, Zhu X, et al. Involvement of oxidative stress in Alzheimer disease. J Neuropathol Exp Neurol. 2006;65:631–641.

    PubMed  CAS  Google Scholar 

  35. Butterfield DA, Sultana R. Redox proteomics identification of oxidatively modified brain proteins in Alzheimer’s disease and mild cognitive impairment: insights into the progression of this dementing disorder. J Alzheimers Dis. 2007;12:61–72.

    PubMed  CAS  Google Scholar 

  36. Lovell MA, Markesbery WR. Oxidative DNA damage in mild cognitive impairment and late-stage Alzheimer’s disease. Nucleic Acids Res. 2007;35:7497–7504.

    PubMed  CAS  Google Scholar 

  37. Markesbery WR, Lovell MA. Damage to lipids, proteins, DNA, and RNA in mild cognitive impairment. Arch Neurol. 2007;64:954–956.

    PubMed  Google Scholar 

  38. Nourooz-Zadeh J, Liu EH, Yhlen B, et al. F4-isoprostanes as specific marker of docosahexaenoic acid peroxidation in Alzheimer’s disease. J Neurochem. 1999;72:734–740.

    PubMed  CAS  Google Scholar 

  39. Pratico D, Clark CM, Lee VM, et al. Increased 8,12-iso-iPF2alpha-VI in Alzheimer’s disease: correlation of a noninvasive index of lipid peroxidation with disease severity. Ann Neurol. 2000;48:809–812.

    PubMed  CAS  Google Scholar 

  40. Montine KS, Bassett CN, Ou JJ, et al. Apolipoprotein E allelic influence on human cerebrospinal fluid apolipoproteins. J Lipid Res. 1998;39:2443–2451.

    PubMed  CAS  Google Scholar 

  41. Montine KS, Reich E, Neely MD, et al. Distribution of reducible 4-hydroxynonenal adduct immunoreactivity in Alzheimer disease is associated with APOE genotype. J Neuropathol Exp Neurol. 1998;57:415–425.

    PubMed  CAS  Google Scholar 

  42. Sultana R, Perluigi M, Butterfield DA. Protein oxidation and lipid peroxidation in brain of subjects with Alzheimer’s disease: insights into mechanism of neurodegeneration from redox proteomics. Antioxid Redox Signal. 2006;8:2021–2037.

    PubMed  CAS  Google Scholar 

  43. Butterfield DA. Proteomics: a new approach to investigate oxidative stress in Alzheimer’s disease brain. Brain Res. 2004;1000:1–7.

    PubMed  CAS  Google Scholar 

  44. Smith MA, Perry G, Richey PL, et al. Oxidative damage in Alzheimer’s. Nature. 1996;382:120–121.

    PubMed  CAS  Google Scholar 

  45. Pamplona R, Dalfo E, Ayala V, et al. Proteins in human brain cortex are modified by oxidation, glycoxidation, and lipoxidation. Effects of Alzheimer disease and identification of lipoxidation targets. J Biol Chem. 2005;280:21522–21530.

    PubMed  CAS  Google Scholar 

  46. Aksenov MY, Aksenova MV, Butterfield DA, et al. Protein oxidation in the brain in Alzheimer’s disease. Neuroscience. 2001;103:373–383.

    PubMed  CAS  Google Scholar 

  47. Hensley K, Maidt ML, Yu Z, et al. Electrochemical analysis of protein nitrotyrosine and dityrosine in the Alzheimer brain indicates region-specific accumulation. J Neurosci. 1998;18:8126–8132.

    PubMed  CAS  Google Scholar 

  48. Castegna A, Aksenov M, Aksenova M, et al. Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radic Biol Med. 2002;33:562–571.

    PubMed  CAS  Google Scholar 

  49. Castegna A, Aksenov M, Thongboonkerd V, et al. Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part II: dihydropyrimidinase-related protein 2, alpha-enolase and heat shock cognate 71. J Neurochem. 2002;82:1524–1532.

