Skip to main content

Oxidative Stress and Atrial Fibrillation

  • Chapter
  • First Online:
Studies on Cardiovascular Disorders

Abstract

The pathological processes involved in initiation and perpetuation of atrial fibrillation (AF) are still unclear. AF is associated with systemic and cardiac oxidative stress and inflammation. Many risk factors for AF, such as aging and diabetes, are associated with an increased level of reactive oxygen species. In addition, oxidative stress has been shown at both cellular and tissue levels to be arrhythmogenic. Mechanisms of oxidative stress–induced arrhythmia involve a wide range of biological processes and signaling pathways, mainly resulting in abnormal Na+ current and intracellular Ca2+ handling. These lead to early and delayed afterdepolarizations as well as effects on conduction velocity through gap junctional remodeling. Oxidative stress is likely to participate with other central mechanisms of arrhythmia, particularly with inflammation and myocardial fibrosis, to promote AF. Understanding these mechanisms should provide better potential therapeutic targets for treatment of the arrhythmia and its complications. In this chapter, we summarize the role of oxidative stress in AF and some potential therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krahn AD, Manfreda J, Tate RB, Mathewson FA, Cuddy TE (1995 May) The natural history of atrial fibrillation: incidence, risk factors, and prognosis in the Manitoba Follow-Up Study. Am J Med 98(5):476–484

    Article  CAS  PubMed  Google Scholar 

  2. Lloyd-Jones DM, Wang TJ, Leip EP et al (2004) Lifetime risk for development of atrial fibrillation: the Framingham Heart Study. Circulation 110(9):1042–1046

    Article  PubMed  Google Scholar 

  3. De Champlain J, Wu R, Girouard H et al (2004 Oct–Nov) Oxidative stress in hypertension. Clin Exp Hypertens 26(7–8):593–601

    Article  PubMed  Google Scholar 

  4. Vassalle C, Petrozzi L, Botto N, Andreassi M, Zucchelli GC (2004 Oct) Oxidative stress and its association with coronary artery disease and different atherogenic risk factors. J Intern Med 256(4):308–315

    Article  CAS  PubMed  Google Scholar 

  5. Madamanchi NR, Vendrov A, Runge MS (2005 Jan) Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol 25(1):29–38

    CAS  PubMed  Google Scholar 

  6. Ide T, Tsutsui H, Kinugawa S et al (2000) Direct evidence for increased hydroxyl radicals originating from superoxide in the failing myocardium. Circ Res 86:152–157

    Article  CAS  PubMed  Google Scholar 

  7. Sam F, Kerstetter DL, Pimental DR et al (2005) Increased reactive oxygen species production and functional alterations in antioxidant enzymes in human failing myocardium. J Card Fail 11:473–480

    Article  CAS  PubMed  Google Scholar 

  8. Miller JD, Chu Y, Brooks RM, Richenbacher WE, Peña-Silva R, Heistad DD (2008) Dysregulation of antioxidant mechanisms contributes to increased oxidative stress in calcific aortic valvular stenosis in humans. J Am Coll Cardiol 52(10):843–850

    Article  CAS  PubMed  Google Scholar 

  9. Liberman M, Bassi E, Martinatti MK et al (2008 Mar) Oxidant generation predominates around calcifying foci and enhances progression of aortic valve calcification. Arterioscler Thromb Vasc Biol 28(3):463–470

    Article  CAS  PubMed  Google Scholar 

  10. Ovechkin AV, Lominadze D, Sedoris KC, Robinson TW, Tyagi SC, Roberts AM (2007) Lung ischemia-reperfusion injury: implications of oxidative stress and platelet-arteriolar wall interactions. Arch Physiol Biochem 113(1):1–12

    Article  CAS  PubMed  Google Scholar 

  11. Repine JE, Bast A, Lankhorst I et al (1997) Oxidative Stress in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med Volume 156:341–357

    CAS  PubMed  Google Scholar 

  12. Yamauchi M, Nakano H, Maekawa J et al (2005) Oxidative stress in obstructive sleep apnea. Chest 127(5):1674–1679

    Article  CAS  PubMed  Google Scholar 

  13. Duflo F, Debon R, Goudable J, Chassard D, Allaouchiche B (2002) Alveolar and serum oxidative stress in ventilator-associated pneumonia. Br J Anaesth 89:231–236

