Skip to main content

Osteoclast Activation in Multiple Myeloma

  • Chapter
  • First Online:
Myeloma Bone Disease

Part of the book series: Current Clinical Oncology ((CCO))

  • 904 Accesses

Abstract

Osteolytic bone disease affects more than 80% of multiple myeloma (MM) patients with a negative impact on both quality of life and overall survival. The pathogenesis of osteolytic disease resides in increased osteoclast (OC) activation along with osteoblast (OB) inhibition resulting in altered bone remodeling. OC number and activity in MM are enhanced mainly via cytokine deregulation within the bone marrow (BM) milieu and an imbalance of the OC/OB axis. Several novel agents are currently under investigation for their positive effect on bone remodeling via OC inhibition or OB activation. In addition to restoring bone remodeling, these drugs may inhibit tumor growth in vivo. Therefore, targeting bone disease is a promising therapeutic strategy not only with the goal of alleviating morbidity from bone disease but also resultant anti-tumor activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saad F, Lipton A, Cook R, Chen YM, Smith M, Coleman R. Pathologic fractures correlate with reduced survival in patients with malignant bone disease. Cancer. 2007;110:1860–1867.

    Article  PubMed  Google Scholar 

  2. Sonmez M, Akagun T, Topbas M, et al. Effect of pathologic fractures on survival in multiple myeloma patients: a case control study. J Exp Clin Cancer Res. 2008;27:11.

    Article  PubMed  Google Scholar 

  3. Valentin-Opran A, Charhon SA, Meunier PJ, Edouard CM, Arlot ME. Quantitative histology of myeloma-induced bone changes. Br J Haematol. 1982;52:601–610.

    Article  CAS  PubMed  Google Scholar 

  4. Taube T, Beneton MN, McCloskey EV, Rogers S, Greaves M, Kanis JA. Abnormal bone remodelling in patients with myelomatosis and normal biochemical indices of bone resorption. Eur J Haematol. 1992;49:192–198.

    Article  CAS  PubMed  Google Scholar 

  5. Bataille R, Chappard D, Marcelli C, et al. Mechanisms of bone destruction in multiple myeloma: the importance of an unbalanced process in determining the severity of lytic bone disease. J Clin Oncol. 1989;7:1909–1914.

    CAS  PubMed  Google Scholar 

  6. Choi SJ, Oba Y, Gazitt Y, et al. Antisense inhibition of macrophage inflammatory protein 1-alpha blocks bone destruction in a model of myeloma bone disease. J Clin Invest. 2001;108:1833–1841.

    CAS  PubMed  Google Scholar 

  7. Edwards CM, Edwards JR, Lwin ST, et al. Increasing Wnt signaling in the bone marrow microenvironment inhibits the development of myeloma bone disease and reduces tumor burden in bone in vivo. Blood. 2008;111:2833–2842.

    Article  CAS  PubMed  Google Scholar 

  8. Gupta GP, Massague J. Cancer metastasis: building a framework. Cell. 2006;127:679–695.

    Article  CAS  PubMed  Google Scholar 

  9. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6:392–401.

    Article  CAS  PubMed  Google Scholar 

  10. Calabrese C, Poppleton H, Kocak M, et al. A perivascular niche for brain tumor stem cells. Cancer Cell. 2007;11:69–82.

    Article  CAS  PubMed  Google Scholar 

  11. Ame-Thomas P, Maby-El Hajjami H, Monvoisin C, et al. Human mesenchymal stem cells isolated from bone marrow and lymphoid organs support tumor B-cell growth: role of stromal cells in follicular lymphoma pathogenesis. Blood. 2007;109:693–702.

    Article  CAS  PubMed  Google Scholar 

  12. Hideshima T, Mitsiades C, Tonon G, Richardson PG, Anderson KC. Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer. 2007;7:585–598.

    Article  CAS  PubMed  Google Scholar 

  13. Dierks C, Grbic J, Zirlik K, et al. Essential role of stromally induced hedgehog signaling in B-cell malignancies. Nat Med. 2007;13:944–951.

    Article  CAS  PubMed  Google Scholar 

  14. Chauhan D, Uchiyama H, Akbarali Y, et al. Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-kappa B. Blood. 1996;87:1104–1112.

    CAS  PubMed  Google Scholar 

  15. Roodman GD. Mechanisms of bone metastasis. N Engl J Med. 2004;350:1655–1664.

    Article  CAS  PubMed  Google Scholar 

  16. Giuliani N, Rizzoli V, Roodman GD. Multiple myeloma bone disease: Pathophysiology of osteoblast inhibition. Blood. 2006;108:3992–3996.