    PubMed  CAS  Google Scholar 

  50. Wang J, Xiong S, Xie C, et al. Increased oxidative damage in nuclear and mitochondrial DNA in Alzheimer’s disease. J Neurochem. 2005;93:953–962.

    PubMed  CAS  Google Scholar 

  51. Weissman L, Jo DG, Sorensen MM, et al. Defective DNA base excision repair in brain from individuals with Alzheimer’s disease and amnestic mild cognitive impairment. Nucleic Acids Res. 2007;35:5545–5555.

    PubMed  CAS  Google Scholar 

  52. Markesbery WR, Lovell MA. DNA oxidation in Alzheimer’s disease. Antioxid Redox Signal. 2006;8:2039–2045.

    PubMed  CAS  Google Scholar 

  53. Nunomura A, Hofer T, Moreira PI, et al. RNA oxidation in Alzheimer disease and related neurodegenerative disorders. Acta Neuropathol. 2009;118:151–166.

    PubMed  CAS  Google Scholar 

  54. Shan X, Tashiro H, Lin CL. The identification and characterization of oxidized RNAs in Alzheimer’s disease. J Neurosci. 2003;23:4913–4921.

    PubMed  CAS  Google Scholar 

  55. Casado A, Encarnacion Lopez-Fernandez M, Concepcion Casado M, et al. Lipid peroxidation and antioxidant enzyme activities in vascular and Alzheimer dementias. Neurochem Res. 2008;33:450–458.

    PubMed  CAS  Google Scholar 

  56. Lovell MA, Xie C, Markesbery WR. Decreased glutathione transferase activity in brain and ventricular fluid in Alzheimer’s disease. Neurology. 1998;51:1562–1566.

    PubMed  CAS  Google Scholar 

  57. Markesbery WR, Kryscio RJ, Lovell MA, et al. Lipid peroxidation is an early event in the brain in amnestic mild cognitive impairment. Ann Neurol. 2005;58:730–735.

    PubMed  CAS  Google Scholar 

  58. Devanand DP, Habeck CG, Tabert MH, et al. PET network abnormalities and cognitive decline in patients with mild cognitive impairment. Neuropsychopharmacology. 2006;31:1327–1334.

    PubMed  Google Scholar 

  59. Williams TI, Lynn BC, Markesbery WR, et al. Increased levels of 4-hydroxynonenal and acrolein, neurotoxic markers of lipid peroxidation, in the brain in Mild Cognitive Impairment and early Alzheimer’s disease. Neurobiol Aging. 2006;27:1094–1099.

    PubMed  CAS  Google Scholar 

  60. Lovell MA, Xie C, Markesbery WR. Acrolein is increased in Alzheimer’s disease brain and is toxic to primary hippocampal cultures. Neurobiol Aging. 2001;22:187–194.

    PubMed  CAS  Google Scholar 

  61. Lovell MA, Xie C, Markesbery WR. Acrolein, a product of lipid peroxidation, inhibits glucose and glutamate uptake in primary neuronal cultures. Free Radic Biol Med. 2000;29:714–720.

    PubMed  CAS  Google Scholar 

  62. Oddo S, Caccamo A, Shepherd JD, et al. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron. 2003;39:409–421.

    PubMed  CAS  Google Scholar 

  63. Hsiao K, Chapman P, Nilsen S, et al. Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science. 1996;274:99–102.

    PubMed  CAS  Google Scholar 

  64. Apelt J, Bigl M, Wunderlich P, et al. Aging-related increase in oxidative stress correlates with developmental pattern of beta-secretase activity and beta-amyloid plaque formation in transgenic Tg2576 mice with Alzheimer-like pathology. Int J Dev Neurosci. 2004;22:475–484.

    PubMed  CAS  Google Scholar 

  65. Resende R, Moreira PI, Proenca T, et al. Brain oxidative stress in a triple-transgenic mouse model of Alzheimer disease. Free Radic Biol Med. 2008;44:2051–2057.

    PubMed  CAS  Google Scholar 

  66. Pratico D, Uryu K, Leight S, et al. Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J Neurosci. 2001;21:4183–4187.

