Skip to main content

Introduction: PKC Isozymes in the Control of Cell Function

  • Chapter
  • First Online:
Protein Kinase C in Cancer Signaling and Therapy

Part of the book series: Current Cancer Research ((CUCR))

Abstract

The protein kinase C (PKC) isoforms are involved in a wide range of pathways that control many aspects of cellular function. Cellular processes of critical importance for the cell fate such as proliferation, differentiation, migration, and cell death are all regulated by PKC isoforms. However, there are few examples of a PKC isoform having functions that are general and common for most cell types. Instead the effect of a PKC isoform on cell function is to a large extent dependent on context and cell type. One major challenge for the future research is to identify the factors that determine what effects a PKC isoform will have in a cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acevedo-Duncan, M., Patel, R., Whelan, S., & Bicaku, E.(2002). Human glioma PKC-ι and PKC-βII phosphorylate cyclin-dependent kinase activating kinase during the cell cycle. Cell Proliferation, 35, 23–36.

    Article  PubMed  CAS  Google Scholar 

  • Aeder, S.E., Martin, P.M., Soh, J.W., & Hussaini, I.M. (2004). PKC-η mediates glioblastoma cell proliferation through the Akt and mTOR signaling pathways. Oncogene, 23, 062–9069.

    Article  Google Scholar 

  • Anantharam, V., Kitazawa, M., Wagner, J., Kaul, S., & Kanthasamy, A.G. (2002). Caspase-3-dependent proteolytic cleavage of protein kinase Cδ is essential for oxidative stress-mediated dopaminergic cell death after exposure to methylcyclopentadienyl manganese tricarbonyl. Journal of Neuroscience, 22, 1738–1751.

    PubMed  CAS  Google Scholar 

  • Anilkumar, N., Parsons, M., Monk, R., Ng, T., & Adams, J.C. (2003). Interaction of fascin and protein kinase Cα: A novel intersection in cell adhesion and motility. EMBO Journal, 22, 5390–5402.

    Article  PubMed  CAS  Google Scholar 

  • Ashton, A.W., Watanabe, G., Albanese, C., Harrington, E.O., Ware, J.A., & Pestell, R.G. (1999). Protein kinase Cδ inhibition of S-phase transition in capillary endothelial cells involves the cyclin-dependent kinase inhibitor p27(Kip1). Journal of Biological Chemistry, 274, 20805–20811.

    Article  PubMed  CAS  Google Scholar 

  • Bae, K-M., Wang, H., Jiang, G., Chen, M.G., Lu, L., & Xiao, L. (2007). Protein kinase Cε is overexpressed in primary human non-small cell lung cancers and functionally required for proliferation of non-small cell lung cancer cells in a p21/Cip1-dependent manner. Cancer Research, 67, 6053–6063.

    Article  PubMed  CAS  Google Scholar 

  • Bharti, A., Kraeft, S.K., Gounder, M., Pandey, P., Jin, S., Yuan, Z.M., et al. (1998). Inactivation of DNA-dependent protein kinase by protein kinase Cd: Implications for apoptosis. Molecular and Cellular Biology, 18, 6719–6728.

    PubMed  CAS  Google Scholar 

  • Blass, M., Kronfeld, I., Kazimirsky, G., Blumberg, P.M., & Brodie, C. (2002). Tyrosine phosphorylation of protein kinase Cδ is essential for its apoptotic effect in response to etoposide. Molecular and Cellular Biology, 22, 182–195.

    Article  PubMed  CAS  Google Scholar 

  • Cabodi, S., Calautti, E., Talora, C., Kuroki, T., Stein, P.L., & Dotto, G.P. (2000). A PKC-η/Fyn-dependent pathway leading to keratinocyte growth arrest and differentiation. Molecular Cell, 6, 1121–1129.