    Article  CAS  PubMed  Google Scholar 

  17. Roodman GD. New potential targets for treating myeloma bone disease. Clin Cancer Res. 2006;12:6270s–6273s.

    Article  CAS  PubMed  Google Scholar 

  18. Damiano JS, Cress AE, Hazlehurst LA, Shtil AA, Dalton WS. Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood. 1999;93:1658–1667.

    CAS  PubMed  Google Scholar 

  19. Lentzsch S, Gries M, Janz M, Bargou R, Dorken B, Mapara MY. Macrophage inflammatory protein 1-alpha (MIP-1 alpha) triggers migration and signaling cascades mediating survival and proliferation in multiple myeloma (MM) cells. Blood. 2003;101:3568–3573.

    Article  CAS  PubMed  Google Scholar 

  20. Abe M, Hiura K, Wilde J, et al. Osteoclasts enhance myeloma cell growth and survival via cell-cell contact: a vicious cycle between bone destruction and myeloma expansion. Blood. 2004;104:2484–2491.

    Article  CAS  PubMed  Google Scholar 

  21. Podar K, Anderson KC. The pathophysiologic role of VEGF in hematologic malignancies: therapeutic implications. Blood. 2005;105:1383–1395.

    Article  CAS  PubMed  Google Scholar 

  22. Tai YT, Li XF, Breitkreutz I, et al. Role of B-cell-activating factor in adhesion and growth of human multiple myeloma cells in the bone marrow microenvironment. Cancer Res. 2006;66:6675–6682.

    Article  CAS  PubMed  Google Scholar 

  23. Tian E, Zhan F, Walker R, et al. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med. 2003;349:2483–2494.

    Article  CAS  PubMed  Google Scholar 

  24. Yaccoby S, Wezeman MJ, Zangari M, et al. Inhibitory effects of osteoblasts and increased bone formation on myeloma in novel culture systems and a myelomatous mouse model. Haematologica. 2006;91:192–199.

    CAS  PubMed  Google Scholar 

  25. Li X, Pennisi A, Yaccoby S. Role of decorin in the antimyeloma effects of osteoblasts. Blood. 2008;112:159–168.

    Article  CAS  PubMed  Google Scholar 

  26. Zhao C, Irie N, Takada Y, et al. Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metab. 2006;4:111–121.

    Article  CAS  PubMed  Google Scholar 

  27. Mancino AT, Klimberg VS, Yamamoto M, Manolagas SC, Abe E. Breast cancer increases osteoclastogenesis by secreting M-CSF and upregulating RANKL in stromal cells. J Surg Res. 2001;100:18–24.

    Article  CAS  PubMed  Google Scholar 

  28. Moschen AR, Kaser A, Enrich B, et al. The RANKL/OPG system is activated in inflammatory bowel disease and relates to the state of bone loss. Gut. 2005;54:479–487.

    Article  CAS  PubMed  Google Scholar 

  29. Giuliani N, Bataille R, Mancini C, Lazzaretti M, Barille S. Myeloma cells induce imbalance in the osteoprotegerin/osteoprotegerin ligand system in the human bone marrow environment. Blood. 2001;98:3527–3533.

    Article  CAS  PubMed  Google Scholar 

  30. Seidel C, Hjertner O, Abildgaard N, et al. Serum osteoprotegerin levels are reduced in patients with multiple myeloma with lytic bone disease. Blood. 2001;98:2269–2271.

    Article  CAS  PubMed  Google Scholar 

  31. Giuliani N, Colla S, Sala R, et al. Human myeloma cells stimulate the receptor activator of nuclear factor-kappa B ligand (RANKL) in T lymphocytes: a potential role in multiple myeloma bone disease. Blood. 2002;100:4615–4621.

    Article  CAS  PubMed  Google Scholar 

  32. Lai FP, Cole-Sinclair M, Cheng WJ, et al. Myeloma cells can directly contribute to the pool of RANKL in bone bypassing the classic stromal and osteoblast pathway of osteoclast stimulation. Br J Haematol. 2004;126:192–201.

    Article  CAS  PubMed  Google Scholar 

  33. Giuliani N, Colla S, Morandi F, Barille-Nion S, Rizzoli V. Lack of receptor activator of nuclear factor-kB ligand (RANKL) expression and functional production by human multiple myeloma cells. Haematologica. 2005;90:275–278.

    CAS  PubMed  Google Scholar 

  34. Standal T, Seidel C, Hjertner O, et al. Osteoprotegerin is bound, internalized, and degraded by multiple myeloma cells. Blood. 2002;100:3002–3007.