    Article  CAS  PubMed  Google Scholar 

  14. Milei J, Ferreira R, Grana DR, Boveris A (2001) Oxidative stress and mitochondrial damage in coronary artery bypass graft surgery: effects of antioxidant treatments. Compr Ther 27(2):108–116

    Article  CAS  PubMed  Google Scholar 

  15. Kofler S, Petrakopoulou P, Nickel T, Weis M (2006) Cardiac allograft endothelial dysfunction. Eur J Clin Pharmacol 62:79–82

    Article  Google Scholar 

  16. Kregel KC, Zhang HJ (2007) An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am J Physiol Regul Integr Comp Physiol 292(1):R18-R36

    Article  CAS  PubMed  Google Scholar 

  17. Civelek S, Seymen O, Seven A, Yigit G, Hatemi H, Burçak G (2001) Oxidative stress in heart tissue of hyperthyroid and iron supplemented rats. J Toxicol Environ Health A 64:499–506

    Article  CAS  PubMed  Google Scholar 

  18. Li N, Frigerio F, Maechler P (2008) The sensitivity of pancreatic β-cells to mitochondrial injuries triggered by lipotoxicity and oxidative stress. Biochem Soc Trans 36(Pt 5):930–934

    Article  PubMed  Google Scholar 

  19. Serap D, Tülay K, Cigdem G et al (2005) Autonomic dysfunction is associated with oxidative stress in non-diabetic hemodialysis patients. Dial Transplant vol. 34:74–87

    Google Scholar 

  20. Cederbaum AI (2001) Introduction—Serial review: Alcohol, oxidative stress, and cell injury. Free Radic Biol Med 31:1524–1526

    Article  CAS  PubMed  Google Scholar 

  21. Furukawa S, Fujita T, Shimabukuro M et al (2004) Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 114:1752–1761

    CAS  PubMed  Google Scholar 

  22. Frost L, Engholm G, Johnsen S, Moller H, Husted S (2000) Incident stroke after discharge from the hospital with a diagnosis of atrial fibrillation. Am J Med 108:36–40

    Article  CAS  PubMed  Google Scholar 

  23. Heppell RM, Berkin KE, McLenachan JM, Davies JA (1997) Haemostatic and haemodynamic abnormalities associated with left atrial thrombosis in non-rheumatic atrial fibrillation. Heart 77:407–411

    CAS  PubMed  Google Scholar 

  24. Wyse DG, Waldo AL, DiMarco JP et al (2002) A comparison of rate control and rhythm control in patients with atrial fibrillation. N Engl J Med 347:1825–1833

    Article  CAS  PubMed  Google Scholar 

  25. Van Gelder IC, Hagens VE, Bosker HA et al (2002) A comparison of rate control and rhythm control in patients with recurrent persistent atrial fibrillation. N Engl J Med 347:1834–1840

    Article  PubMed  Google Scholar 

  26. Naccarelli GV, Wolbrette DL, Samii S et al (2008) Vernakalant: pharmacology, electrophysiology, safety and efficacy. Drugs Today (Barc) 44:325–329

    Article  CAS  Google Scholar 

  27. Christ T, Wettwer E, Voigt N et al (2008) Pathology-specific effects of the IKur/Ito/IK,ACh blocker AVE0118 on ion channels in human chronic atrial fibrillation. Br J Pharmacol 154:1619–1630

    Article  CAS  PubMed  Google Scholar 

  28. Crijns HJ, Van Gelder IC, Walfridsson H et al (2006) Safe and effective conversion of persistent atrial fibrillation to sinus rhythm by intravenous AZD7009. Heart Rhythm 3:1321–1331

    Article  PubMed  Google Scholar 

  29. Singh BN, Connolly SJ, Crijns HJ et al (2007) Dronedarone for maintenance of sinus rhythm in atrial fibrillation or flutter. N Engl J Med 357:987–999

    Article  CAS  PubMed  Google Scholar 

  30. Callahan TD 4th, Natale A (2008) Catheter ablation of atrial fibrillation. Med Clin North Am 92:179–201

    Article  PubMed  Google Scholar 

  31. Gillinov AM, Saltman AE (2008) Surgical approaches for atrial fibrillation. Med Clin North Am 92:203–215

    Article  PubMed  Google Scholar 

  32. Li D, Zhang L, Kneller J, Shi H, Nattel S (2001) Ionic mechanism of repolarization differences between canine right and left atrium. Circ Res 88:1168–1175