    Article  PubMed  CAS  Google Scholar 

  • Clark, J.A., Black, A.R., Leontieva, O.V., Frey, M.R., Pysz, M.A., Kunneva, L., et al. (2004). Involvement of the ERK signaling cascade in protein kinase C-mediated cell cycle arrest in intestinal epithelial cells. Journal of Biological Chemistry, 279, 9233–9247.

    Article  PubMed  CAS  Google Scholar 

  • Cross, T., Griffiths, G., Deacon, E., Sallis, R., Gough, M., Watters, D., et al. (2000). PKC-δ is an apoptotic lamin kinase. Oncogene, 19, 2331–2337.

    Article  PubMed  CAS  Google Scholar 

  • Datta, R., Kojima, H., Yoshida, K., & Kufe, D. (1997). Caspase-3-mediated cleavage of protein kinase C θ in induction of apoptosis. Journal of Biological Chemistry, 272, 20317–20320.

    Article  PubMed  CAS  Google Scholar 

  • Detjen, K.M., Brembeck, F.H., Welzel, M., Kaiser, A., Haller, H., Wiedenmann, B., et al. (2000. Activation of protein kinase Cα inhibits growth of pancreatic cancer cells via p21(cip)-mediated G(1) arrest. Journal of Cell Science, 113, 3025–3035.

    PubMed  CAS  Google Scholar 

  • DeVries-Seimon, T.A., Ohm, A.M., Humphries, M.J., & Reyland, M.E. (2007). Induction of apoptosis is driven by nuclear retention of protein kinase C δ. Journal of Biological Chemistry, 282, 22307–22314.

    Article  PubMed  CAS  Google Scholar 

  • Efimova, T., Deucher, A., Kuroki, T., Ohba, M., & Eckert, R.L. (2002). Novel protein kinase C isoforms regulate human keratinocyte differentiation by activating a p38δ mitogen-activated protein kinase cascade that targets CCAAT/enhancer-binding protein α. Journal of Biological Chemistry, 277, 31753–31760.

    Article  PubMed  CAS  Google Scholar 

  • Emoto, Y., Manome, Y., Meinhardt, G., Kisaki, H., Kharbanda, S., Robertson, M., et al. (1995). Proteolytic activation of protein kinase C δ by an ICE-like protease in apoptotic cells. EMBO Journal, 14, 6148–6156.

    PubMed  CAS  Google Scholar 

  • Etienne-Manneville, S., & Hall, A. (2001). Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCζ. Cell, 106, 489–498.

    Article  PubMed  CAS  Google Scholar 

  • Fima, E., Shtutman, M., Libros, P., Missel, A., Shahaf, G., Kahana, G., et al. (2001). PKCη enhances cell cycle progression, the expression of G1 cyclins and p21 in MCF-7 cells. Oncogene, 20, 6794–6804.

    Article  PubMed  CAS  Google Scholar 

  • Frey, M.R., Clark, J.A., Leontieva, O., Uronis, J.M., Black, A.R., & Black, J.D. (2000). Protein kinase C signaling mediates a program of cell cycle withdrawal in the intestinal epithelium. Journal of Cell Biology, 151, 763–778.

    Article  PubMed  CAS  Google Scholar 

  • Frey, M.R., Saxon, M.L., Zhao, X., Rollins, A., Evans, S.S., & Black, J.D. (1997). Protein kinase C isozyme-mediated cell cycle arrest involves induction of p21(waf1/cip1) and p27(kip1) and hypophosphorylation of the retinoblastoma protein in intestinal epithelial cells. Journal of Biological Chemistry, 272, 9424–9435.

    Article  PubMed  CAS  Google Scholar 

  • Frutos, S., Moscat, J., & Diaz-Meco, M.T. (1999). Cleavage of ζPKC but not λ/ιPKC by caspase-3 during UV-induced apoptosis. Journal of Biological Chemistry, 274, 10765–10770.

    Article  PubMed  CAS  Google Scholar 

  • Fukumoto, S., Nishizawa, Y., Hosoi, M., Koyama, H., Yamakawa, K., Ohno, S., et al. (1997). Protein kinase C δ inhibits the proliferation of vascular smooth muscle cells by suppressing G1 cyclin expression. Journal of Biological Chemistry, 272, 13816–13822.