    Article  CAS  PubMed  Google Scholar 

  35. Pearse RN, Sordillo EM, Yaccoby S, et al. Multiple myeloma disrupts the TRANCE/ osteoprotegerin cytokine axis to trigger bone destruction and promote tumor progression. Proc Natl Acad Sci USA. 2001;98:11581–11586.

    Article  CAS  PubMed  Google Scholar 

  36. Croucher PI, Shipman CM, Lippitt J, et al. Osteoprotegerin inhibits the development of osteolytic bone disease in multiple myeloma. Blood. 2001;98:3534–3540.

    Article  CAS  PubMed  Google Scholar 

  37. Terpos E, Politou M, Szydlo R, et al. Autologous stem cell transplantation normalizes abnormal bone remodeling and sRANKL/osteoprotegerin ratio in patients with multiple myeloma. Leukemia. 2004;18:1420–1426.

    Article  CAS  PubMed  Google Scholar 

  38. Terpos E, Mihou D, Szydlo R, et al. The combination of intermediate doses of thalidomide with dexamethasone is an effective treatment for patients with refractory/relapsed multiple myeloma and normalizes abnormal bone remodeling, through the reduction of sRANKL/osteoprotegerin ratio. Leukemia. 2005;19:1969–1976.

    Article  CAS  PubMed  Google Scholar 

  39. Terpos E, Politou M, Szydlo R, Goldman JM, Apperley JF, Rahemtulla A. Serum levels of macrophage inflammatory protein-1 alpha (MIP-1alpha) correlate with the extent of bone disease and survival in patients with multiple myeloma. Br J Haematol. 2003;123:106–109.

    Article  CAS  PubMed  Google Scholar 

  40. Masih-Khan E, Trudel S, Heise C, et al. MIP-1alpha (CCL3) is a downstream target of FGFR3 and RAS-MAPK signaling in multiple myeloma. Blood. 2006;108:3465–3471.

    Article  CAS  PubMed  Google Scholar 

  41. Han JH, Choi SJ, Kurihara N, Koide M, Oba Y, Roodman GD. Macrophage inflammatory protein-1alpha is an osteoclastogenic factor in myeloma that is independent of receptor activator of nuclear factor kappaB ligand. Blood. 2001;97:3349–3353.

    Article  CAS  PubMed  Google Scholar 

  42. Oyajobi BO, Franchin G, Williams PJ, et al. Dual effects of macrophage inflammatory protein-1alpha on osteolysis and tumor burden in the murine 5TGM1 model of myeloma bone disease. Blood. 2003;102:311–319.

    Article  CAS  PubMed  Google Scholar 

  43. Vallet S, Raje N, Ishitsuka K, et al. MLN3897, a novel CCR1 inhibitor, impairs osteoclastogenesis and inhibits the interaction of multiple myeloma cells and osteoclasts. Blood. 2007;110:3744–3752.

    Article  CAS  PubMed  Google Scholar 

  44. Giuliani N, Lisignoli G, Colla S, et al. CC-Chemokine ligand 20/macrophage inflammatory protein-3alpha and CC-chemokine receptor 6 are overexpressed in myeloma microenvironment related to osteolytic bone lesions. Cancer Res. 2008;68:6840–6850.

    Article  CAS  PubMed  Google Scholar 

  45. Lee JW, Chung HY, Ehrlich LA, et al. IL-3 expression by myeloma cells increases both osteoclast formation and growth of myeloma cells. Blood. 2004;103:2308–2315.

    Article  CAS  PubMed  Google Scholar 

  46. Giuliani N, Morandi F, Tagliaferri S, et al. Interleukin-3 (IL-3) is overexpressed by T lymphocytes in multiple myeloma patients. Blood. 2006;107:841–842.

    Article  CAS  PubMed  Google Scholar 

  47. Ehrlich LA, Chung HY, Ghobrial I, et al. . IL-3 is a potential inhibitor of osteoblast differentiation in multiple myeloma. Blood. 2005;106:1407–1414.

    Article  CAS  PubMed  Google Scholar 

  48. Giuliani N, Colla S, Morandi F, et al. Myeloma cells block RUNX2/CBFA1 activity in human bone marrow osteoblast progenitors and inhibit osteoblast formation and differentiation. Blood. 2005;106:2472–2483.

    Article  CAS  PubMed  Google Scholar 

  49. Ishitsuka K, Hideshima T, Neri P, et al. p38 mitogen-activated protein kinase inhibitor LY2228820 enhances bortezomib-induced cytotoxicity and inhibits osteoclastogenesis in multiple myeloma; therapeutic implications. Br J Haematol. 2008;141:598–606.