    Article  CAS  PubMed  Google Scholar 

  33. Ehrlich J, Cha TJ, Chartier D, Zhang L, Hohnloser S, Nattel S (2002) Ionic basis of unique pulmonary vein cardiomyocyte action potential properties. Circulation 106(Suppl II):II-179; (abstract)

    Google Scholar 

  34. Severs NJ, Dupont E, Thomas N, Kaba R, Rothery S, Jain R et al (2006) Alterations in cardiac connexin expression in cardiomyopathies. Adv Cardiol 42:228–242

    Article  CAS  PubMed  Google Scholar 

  35. Nattel S, Shiroshita-Takeshita A, Brundel BJ, Rivard L (2005) Mechanisms of atrial fibrillation: lessons from animal models. Prog Cardiovasc Dis 48:9–28

    Article  CAS  PubMed  Google Scholar 

  36. Haïssaguerre M, Jaïs P, Shah DC et al (1998) Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med 339:659–666

    Article  PubMed  Google Scholar 

  37. January CT, Moscucci A (1992) Cellular mechanisms of early afterdepolarizations. Ann N Y Acad Sci 644:23–32

    Article  CAS  PubMed  Google Scholar 

  38. Pogwizd SM, Schlotthauer K, Li L, Yuan W, Bers DM (2001) Arrhythmogenesis and contractile dysfunction in heart failure: Roles of sodium-calcium exchange, inward rectifier potassium current, and residual beta-adrenergic responsiveness. Circ Res 88:1159–1167

    Article  CAS  PubMed  Google Scholar 

  39. Tsai CT, Lai LP, Hwang JJ, Lin JL, Chiang FT (2008) Molecular genetics of atrial fibrillation. J Am Coll Cardiol 52:241–250; Review

    Article  CAS  PubMed  Google Scholar 

  40. Takahashi Y, Jaïs P, Hocini M et al (2006) Shortening of fibrillatory cycle length in the pulmonary vein during vagal excitation. J Am Coll Cardiol 47:774–780

    Article  PubMed  Google Scholar 

  41. Bertaglia E, Zoppo F, Bonanno C, Pellizzari N, Frigato N, Pascotto P (2005) Autonomic modulation of the sinus node following electrical cardioversion of persistent atrial fibrillation: relation with early recurrence. Int J Cardiol 102(2):219–223

    Article  PubMed  Google Scholar 

  42. Tan AY, Zhou S, Ogawa M et al (2008 Aug 26) Neural mechanisms of paroxysmal atrial fibrillation and paroxysmal atrial tachycardia in ambulatory canines. Circulation 118(9):916–925; Epub 2008 Aug 12. PMID: 18697820

    Article  PubMed  Google Scholar 

  43. Sato D, Xie LH, Sovari AA, Tran DX, Morita N, Xie F, Karagueuzian H, Garfinkel A, Weiss JN, Qu Z (2009) Synchronization of chaotic early afterdepolarizations in the genesis of cardiac arrhythmias. Proc Natl Acad Sci USA 106:2983–2988

    Article  CAS  Google Scholar 

  44. Miragoli M, Gaudesius G, Rohr S (2006) Electrotonic modulation of cardiac impulse conduction by myofibroblasts. Circ Res 98:801–810

    Article  CAS  PubMed  Google Scholar 

  45. Spach MS, Dolber PC (1986) Relating extracellular potentials and their derivatives to anisotropic propagation at a microscopic level in human cardiac muscle. Evidence for electrical uncoupling of side-to-side fiber connections with increasing age. Circ Res 58(3):356–371

    Article  CAS  PubMed  Google Scholar 

  46. Miragoli M, Salvarani N, Rohr S (2007) Myofibroblasts induce ectopic activity in cardiac tissue. Circ Res 101(8):755–758

    CAS  PubMed  Google Scholar 

  47. Murrell GA, Francis MJ, Bromley L (1990) Modulation of fibroblast proliferation by oxygen free radicals. Biochem J 265:659–665

    CAS  PubMed  Google Scholar 

  48. Lee KS, Buck M, Houglum K, Chojkier M (1995) Activation of hepatic stellate cells by TGF alpha and collagen type I is mediated by oxidative stress through c-myb expression. J Clin Invest 96:2461–2468