    PubMed  CAS  Google Scholar 

  67. Sung S, Yao Y, Uryu K, et al. Early vitamin E supplementation in young but not aged mice reduces Abeta levels and amyloid deposition in a transgenic model of Alzheimer’s disease. FASEB J. 2004;18:323–325.

    PubMed  CAS  Google Scholar 

  68. Nishida Y, Yokota T, Takahashi T, et al. Deletion of vitamin E enhances phenotype of Alzheimer disease model mouse. Biochem Biophys Res Commun. 2006;350:530–536.

    PubMed  CAS  Google Scholar 

  69. Nishida Y, Ito S, Ohtsuki S, et al. Depletion of vitamin E increases Abeta accumulation by decreasing its clearances from brain and blood in a mouse model of Alzheimer disease. J Biol Chem. 2009;284(48):33400–33408.

    PubMed  CAS  Google Scholar 

  70. Roy J, Pallepati P, Bettaieb A, et al. Acrolein induces a cellular stress response and triggers mitochondrial apoptosis in A549 cells. Chem Biol Interact. 2009;181(2):154–167.

    PubMed  CAS  Google Scholar 

  71. Uchida K, Kanematsu M, Morimitsu Y, et al. Acrolein is a product of lipid peroxidation reaction. Formation of free acrolein and its conjugate with lysine residues in oxidized low density lipoproteins. J Biol Chem. 1998;273:16058–16066.

    PubMed  CAS  Google Scholar 

  72. Calingasan NY, Uchida K, Gibson GE. Protein-bound acrolein: a novel marker of oxidative stress in Alzheimer’s disease. J Neurochem. 1999;72:751–756.

    PubMed  CAS  Google Scholar 

  73. Kawaguchi-Niida M, Shibata N, Morikawa S, et al. Crotonaldehyde accumulates in glial cells of Alzheimer’s disease brain. Acta Neuropathol. 2006;111:422–429.

    PubMed  CAS  Google Scholar 

  74. Seidler NW, Squire TJ. Abeta-polyacrolein aggregates: novel mechanism of plastic formation in senile plaques. Biochem Biophys Res Commun. 2005;335:501–504.

    PubMed  CAS  Google Scholar 

  75. Geleijnse JM, Hollman P. Flavonoids and cardiovascular health: which compounds, what mechanisms? Am J Clin Nutr. 2008;88:12–13.

    PubMed  CAS  Google Scholar 

  76. Singh M, Arseneault M, Sanderson T, et al. Challenges for research on polyphenols from foods in Alzheimer’s disease: bioavailability, metabolism, and cellular and molecular mechanisms. J Agric Food Chem. 2008;56:4855–4873.

    PubMed  CAS  Google Scholar 

  77. Meyers KJ, Rudolf JL, Mitchell AE. Influence of dietary quercetin on glutathione redox status in mice. J Agric Food Chem. 2008;56:830–836.

    PubMed  CAS  Google Scholar 

  78. Graham HN. Green tea composition, consumption, and polyphenol chemistry. Prev Med. 1992;21:334–350.

    PubMed  CAS  Google Scholar 

  79. Moyers SB, Kumar NB. Green tea polyphenols and cancer chemoprevention: multiple mechanisms and endpoints for phase II trials. Nutr Rev. 2004;62:204–211.

    PubMed  Google Scholar 

  80. Guo Q, Zhao B, Shen S, et al. ESR study on the structure-antioxidant activity relationship of tea catechins and their epimers. Biochim Biophys Acta. 1999;1427:13–23.

    PubMed  CAS  Google Scholar 

  81. Tedeschi E, Menegazzi M, Yao Y, et al. Green tea inhibits human inducible nitric-oxide synthase expression by down-regulating signal transducer and activator of transcription-1alpha activation. Mol Pharmacol. 2004;65:111–120.

    PubMed  CAS  Google Scholar 

  82. Sutherland BA, Rahman RM, Appleton I. Mechanisms of action of green tea catechins, with a focus on ischemia-induced neurodegeneration. J Nutr Biochem. 2006;17:291–306.