    Article  CAS  PubMed  Google Scholar 

  50. Nguyen AN, Stebbins EG, Henson M, et al. Normalizing the bone marrow microenvironment with p38 inhibitor reduces multiple myeloma cell proliferation and adhesion and suppresses osteoclast formation. Exp Cell Res. 2006;312:1909–1923.

    Article  CAS  PubMed  Google Scholar 

  51. Hiruma Y, Kurihara N, Jelinek DF, Roodman D. Increased signaling through p62 in the marrow microenvironment increases myeloma cell growth and osteoclast formation. Blood. 2008;112:239.

    Google Scholar 

  52. Qiang YW, Chen Y, Stephens O, et al. Myeloma-derived Dickkopf-1 disrupts Wnt-regulated osteoprotegerin and RANKL production by osteoblasts: a potential mechanism underlying osteolytic bone lesions in multiple myeloma. Blood. 2008;112:196–207.

    Article  CAS  PubMed  Google Scholar 

  53. Weinstein RS, Roberson PK, Manolagas SC. Giant osteoclast formation and long-term oral bisphosphonate therapy. N Engl J Med. 2009;360:53–62.

    Article  CAS  PubMed  Google Scholar 

  54. Berenson JR, Lichtenstein A, Porter L, et al. Efficacy of pamidronate in reducing skeletal events in patients with advanced multiple myeloma. Myeloma Aredia Study Group. N Engl J Med. 1996;334:488–493.

    Article  CAS  PubMed  Google Scholar 

  55. Aparicio A, Gardner A, Tu Y, Savage A, Berenson J, Lichtenstein A. In vitro cytoreductive effects on multiple myeloma cells induced by bisphosphonates. Leukemia. 1998;12:220–229.

    Article  CAS  PubMed  Google Scholar 

  56. Gnant M, Mlineritsch B, Schippinger W, et al. Endocrine therapy plus zoledronic acid in premenopausal breast cancer. N Engl J Med. 2009;360:679–691.

    Article  CAS  PubMed  Google Scholar 

  57. Kyle RA, Yee GC, Somerfield MR, et al. American Society of Clinical Oncology 2007 clinical practice guideline update on the role of bisphosphonates in multiple myeloma. J Clin Oncol. 2007;25:2464–2472.

    Article  CAS  PubMed  Google Scholar 

  58. Raje N, Woo SB, Hande K, et al. Clinical, radiographic, and biochemical characterization of multiple myeloma patients with osteonecrosis of the jaw. Clin Cancer Res. 2008;14:2387–2395.

    Article  CAS  PubMed  Google Scholar 

  59. Orriss IR, Key ML, Colston KW, Arnett TR. Inhibition of osteoblast function in vitro by aminobisphosphonates. J Cell Biochem. 2009;106:109–118.

    Article  CAS  PubMed  Google Scholar 

  60. Vanderkerken K, De Leenheer E, Shipman C, et al. Recombinant osteoprotegerin decreases tumor burden and increases survival in a murine model of multiple myeloma. Cancer Res. 2003;63:287–289.

    CAS  PubMed  Google Scholar 

  61. Body JJ, Greipp P, Coleman RE, et al. A phase I study of AMGN-0007, a recombinant osteoprotegerin construct, in patients with multiple myeloma or breast carcinoma related bone metastases. Cancer. 2003;97:887–892.

    Article  PubMed  Google Scholar 

  62. Fizazi K, Lipton A, Mariette X, et al. Randomized phase II trial of denosumab in patients with bone metastases from prostate cancer, breast cancer, or other neoplasms after intravenous bisphosphonates. J Clin Oncol. 2009;27:1564–1571.

    Article  CAS  PubMed  Google Scholar 

  63. Abe M, Kido S, Hiasa M, et al. BAFF and APRIL as osteoclast-derived survival factors for myeloma cells: a rationale for TACI-Fc treatment in patients with multiple myeloma. Leukemia. 2006;20:1313–1315.

    Article  CAS  PubMed  Google Scholar 

  64. Neri P, Kumar S, Fulciniti MT, et al. Neutralizing B-cell activating factor antibody improves survival and inhibits osteoclastogenesis in a severe combined immunodeficient human multiple myeloma model. Clin Cancer Res. 2007;13:5903–5909.

    Article  CAS  PubMed  Google Scholar 

  65. Pearsall RS, Canalis E, Cornwall-Brady M, et al. A soluble activin type IIA receptor induces bone formation and improves skeletal integrity. Proc Natl Acad Sci USA. 2008;105:7082–7087.