    Article  CAS  PubMed  Google Scholar 

  49. Issac TT, Dokainish H, Lakkis NM (2007) Role of inflammation in initiation and perpetuation of atrial fibrillation: a systematic review of the published data. J Am Coll Cardiol 50:2021–2028

    Article  CAS  PubMed  Google Scholar 

  50. Lo B, Fijnheer R, Nierich AP, Bruins P, Kalkman CJC (2005) Reactive protein is a risk indicator for atrial fibrillation after myocardial revascularization. Ann Thorac Surg 79:1530–1535

    Article  PubMed  Google Scholar 

  51. Watanabe E, Arakawa T, Uchiyama T, Kodama I, Hishida H (2006) Highsensitivity C- Reactive protein is predictive of successful cardioversion for atrial fibrillation and maintenance of sinus rhythm after conversion. Int J Cardiol 108:346–353

    Article  PubMed  Google Scholar 

  52. Morel F, Doussers J, Vignais PV (1991) The superoxide-generating oxidase of phagocytic cells. Physiological, molecular and pathological aspects. Eur J Biochem 201:523–546

    Article  CAS  PubMed  Google Scholar 

  53. Suzuki YJ, Forman HJ, Sevanian A (1997) Oxidants as stimulators of signal transduction. Free Radic Biol Med 22:269–285

    Article  CAS  PubMed  Google Scholar 

  54. Kabe Y, Ando K, Hirao S et al (2005) Redox regulation of NF-κB activation: distinct redox regulation between the cytoplasm and the nucleus. Antiox Redox Signal 7:395–403

    Article  CAS  Google Scholar 

  55. Lu L, Chen SS, Zhang JQ et al (2004) Activation of nuclear factor κB and its proinflammatory mediator cascade in the infarcted rat heart. Biochem Biophys Res Commun 321:879–885

    Article  CAS  PubMed  Google Scholar 

  56. Seddon M, Looi YH, Shah AM (2007) Oxidative stress and redox signalling in cardiac hypertrophy and heart failure. Heart 93:903–907

    Article  CAS  PubMed  Google Scholar 

  57. Shang LL, Sanyal S, Pfahnl AE et al (2008) NF-κB-dependent transcriptional regulation of the cardiac scn5a sodium channel by angiotensin II. Am J Physiol Cell Physiol 294:C372–C379

    Article  CAS  PubMed  Google Scholar 

  58. Mihm MJ, Yu F, Carnes CA et al (2001) Impaired myofibrillar energetics and oxidative injury during human atrial fibrillation. Circulation 104:174–180

    Article  CAS  PubMed  Google Scholar 

  59. De Vecchi E, Pala MG, Di Credico G et al (1998) Relation between left ventricular function and oxidative stress in patients undergoing bypass surgery. Heart 79:242–247

    PubMed  Google Scholar 

  60. Neuman RB, Bloom HL, Shukrullah I et al (2007) Oxidative stress markers are associated with persistent atrial fibrillation. Clin Chem 53(9):1652–1657

    Article  CAS  PubMed  Google Scholar 

  61. Kim YH, Lim DS, Lee JH et al (2003) Gene expression profiling of oxidative stress on atrial fibrillation in humans. Exp Mol Med 35:336–349

    Article  CAS  PubMed  Google Scholar 

  62. Beresewicz A, Horackova M (1991) Alterations in electrical and contractile behavior of isolated cardiomyocytes by hydrogen peroxide: possible ionic mechanisms. J Mol Cell Cardiol 23:899–918

    Article  CAS  PubMed  Google Scholar 

  63. Song Y, Shryock JC, Wagner S, Maier LS, Belardinelli L (2006) Blocking late sodium current reduces hydrogen peroxide-induced arrhythmogenic activity and contractile dysfunction. J Pharmacol Exp Ther 318(1):214–222

    Article  CAS  PubMed  Google Scholar 

  64. Thomas GP, Sims SM, Cook MA, Karmazyn M (1998) Hydrogen peroxide-induced stimulation of L-type calcium current in guinea pig ventricular myocytes and its inhibition by adenosine A1 receptor activation. J Pharmacol Exp Ther 286:1208–1214

    CAS  PubMed  Google Scholar 

  65. Hinata M, Matsuoka I, Iwamoto T, Watanabe Y, Kimura J (2007) Mechanism of Na+/Ca2+ exchanger activation by hydrogen peroxide in guinea-pig ventricular myocytes. J Pharmacol Sci 103:283–292

    Article  CAS  PubMed  Google Scholar 

  66. Morris TE, Sulakhe PV (1997) Sarcoplasmic reticulum Ca2+-pump dysfunction in rat cardiomyocytes briefly exposed to hydroxyl radicals. Free Radic Biol Med 22:37–47

    Article  CAS  PubMed  Google Scholar 

  67. Erickson JR, Joiner ML, Guan X et al (2008) Dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell 133:462–474

    Article  CAS  PubMed  Google Scholar 

  68. Erickson JR, Anderson ME (2008) CaMKII and its role in cardiac arrhythmia. J Cardiovasc Electrophysiol 19:1332–1336

    Article  PubMed  Google Scholar 

  69. Anzai K, Ogawa K, Kuniyasu A, Ozawa T, Yamamoto H, Nakayama H (1998) Effects of hydroxyl radical and sulfhydryl reagents on the open probability of the purified cardiac ryanodine receptor channel incorporated into planar lipid bilayers. Biochem Biophys Res Commun 249:938–942

    Article  CAS  PubMed  Google Scholar 

  70. Ono N, Hayashi H, Kawase A et al (2007) Spontaneous atrial fibrillation initiated by triggered activity near the pulmonary veins in aged rats subjected to glycolytic inhibition. Am J Physiol 292:H639–H648

    CAS  Google Scholar 

  71. Jones EF, Calafiore P, McNeil JJ, Tonkin AM, Donnan GA (1996) Atrial fibrillation with left atrial spontaneous contrast detected by transesophageal echocardiography is a potent risk factor for stroke. Am J Cardiol 78:425–429

    Article  CAS  PubMed  Google Scholar 

  72. Celermajer DS, Sorensen KE, Spiegelhalter DJ et al (1994) Aging is associated with endothelial dysfunction in healthy men years before the age-related decline in women. J Am Coll Cardiol 24:471–476

    Article  CAS  PubMed  Google Scholar 

  73. Wang X, Desai K, Juurlink BH et al (2006) Gender-related differences in advanced glycation endproducts, oxidative stress markers and nitric oxide synthases in rats. Kidney Int 69:281–287

    Article  CAS  PubMed  Google Scholar 

  74. (1994) Risk factors for stroke and efficacy of antithrombotic therapy in atrial fibrillation. Analysis of pooled data from five randomized controlled trials. Arch Intern Med 154:1449–1457

    Google Scholar 

  75. Ostgren CJ, Merlo J, Rastam L et al (2004) Atrial fibrillation and its association with type 2 diabetes and hypertension in a Swedish community. Diabetes Obes Metab 6:367–374

    Article  CAS  PubMed  Google Scholar 

  76. Keaney JF Jr, Larson MG, Vasan RS et al (2003) Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham Study. Arterioscler Thromb Vasc Biol 2:434–439

    Article  Google Scholar 

  77. Watanabe H, Tanabe N,Watanabe T et al (2008) Metabolic syndrome and risk of development of atrial fibrillation. The Niigata Preventive Medicine Study. Circulation 117:1249–1251

    Article  Google Scholar 

  78. Cai H, Li Z, Goette A, Mera F, Honeycutt C, Feterik K, Wilcox JN, Dudley SC Jr, Harrison DG, Langberg JJ (2002) Downregulation of endocardial nitric oxide synthase expression and nitric oxide production in atrial fibrillation: potential mechanisms for atrial thrombosis and stroke. Circulation 106:2854–2858

    Article  CAS  PubMed  Google Scholar 

  79. Radomski MW, Palmer RM, Moncada S (1987) Comparative pharmacology of endothelium-derived relaxing factor, nitric oxide and prostacyclin in platelets. Br J Pharmacol 92:181–187

    Article  CAS  PubMed  Google Scholar 

  80. Freedman JE, Loscalzo J, Barnard MR et al (1997) Nitric oxide released from activated platelets inhibits platelet recruitment. J Clin Invest 100:350–356