    Article  PubMed  CAS  Google Scholar 

  • Ghayur, T., Hugunin, M., Talanian, R.V., Ratnofsky, S., Quinlan, C., Emoto, Y., et al. (1996). Proteolytic activation of protein kinase C δ by an ICE/CED 3-like protease induces characteristics of apoptosis. Journal of Exprimental Medicine, 184, 2399–2404.

    Article  CAS  Google Scholar 

  • Ghosh, P.M., Bedolla, R., Mikhailova, M., & Kreisberg, J.I. (2002). RhoA-dependent murine prostate cancer cell proliferation and apoptosis: role of protein kinase Czeta. Cancer Research, 62, 2630–2636.

    PubMed  CAS  Google Scholar 

  • Gill, P.K., Gescher, A., & Gant, T.W. (2001). Regulation of MDR1 promoter activity in human breast carcinoma cells by protein kinase C isozymes α and θ. European Journal of Biochemistry, 268, 4151–4157.

    Article  PubMed  CAS  Google Scholar 

  • Gomel, R., Xiang, C., Finniss, S., Lee, H.K., Lu, W., Okhrimenko, H., et al. (2007). The localization of protein kinase Cδ in different subcellular sites affects its proapoptotic and antiapoptotic functions and the activation of distinct downstream signaling pathways. Molecular Cancer Research, 5, 627–639.

    Article  PubMed  CAS  Google Scholar 

  • Harrington, E.O., Loffler, J., Nelson, P.R., Kent, K.C., Simons, M., & Ware, J.A. (1997). Enhancement of migration by protein kinase Cα and inhibition of proliferation and cell cycle progression by protein kinase Cδ in capillary endothelial cells. Journal of Biological Chemistry, 272, 7390–7397.

    Article  PubMed  CAS  Google Scholar 

  • Hoppe, J., Hoppe, V., & Schafer, R. (2001). Selective degradation of the PKC-ε isoform during cell death in AKR-2B fibroblasts. Experimental Cell Research, 266, 64–73.

    Article  PubMed  CAS  Google Scholar 

  • Huberman, E., & Callaham, M.F. (1979). Induction of terminal differentiation in human promyelocytic leukemia cells by tumor-promoting agents. Proceedings of the National Academy of Sciences of the United States of America, 76, 1293–1297.

    Article  PubMed  CAS  Google Scholar 

  • Hundle, B., McMahon, T., Dadgar, J., & Messing, R.O. (1995). Overexpression of ε-protein kinase C enhances nerve growth factor-induced phosphorylation of mitogen-activated protein kinases and neurite outgrowth. Journal of Biological Chemistry, 270, 30134–30140.

    Article  PubMed  CAS  Google Scholar 

  • Ivaska, J., Whelan, R.D.H., Watson, R., & Parker, P.J. (2002). PKCε controls the traffic of β1 integrins in motile cells. EMBO Journal, 21, 3608–3619.

    Article  PubMed  CAS  Google Scholar 

  • Jamieson, L., Carpenter, L., Biden, T.J., & Fields, A.P. (1999). Protein kinase Cι activity is necessary for Bcr-Abl-mediated resistance to drug-induced apoptosis. Journal of Biological Chemistry, 274, 3927–3930.

    Article  PubMed  CAS  Google Scholar 

  • Joberty, G., Petersen, C., Gao, L., & Macara, I.G. (2000). The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nature Cell Biology, 2, 531–539.

    Article  PubMed  CAS  Google Scholar 

  • Joseloff, E., Cataisson, C., Aamodt, H., Ocheni, H., Blumberg, P., Kraker, A.J., et al. (2002). Src family kinases phosphorylate protein kinase C delta on tyrosine residues and modify the neoplastic phenotype of skin keratinocytes. Journal of Biological Chemistry, 277, 12318–12323.