    PubMed  CAS  Google Scholar 

  83. Bastianetto S, Yao ZX, Papadopoulos V, et al. Neuroprotective effects of green and black teas and their catechin gallate esters against beta-amyloid-induced toxicity. Eur J Neurosci. 2006;23:55–64.

    PubMed  Google Scholar 

  84. Choi YT, Jung CH, Lee SR, et al. The green tea polyphenol (−)-epigallocatechin gallate attenuates beta-amyloid-induced neurotoxicity in cultured hippocampal neurons. Life Sci. 2001;70:603–614.

    PubMed  CAS  Google Scholar 

  85. Levites Y, Amit T, Mandel S, et al. Neuroprotection and neurorescue against Abeta toxicity and PKC-dependent release of nonamyloidogenic soluble precursor protein by green tea polyphenol (−)-epigallocatechin-3-gallate. FASEB J. 2003;17:952–954.

    PubMed  CAS  Google Scholar 

  86. Ono K, Yoshiike Y, Takashima A, et al. Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: implications for the prevention and therapeutics of Alzheimer’s disease. J Neurochem. 2003;87:172–181.

    PubMed  CAS  Google Scholar 

  87. Rezai-Zadeh K, Shytle D, Sun N, et al. Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J Neurosci. 2005;25:8807–8814.

    PubMed  CAS  Google Scholar 

  88. Kim SJ, Jeong HJ, Lee KM, et al. Epigallocatechin-3-gallate suppresses NF-kappaB activation and phosphorylation of p38 MAPK and JNK in human astrocytoma U373MG cells. J Nutr Biochem. 2007;18:587–596.

    PubMed  CAS  Google Scholar 

  89. Natsume H, Adachi S, Takai S, et al. (−)-Epigallocatechin gallate attenuates the induction of HSP27 stimulated by sphingosine 1-phosphate via suppression of phosphatidylinositol 3-kinase/Akt pathway in osteoblasts. Int J Mol Med. 2009;24:197–203.

    PubMed  CAS  Google Scholar 

  90. Levites Y, Amit T, Youdim MB, et al. Involvement of protein kinase C activation and cell survival/ cell cycle genes in green tea polyphenol (−)-epigallocatechin 3-gallate neuroprotective action. J Biol Chem. 2002;277:30574–30580.

    PubMed  CAS  Google Scholar 

  91. Schroeter H, Williams RJ, Matin R, et al. Phenolic antioxidants attenuate neuronal cell death following uptake of oxidized low-density lipoprotein. Free Radic Biol Med. 2000;29:1222–1233.

    PubMed  CAS  Google Scholar 

  92. Lee YK, Yuk DY, Lee JW et al. (−)-Epigallocatechin-3-gallate prevents lipopolysaccharide-induced elevation of beta-amyloid generation and memory deficiency. Brain Res. 2009;1250:164–174.

    PubMed  CAS  Google Scholar 

  93. Wang J, Ho L, Zhao W, et al. Grape-derived polyphenolics prevent A beta oligomerization and attenuate cognitive deterioration in a mouse model of Alzheimer’s disease. J Neurosci. 2008;28:6388–6392.

    PubMed  CAS  Google Scholar 

  94. Zhang L, Cao H, Wen J, et al. Green tea polyphenol (−)-epigallocatechin-3-gallate enhances the inhibitory effect of huperzine A on acetylcholinesterase by increasing the affinity with serum albumin. Nutr Neurosci. 2009;12:142–148.

    PubMed  CAS  Google Scholar 

  95. Yang F, Lim GP, Begum AN, et al. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem. 2005;280:5892–5901.

    PubMed  CAS  Google Scholar 

  96. Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res. 2003;23:363–398.

    PubMed  CAS  Google Scholar 

  97. Craft JM, Watterson DM, Van Eldik LJ. Human amyloid beta-induced neuroinflammation is an early event in neurodegeneration. Glia. 2006;53:484–490.

    PubMed  Google Scholar 

  98. Hoozemans JJ, Veerhuis R, Rozemuller JM, et al. Neuroinflammation and regeneration in the early stages of Alzheimer’s disease pathology. Int J Dev Neurosci. 2006;24:157–165.

    PubMed  CAS  Google Scholar 

  99. Baum LNgA. Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer’s disease animal models. J Alzheimers Dis. 2004;6:367–377;discussion 443–449.

    PubMed  CAS  Google Scholar 

  100. Begum AN, Jones MR, Lim GP, et al. Curcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer’s disease. J Pharmacol Exp Ther. 2008;326:196–208.

    PubMed  CAS  Google Scholar 

  101. Motterlini R, Foresti R, Bassi R, et al. Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress. Free Radic Biol Med. 2000;28:1303–1312.

    PubMed  CAS  Google Scholar 

  102. Hayes JD, McMahon M. Molecular basis for the contribution of the antioxidant responsive element to cancer chemoprevention. Cancer Lett. 2001;174:103–113.

    PubMed  CAS  Google Scholar 

  103. Ma QL, Yang F, Rosario ER, et al. Beta-amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: suppression by omega-3 fatty acids and curcumin. J Neurosci. 2009;29:9078–9089.

    PubMed  CAS  Google Scholar 

  104. Jope RS, Roh MS. Glycogen synthase kinase-3 (GSK3) in psychiatric diseases and therapeutic interventions. Curr Drug Targets. 2006;7:1421–1434.

    PubMed  CAS  Google Scholar 

  105. Bustanji Y, Taha MO, Almasri IM, et al. Inhibition of glycogen synthase kinase by curcumin: investigation by simulated molecular docking and subsequent in vitro/in vivo evaluation. J Enzyme Inhib Med Chem. 2009;24:771–778.

    PubMed  CAS  Google Scholar 

  106. Ahmed T, Gilani AH. Inhibitory effect of curcuminoids on acetylcholinesterase activity and attenuation of scopolamine-induced amnesia may explain medicinal use of turmeric in Alzheimer’s disease. Pharmacol Biochem Behav. 2009;91:554–559.

    PubMed  CAS  Google Scholar 

  107. Jang M, Cai L, Udeani GO, et al. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science. 1997;275:218–220.

    PubMed  CAS  Google Scholar 

  108. Soleas GJ, Diamandis EP, Goldberg DM. Resveratrol: a molecule whose time has come? And gone? Clin Biochem. 1997;30:91–113.

    PubMed  CAS  Google Scholar 

  109. Lindsay J, Laurin D, Verreault R, et al. Risk factors for Alzheimer’s disease: a prospective analysis from the Canadian Study of Health and Aging. Am J Epidemiol. 2002;156:445–453.

    PubMed  Google Scholar 

  110. Orgogozo JM, Dartigues JF, Lafont S, et al. Wine consumption and dementia in the elderly: a prospective community study in the Bordeaux area. Rev Neurol (Paris). 1997;153:185–192.

    CAS  Google Scholar 

  111. Truelsen T, Thudium D, Gronbaek M. Amount and type of alcohol and risk of dementia: the Copenhagen City Heart Study. Neurology. 2002;59:1313–1319.

    PubMed  Google Scholar 

  112. Jang JH, Surh YJ. Protective effect of resveratrol on beta-amyloid-induced oxidative PC12 cell death. Free Radic Biol Med. 2003;34:1100–1110.

    PubMed  CAS  Google Scholar 

  113. Marambaud P, Zhao H, Davies P. Resveratrol promotes clearance of Alzheimer’s disease amyloid-beta peptides. J Biol Chem. 2005;280:37377–37382.

    PubMed  CAS  Google Scholar 

  114. Kaeberlein M, McDonagh T, Heltweg B, et al. Substrate-specific activation of sirtuins by resveratrol. J Biol Chem. 2005;280:17038–17045.

    PubMed  CAS  Google Scholar 

  115. Baur JA, Pearson KJ, Price NL, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006;444:337–342.

    PubMed  CAS  Google Scholar 

  116. Albani D, Polito L, Batelli S, et al. The SIRT1 activator resveratrol protects SK-N-BE cells from oxidative stress and against toxicity caused by alpha-synuclein or amyloid-beta (1-42) peptide. J Neurochem. 2009;110(5):1445–1456.

    PubMed  CAS  Google Scholar 

  117. Chen CY, Jang JH, Li MH, et al. Resveratrol upregulates heme oxygenase-1 expression via activation of NF-E2-related factor 2 in PC12 cells. Biochem Biophys Res Commun. 2005;331:993–1000.

    PubMed  CAS  Google Scholar 

  118. Wang YJ, Thomas P, Zhong JH, et al. Consumption of grape seed extract prevents amyloid-beta deposition and attenuates inflammation in brain of an Alzheimer’s disease mouse. Neurotox Res. 2009;15:3–14.

    PubMed  Google Scholar 

  119. Cartford MC, Gemma C, Bickford PC. Eighteen-month-old Fischer 344 rats fed a spinach-enriched diet show improved delay classical eyeblink conditioning and reduced expression of tumor necrosis factor alpha (TNF alpha) and TNF beta in the cerebellum. J Neurosci. 2002;22:5813–5816.

    PubMed  CAS  Google Scholar 

  120. Gemma C, Mesches MH, Sepesi B, et al. Diets enriched in foods with high antioxidant activity reverse age-induced decreases in cerebellar beta-adrenergic function and increases in proinflammatory cytokines. J Neurosci. 2002;22:6114–6120.

    PubMed  CAS  Google Scholar 

  121. Wang Y, Chang CF, Chou J, et al. Dietary supplementation with blueberries, spinach, or spirulina reduces ischemic brain damage. Exp Neurol. 2005;193:75–84.

    PubMed  CAS  Google Scholar 

  122. Sellappan S, Akoh CC, Krewer G. Phenolic compounds and antioxidant capacity of Georgia-grown blueberries and blackberries. J Agric Food Chem. 2002;50:2432–2438.

    PubMed  CAS  Google Scholar 

  123. Mazza G, Kay CD, Cottrell T, et al. Absorption of anthocyanins from blueberries and serum antioxidant status in human subjects. J Agric Food Chem. 2002;50:7731–7737.

    PubMed  CAS  Google Scholar 

  124. Joseph JA, Shukitt-Hale B, Denisova NA, et al. Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation. J Neurosci. 1999;19:8114–8121.

    PubMed  CAS  Google Scholar 

  125. Andres-Lacueva C, Shukitt-Hale B, Galli RL, et al. Anthocyanins in aged blueberry-fed rats are found centrally and may enhance memory. Nutr Neurosci. 2005;8:111–120.

    PubMed  CAS  Google Scholar 

  126. Goyarzu P, Malin DH, Lau FC, et al. Blueberry supplemented diet: effects on object recognition memory and nuclear factor-kappa B levels in aged rats. Nutr Neurosci. 2004;7:75–83.

    PubMed  Google Scholar 

  127. Dias AS, Porawski M, Alonso M, et al. Quercetin decreases oxidative stress, NF-kappaB activation, and iNOS overexpression in liver of streptozotocin-induced diabetic rats. J Nutr. 2005;135:2299–2304.

    PubMed  CAS  Google Scholar 

  128. Martinez-Florez S, Gutierrez-Fernandez B, Sanchez-Campos S, et al. Quercetin attenuates nuclear factor-kappaB activation and nitric oxide production in interleukin-1beta-activated rat hepatocytes. J Nutr. 2005;135:1359–1365.

    PubMed  CAS  Google Scholar 

  129. Joseph JA, Denisova NA, Arendash G, et al. Blueberry supplementation enhances signaling and prevents behavioral deficits in an Alzheimer disease model. Nutr Neurosci. 2003;6:153–162.

    PubMed  CAS  Google Scholar 

  130. Micheau J, Riedel G. Protein kinases: which one is the memory molecule? Cell Mol Life Sci. 1999;55:534–548.

    PubMed  CAS  Google Scholar 

  131. Sweatt JD. Mitogen-activated protein kinases in synaptic plasticity and memory. Curr Opin Neurobiol. 2004;14:311–317.

    PubMed  CAS  Google Scholar 

  132. Kelawala NS, Ananthanarayan L. Antioxidant activity of selected foodstuffs. Int J Food Sci Nutr. 2004;55:511–516.

    PubMed  CAS  Google Scholar 

  133. Hartman RE, Shah A, Fagan AM, et al. Pomegranate juice decreases amyloid load and improves behavior in a mouse model of Alzheimer’s disease. Neurobiol Dis. 2006;24:506–515.

    PubMed  CAS  Google Scholar 

  134. Albo D, Ames FC, Hunt KK, et al. Evaluation of lymph node status in male breast cancer patients: a role for sentinel lymph node biopsy. Breast Cancer Res Treat. 2003;77:9–14.

    PubMed  CAS  Google Scholar 

  135. Shukitt-Hale B, Carey A, Simon L, et al. Effects of Concord grape juice on cognitive and motor deficits in aging. Nutrition. 2006;22:295–302.

    PubMed  CAS  Google Scholar 

  136. Jeong MS, Kang JH. Acrolein, the toxic endogenous aldehyde, induces neurofilament-L aggregation. BMB Rep. 2008;41:635–639.

    PubMed  CAS  Google Scholar 

  137. Quinn J, Kulhanek D, Nowlin J, et al. Chronic melatonin therapy fails to alter amyloid burden or oxidative damage in old Tg2576 mice: implications for clinical trials. Brain Res. 2005;1037:209–213.

    PubMed  CAS  Google Scholar 

  138. Smith MA, Sayre LM, Anderson VE, et al. Cytochemical demonstration of oxidative damage in Alzheimer disease by immunochemical enhancement of the carbonyl reaction with 2,4-dinitrophenylhydrazine. J Histochem Cytochem. 1998;46:731–735.

    PubMed  CAS  Google Scholar 

  139. Stackman RW, Eckenstein F, Frei B, et al. Prevention of age-related spatial memory deficits in a transgenic mouse model of Alzheimer’s disease by chronic Ginkgo biloba treatment. Exp Neurol. 2003;184:510–520.

    PubMed  Google Scholar 

  140. Liang X, Wang Q, Hand T, et al. Deletion of the prostaglandin E2 EP2 receptor reduces oxidative damage and amyloid burden in a model of Alzheimer’s disease. J Neurosci. 2005;25:10180–10187.

    PubMed  CAS  Google Scholar 

  141. Schuessel K, Schafer S, Bayer TA, et al. Impaired Cu/Zn-SOD activity contributes to increased oxidative damage in APP transgenic mice. Neurobiol Dis. 2005;18:89–99.

    PubMed  CAS  Google Scholar 

  142. Sompol P, Ittarat W, Tangpong J, et al. A neuronal model of Alzheimer’s disease: an insight into the mechanisms of oxidative stress-mediated mitochondrial injury. Neuroscience. 2008;153:120–130.

    PubMed  CAS  Google Scholar 

  143. Mohmmad Abdul H, Wenk GL, Gramling M, et al. APP and PS-1 mutations induce brain oxidative stress independent of dietary cholesterol: implications for Alzheimer’s disease. Neurosci Lett. 2004;368:148–150.

    PubMed  CAS  Google Scholar 

  144. Nakashima H, Ishihara T, Yokota O, et al. Effects of alpha-tocopherol on an animal model of tauopathies. Free Radic Biol Med. 2004;37:176–186.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Ramassamy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LCC

About this chapter

Cite this chapter

Ramassamy, C., Arseneault, M., Nam, D.T. (2010). Free Radical–Mediated Damage to Brain in Alzheimer’s Disease: Role of Acrolein and Preclinical Promise of Antioxidant Polyphenols. In: Bondy, S., Maiese, K. (eds) Aging and Age-Related Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-602-3_21

Download citation

Publish with us

Policies and ethics