    Article  CAS  PubMed  Google Scholar 

  81. Bouchie JL, Hansen H, Feener EP (1998) Natriuretic factors and nitric oxide suppress plasminogen activator inhibitor-1 expression in vascular smooth muscle cells: role of cGMP in the regulation of the plasminogen system. Arterioscler Thromb Vasc Biol 18:1771–1779

    Article  CAS  PubMed  Google Scholar 

  82. Swiatkowska M, Cierniewska-Cieslak A, Pawlowska Z et al (2000) Dual regulatory effects of nitric oxide on plasminogen activator inhibitor type 1 expression in endothelial cells. Eur J Biochem 267:1001–1007

    Article  CAS  PubMed  Google Scholar 

  83. Carnes CA, Chung MK, Nakayama T et al (2001) Ascorbate attenuates atrial pacing-induced peroxynitrite formation and electrical remodeling and decreases the incidence of postoperative atrial fibrillation. Circ Res. 89:E32–E38

    Article  CAS  PubMed  Google Scholar 

  84. Van Wagoner DR (2008) Oxidative stress and inflammation in atrial fibrillation: role in pathogenesis and potential as a therapeutic target. J Cardiovasc Pharmacol 52:306–313

    Article  Google Scholar 

  85. Doerries C, Grote K, Hilfiker-Kleiner D et al (2007) Critical role of the NAD(P)H oxidase subunit p47phox for left ventricular remodeling/dysfunction and survival after myocardial infarction. Circ Res 100:894–903

    Article  CAS  PubMed  Google Scholar 

  86. Williams HC, Griendling KK (2007) NADPH oxidase inhibitors: new antihypertensive agents? J Cardiovasc Pharmacol 50:9–16

    Article  CAS  PubMed  Google Scholar 

  87. Nakagami H, Takemoto M, Liao JK (2003) NADPH xidase-derived superoxide anion mediates angiotensin II-induced cardiac hypertrophy. J Mol Cell Cardiol 35:851–859

    Article  CAS  PubMed  Google Scholar 

  88. Sun Y (2007) Oxidative stress and cardiac repair/remodeling following infarction. Am J Med Sci 334:197–205

    Article  PubMed  Google Scholar 

  89. Dudley SC Jr, Hoch NE, McCann LF et al (2005) Atrial fibrillation increases production of superoxide by the left atrium and left atrial appendage: role of the NADPH and xanthine oxidases. Circulation 112:1266–1273

    Article  CAS  PubMed  Google Scholar 

  90. Kim YM, Kattach H, Ratnatunga C, Pillai R, Channon KM, Casadei B (2008) Association of atrial nicotinamide adenine dinucleotide phosphate oxidase activity with the development of atrial fibrillation after cardiac surgery. J Am Coll Cardiol 51:68–74

    Article  CAS  PubMed  Google Scholar 

  91. Hanna IR, Heeke B, Bush H et al (2006) Lipid-lowering drug use is associated with reduced prevalence of atrial fibrillation in patients with left ventricular systolic dysfunction. Heart Rhythm 3:881–886

    Article  PubMed  Google Scholar 

  92. Maggioni AP, Latini R, Carson PE et al (2005) Valsartan reduces the incidence of atrial fibrillation in patients with heart failure: results from the Valsartan Heart Failure Trial (Val-HeFT). Am Heart J 149:548–557

    Article  CAS  PubMed  Google Scholar 

  93. Wachtell K, Lehto M, Gerdts E et al (2005) Angiotensin II receptor blockade reduces new-onset atrial fibrillation and subsequent stroke compared to atenolol: the Losartan Intervention For End Point Reduction in Hypertension (LIFE) study. J Am Coll Cardiol 45:712–719

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding: R01 HL085520, R01 HL085558, R01 HL073753, an American Heart Association Established Investigator Award 0440164 N, and a Veterans Affairs MERIT grant.

Author Disclosure Statement SCD holds a patent entitled: Oxidative Stress Markers Predict Atrial Fibrillation 60/835,074. SCD is a recipient of a grant from Pfizer, Inc. to run at trial, Statins for the prevention of atrial fibrillation (StoP-AF; NCT00252967).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel C. Dudley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sovari, A.A., Dudley, S.C. (2010). Oxidative Stress and Atrial Fibrillation. In: Sauer, H., Shah, A., Laurindo, F. (eds) Studies on Cardiovascular Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-600-9_19

Download citation

Publish with us

Policies and ethics