    Article  CAS  PubMed  Google Scholar 

  66. Vallet S, Mukherjee S, Vaghela N, et al. Restoration of bone balance via activin a inhibition results in anti-myeloma activity. Blood. 2008;112:240.

    Article  Google Scholar 

  67. Fulciniti M, Tassone P, Hideshima T, et al. . Anti-DKK1 mAb (BHQ880) as a potential therapeutic for multiple myeloma. Blood. 2007;110:551.

    Google Scholar 

  68. Pozzi S, Yan H, Vallet S, et al. Preclinical validation of a novel Dkk-1 neutralizing antibody for the treatment of multiple myeloma related bone disease. ASBMR 30th annual meeting. 2008:Su239.

    Google Scholar 

  69. Yaccoby S, Ling W, Zhan F, Walker R, Barlogie B, Shaughnessy JD Jr. Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo. Blood. 2007;109:2106–2111.

    Article  CAS  PubMed  Google Scholar 

  70. Heath DJ, Chantry AD, Buckle CH, et al. Inhibiting Dickkopf-1 (Dkk1) removes suppression of bone formation and prevents the development of osteolytic bone disease in multiple myeloma. J Bone Miner Res, 2009;24:425–436.

    Article  Google Scholar 

  71. Mitsiades N, Mitsiades CS, Poulaki V, et al. Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: therapeutic implications. Blood. 2002;99:4525–4530.

    Article  CAS  PubMed  Google Scholar 

  72. Davies FE, Raje N, Hideshima T, et al. Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood. 2001;98:210–216.

    Article  CAS  PubMed  Google Scholar 

  73. Lentzsch S, LeBlanc R, Podar K, et al. Immunomodulatory analogs of thalidomide inhibit growth of Hs Sultan cells and angiogenesis in vivo. Leukemia. 2003;17:41–44.

    Article  CAS  PubMed  Google Scholar 

  74. Anderson G, Gries M, Kurihara N, et al. Thalidomide derivative CC-4047 inhibits osteoclast formation by down-regulation of PU.1. Blood. 2006;107:3098–3105.

    Article  CAS  PubMed  Google Scholar 

  75. Breitkreutz I, Raab MS, Vallet S, et al. Lenalidomide inhibits osteoclastogenesis, survival factors and bone-remodeling markers in multiple myeloma. Leukemia. 2008;22:1925–1932.

    Article  CAS  PubMed  Google Scholar 

  76. Zangari M, Esseltine D, Lee CK, et al. Response to bortezomib is associated to osteoblastic activation in patients with multiple myeloma. Br J Haematol. 2005;131:71–73.

    Article  CAS  PubMed  Google Scholar 

  77. von Metzler I, Krebbel H, Hecht M, et al. Bortezomib inhibits human osteoclastogenesis. Leukemia. 2007;21:2025–2034.

    Article  Google Scholar 

  78. Mukherjee S, Raje N, Schoonmaker JA, et al. Pharmacologic targeting of a stem/progenitor population in vivo is associated with enhanced bone regeneration in mice. J Clin Invest. 2008;118:491–504.

    CAS  PubMed  Google Scholar 

  79. Giuliani N, Morandi F, Tagliaferri S, et al. The proteasome inhibitor bortezomib affects osteoblast differentiation in vitro and in vivo in multiple myeloma patients. Blood. 2007;110:334–338.

    Article  CAS  PubMed  Google Scholar 

  80. Terpos E, Heath DJ, Rahemtulla A, et al. Bortezomib reduces serum dickkopf-1 and receptor activator of nuclear factor-kappaB ligand concentrations and normalises indices of bone remodelling in patients with relapsed multiple myeloma. Br J Haematol. 2006;135:688–692.

    Article  CAS  PubMed  Google Scholar 

  81. Breitkreutz I, Raab MS, Vallet S, et al. Targeting MEK1/2 blocks osteoclast differentiation, function and cytokine secretion in multiple myeloma. Br J Haematol. 2007;139:55–63.

    Article  CAS  PubMed  Google Scholar 

  82. Okawa Y, Hideshima T, Steed P, et al. SNX-2112, a selective Hsp90 inhibitor, potently inhibits tumor cell growth, angiogenesis, and osteoclastogenesis in multiple myeloma and other hematologic tumors by abrogating signaling via Akt and ERK. Blood. 2009;113:846–855.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noopur Raje .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Vallet, S., Raje, N. (2010). Osteoclast Activation in Multiple Myeloma. In: Roodman, G. (eds) Myeloma Bone Disease. Current Clinical Oncology. Humana Press. https://doi.org/10.1007/978-1-60761-554-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-554-5_10

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-553-8

  • Online ISBN: 978-1-60761-554-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics