Skip to main content

Smoking-Induced Oxidative Stress in the Pathogenesis of Cardiovascular Diseases

  • Chapter
  • First Online:
Studies on Cardiovascular Disorders
  • 735 Accesses

Abstract

Cigarette smoke, the prototypical form of oxidative stressor for the vascular system, is a complex mix of thousands of oxidative and nonoxidative compounds. Although it is still not clear which smoke chemicals are responsible for CVD initiation and progression, some important chemicals have been identified. Importantly, many cigarette smoke chemicals increase the oxidative burden for the vasculature directly, but also indirectly, e.g., by causing cellular damage and inflammation. The processes underlying the impact of smoking on CVD initiation and progression is discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

WHO:

World Health Organisation

CVDs:

cardiovascular diseases

CS:

cigarette smoke

LPS:

lipopolysaccharides

FMD:

flow-mediated dilation

ECM:

extracellular matrix

References

  1. Ambrose JA, Barua RS (2004) The pathophysiology of cigarette smoking and cardiovascular disease: an update. J Am Coll Cardiol 43:1731–1737

    Article  PubMed  CAS  Google Scholar 

  2. Burns DM (1991) Cigarettes and cigarette smoking. Clin Chest Med 12:631–642

    PubMed  CAS  Google Scholar 

  3. Ding YS, Yan XJ, Jain RB, Lopp E, Tavakoli A, Polzin GM, Stanfill SB, Ashley DL, Watson CH (2006) Determination of 14 polycyclic aromatic hydrocarbons in mainstream smoke from U.S. brand and non-U.S. brand cigarettes. Environ Sci Technol 40:1133–1138

    Article  PubMed  CAS  Google Scholar 

  4. Church DF, Pryor WA (1985) Free-radical chemistry of cigarette smoke and its toxicological implications. Environ Health Perspect 64:111–126

    Article  PubMed  CAS  Google Scholar 

  5. Pryor WA, Church DF, Evans MD, Rice WY Jr, Hayes JR (1990) A comparison of the free radical chemistry of tobacco-burning cigarettes and cigarettes that only heat tobacco. Free Radic Biol Med 8:275–279

    Article  PubMed  CAS  Google Scholar 

  6. Bernhard D, Pfister G, Huck CW, Kind M, Salvenmoser W, Bonn GK, Wick G (2003) Disruption of vascular endothelial homeostasis by tobacco smoke: impact on atherosclerosis. FASEB J 17:2302–2304

    PubMed  CAS  Google Scholar 

  7. Bernhard D, Csordas A, Henderson B, Rossmann A, Kind M, Wick G (2005) Cigarette smoke metal-catalyzed protein oxidation leads to vascular endothelial cell contraction by depolymerization of microtubules. FASEB J 19:1096–1107

    Article  PubMed  CAS  Google Scholar 

  8. Wang J, Wilcken DE, Wang XL (2001) Cigarette smoke activates caspase-3 to induce apoptosis of human umbilical venous endothelial cells. Mol Genet Metab 72:82–88

    Article  PubMed  CAS  Google Scholar 

  9. Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK (2000) Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol 12:1539–1546

    Article  PubMed  CAS  Google Scholar 

  10. Cocco RE, Ucker DS (2001) Distinct modes of macrophage recognition for apoptotic and necrotic cells are not specified exclusively by phosphatidylserine exposure. Mol Biol Cell 12:919–930

    PubMed  CAS  Google Scholar 

  11. Hasday JD, Bascom R, Costa JJ, Fitzgerald T, Dubin W (1999) Bacterial endotoxin is an active component of cigarette smoke. Chest 115:829–835

    Article  PubMed  CAS  Google Scholar 

  12. Kafai MR, Ganji V (2003) Sex, age, geographical location, smoking, and alcohol consumption influence serum selenium concentrations in the USA: third National Health and Nutrition Examination Survey, 1988-1994. J Trace Elem Med Biol 17:13–18

    Article  PubMed  Google Scholar 

  13. Wang J, Dudley D, Wang XL (2002) Haplotype-specific effects on endothelial NO synthase promoter efficiency: modifiable by cigarette smoking. Arterioscler Thromb Vasc Biol 22:1–4

    Article  Google Scholar 

  14. Bennett MR (2001) Reactive oxygen species and death: oxidative DNA damage in atherosclerosis. Circ Res 88:648–650

    Article  PubMed  CAS  Google Scholar 

  15. Pryor WA, Stone K (1993) Oxidants in cigarette smoke. Radicals, hydrogen peroxide, peroxynitrate, and peroxynitrite. Ann N Y Acad Sci 686:12–27

    Article  PubMed  CAS  Google Scholar 

  16. Arteel GE, Briviba K, Sies H (1999) Protection against peroxynitrite. FEBS Lett 445:226–230

    Article  PubMed  CAS  Google Scholar 

  17. Chu FF (1994) The human glutathione peroxidase genes GPX2, GPX3, and GPX4 map to chromosomes 14, 5, and 19, respectively. Cytogenet Cell Genet 66:96–98

    Article  PubMed  CAS  Google Scholar 

  18. Heinecke JW, Lusis AJ (1998) Paraoxonase-gene polymorphisms associated with coronary heart disease: support for the oxidative damage hypothesis? Am J Hum Genet 62:20–24

    Article  PubMed  CAS  Google Scholar 

  19. Bernhard D, Rossmann A, Henderson B, Kind M, Seubert A, Wick G (2006) Increased serum cadmium and strontium levels in young smokers: effects on arterial endothelial cell gene transcription. Arterioscler Thromb Vasc Biol 26:833–838

    Article  PubMed  CAS  Google Scholar 

  20. Bernhard D, Rossmann A, Wick G (2005) Metals in cigarette smoke. IUBMB Life 57:805–809

    Article  PubMed  CAS  Google Scholar 

  21. Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336

    Article  PubMed  CAS  Google Scholar 

  22. Burke A, Fitzgerald GA (2003) Oxidative stress and smoking-induced vascular injury. Prog Cardiovasc Dis 46:79–90

    Article  PubMed  CAS  Google Scholar 

  23. Church DF, Pryor WA (1985) Free-radical chemistry of cigarette smoke and its toxicological implications. Environ Health Perspect 64:111–126

    Google Scholar 

  24. Kojda G, Harrison D (1999) Interactions between NO and reactive oxygen species: pathophysiological importance in atherosclerosis, hypertension, diabetes and heart failure. Cardiovasc Res 43:562–571

    Article  PubMed  CAS  Google Scholar 

  25. Wick G, Knoflach M, Xu Q (2004) Autoimmune and inflammatory mechanisms in atherosclerosis. Annu Rev Immunol 22:361–403

    Article  PubMed  CAS  Google Scholar 

  26. Heitzer T, Yla-Herttuala S, Luoma J, Kurz S, Munzel T, Just H, Olschewski M, Drexler H (1996) Cigarette smoking potentiates endothelial dysfunction of forearm resistance vessels in patients with hypercholesterolemia. Role of oxidized LDL. Circulation 93:1346–1353

    Article  PubMed  CAS  Google Scholar 

  27. Herbert JM, Bono F, Savi P (1996) The mitogenic effect of H2O2 for vascular smooth muscle cells is mediated by an increase of the affinity of basic fibroblast growth factor for its receptor. FEBS Lett 395:43–47

    Article  PubMed  CAS  Google Scholar 

  28. Wang Z, Castresana MR, Newman WH (2001) Reactive oxygen and NF-kappaB in VEGF-induced migration of human vascular smooth muscle cells. Biochem Biophys Res Commun 285:669–674

    Article  PubMed  CAS  Google Scholar 

  29. Bernhard D, Moser C, Backovic A, Wick G (2007) Cigarette smoke—an aging accelerator? Exp Gerontol 42:160–165

    Article  PubMed  CAS  Google Scholar 

  30. Morla M, Busquets X, Pons J, Sauleda J, MacNee W, Agusti AG (2006) Telomere shortening in smokers with and without COPD. Eur Respir J 27:525–528

    Article  PubMed  CAS  Google Scholar 

  31. Vlassara H, Palace MR (2003) Glycoxidation: the menace of diabetes and aging. Mt Sinai J Med 70:232–241

    PubMed  Google Scholar 

  32. Sun L, Luo C, Long J, Wei D, Liu J (2006) Acrolein is a mitochondrial toxin: Effects on respiratory function and enzyme activities in isolated rat liver mitochondria. Mitochondrion 6(3):136–142

    Article  PubMed  CAS  Google Scholar 

  33. Burke A, Fitzgerald GA (2003) Oxidative stress and smoking-induced vascular injury. Prog Cardiovasc Dis 46:79–90

    Google Scholar 

  34. Blache D (1995) Involvement of hydrogen and lipid peroxides in acute tobacco smoking-induced platelet hyperactivity. Am J Physiol 268:H679–H685

    PubMed  CAS  Google Scholar 

  35. Ichiki K, Ikeda H, Haramaki N, Ueno T, Imaizumi T (1996) Long-term smoking impairs platelet-derived nitric oxide release. Circulation 94:3109–3114

    Article  PubMed  CAS  Google Scholar 

  36. Sawada M, Kishi Y, Numano F, Isobe M (2002) Smokers lack morning increase in platelet sensitivity to nitric oxide. J Cardiovasc Pharmacol 40:571–576

    Article  PubMed  CAS  Google Scholar 

  37. Newby DE, Wright RA, Labinjoh C, Ludlam CA, Fox KA, Boon NA, Webb DJ (1999) Endothelial dysfunction, impaired endogenous fibrinolysis, and cigarette smoking: a mechanism for arterial thrombosis and myocardial infarction. Circulation 99:1411–1415

    Article  PubMed  CAS  Google Scholar 

  38. Tuut M, Hense HW (2001) Smoking, other risk factors and fibrinogen levels. evidence of effect modification. Ann Epidemiol 11:232–238

    Article  PubMed  CAS  Google Scholar 

  39. Shebuski RJ, Kilgore KS (2002) Role of inflammatory mediators in thrombogenesis. J Pharmacol Exp Ther 300:729–735

    Article  PubMed  CAS  Google Scholar 

  40. McGill HC Jr, McMahan CA, Zieske AW, Tracy RE, Malcom GT, Herderick EE, Strong JP (2000) Association of coronary heart disease risk factors with microscopic qualities of coronary atherosclerosis in youth. Circulation 102:374–379

    Article  PubMed  Google Scholar 

  41. Libby P (2001) Current concepts of the pathogenesis of the acute coronary syndromes. Circulation 104:365–372

    Article  PubMed  CAS  Google Scholar 

  42. Libby P (1995) Molecular bases of the acute coronary syndromes. Circulation 91:2844–2850

    Article  PubMed  CAS  Google Scholar 

  43. Kennon S, Suliman A, MacCallum PK, Ranjadayalan K, Wilkinson P, Timmis AD (1998) Clinical characteristics determining the mode of presentation in patients with acute coronary syndromes. J Am Coll Cardiol 32:2018–2022

    Article  PubMed  CAS  Google Scholar 

  44. Burke AP, Farb A, Malcom GT, Liang YH, Smialek J, Virmani R (1997) Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med 336:1276–1282

    Article  PubMed  CAS  Google Scholar 

  45. Cohen DJ, Doucet M, Cutlip DE, Ho KK, Popma JJ, Kuntz RE (2001) Impact of smoking on clinical and angiographic restenosis after percutaneous coronary intervention: another smoker’s paradox? Circulation 104:773–778

    Article  PubMed  CAS  Google Scholar 

  46. Hasdai D, Rihal CS, Lerman A, Grill DE, Holmes DR Jr (1997) Smokers undergoing percutaneous coronary revascularization present with fewer narrowings in the target coronary artery. Am J Cardiol 80:1212–1214

    Article  PubMed  CAS  Google Scholar 

  47. Ellamushi HE, Grieve JP, Jager HR, Kitchen ND (2001) Risk factors for the formation of multiple intracranial aneurysms. J Neurosurg 94:728–732

    Article  PubMed  CAS  Google Scholar 

  48. Krueger JK, Rohrich RJ (2001) Clearing the smoke: the scientific rationale for tobacco abstention with plastic surgery. Plast Reconstr Surg 108:1063–1073

    Article  PubMed  CAS  Google Scholar 

  49. Raveendran M, Senthil D, Utama B, Shen Y, Dudley D, Wang J, Zhang Y, Wang XL (2004) Cigarette suppresses the expression of P4Halpha and vascular collagen production. Biochem Biophys Res Commun 323:592–598

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the Austrian National Bank (Project # 12697).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Bernhard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bernhard, D. (2010). Smoking-Induced Oxidative Stress in the Pathogenesis of Cardiovascular Diseases. In: Sauer, H., Shah, A., Laurindo, F. (eds) Studies on Cardiovascular Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-600-9_12

Download citation

Publish with us

Policies and ethics