    Article  PubMed  CAS  Google Scholar 

  • Kashiwagi, M., Ohba, M., Watanabe, H., Ishino, K., Kasahara, K., Sanai, Y., et al. (2000). PKCη associates with cyclin E/cdk2/p21 complex, phosphorylates p21 and inhibits cdk2 kinase in keratinocytes. Oncogene, 19, 6334–6341.

    Article  PubMed  CAS  Google Scholar 

  • Kazanietz, M.G. (2002). Novel “nonkinase” phorbol ester receptors: the C1 domain connection. Molecular Pharmacology, 61, 759–767.

    Article  PubMed  CAS  Google Scholar 

  • Keshamouni, V.G., Mattingly, R.R., & Reddy, K.B. (2002). Mechanism of 17-β-estradiol-induced Erk1/2 activation in breast cancer cells. A role for HER2 AND PKC-δ. Journal of Biological Chemistry, 277, 22558–22565.

    Article  PubMed  CAS  Google Scholar 

  • Larsson, C. (2006). Protein kinase C and the regulation of the actin cytoskeleton. Cellular Signalling, 18, 276–284.

    Article  PubMed  CAS  Google Scholar 

  • Laux, T., Fukami, K., Thelen, M., Golub, T., Frey, D., & Caroni, P. (2000). GAP43, MARCKS, and CAP23 modulate PI(4, 5)P(2) at plasmalemmal rafts, and regulate cell cortex actin dynamics through a common mechanism. Journal of Cell Biology, 149, 1455–1472.

    Article  PubMed  CAS  Google Scholar 

  • Lin, D., Edwards, A.S., Fawcett, J.P., Mbamalu, G., Scott, J.D., & Pawson, T. (2000). A mammalian PAR-3-PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nature Cell Biology, 2, 540–547.

    Article  PubMed  CAS  Google Scholar 

  • Ling, E., Gardner, K., & Bennett, V. (1986). Protein kinase C phosphorylates a recently identified membrane skeleton-associated calmodulin-binding protein in human erythrocytes. Journal of Biological Chemistry, 261, 13875–13878.

    PubMed  CAS  Google Scholar 

  • Lu, D., Huang, J., & Basu, A. (2006). Protein Kinase Cε Activates Protein Kinase B/Akt via DNA-PK to Protect against Tumor Necrosis Factor-α-induced Cell Death. Journal of Biological Chemistry, 281, 22799–22807.

    Article  PubMed  CAS  Google Scholar 

  • Macfarlane, D.E., & Manzel, L. (1994). Activation of beta-isozyme of protein kinase C (PKC β) is necessary and sufficient for phorbol ester-induced differentiation of HL-60 promyelocytes. Studies with PKC β-defective PET mutant. Journal of Biological Chemistry, 269, 4327–4331.

    PubMed  CAS  Google Scholar 

  • Martin, P., Duran, A., Minguet, S., Gaspar, M.L., Diaz-Meco, M.T., Rennert, P., et al. (2002). Role of ζ PKC in B-cell signaling and function. EMBO Journal, 21, 4049–4057.

    Article  PubMed  CAS  Google Scholar 

  • Massoumi, R., Larsson, C., & Sjölander, A. (2002). Leukotriene D4 induces stress-fibre formation in intestinal epithelial cells via activation of RhoA and PKCδ. Journal of Cell Science, 115, 3509–3515.

    PubMed  CAS  Google Scholar 

  • Matassa, A.A., Carpenter, L., Biden, T.J., Humphries, M.J., & Reyland, M.E. (2001). PKCδ is required for mitochondrial-dependent apoptosis in salivary epithelial cells. Journal of Biological Chemistry, 276, 29719–29728.

    Article  PubMed  CAS  Google Scholar 

  • Murray, N.R., Davidson, L.A., Chapkin, R.S., Clay Gustafson, W., Schattenberg, D.G., & Fields, A.P. (1999). Overexpression of protein kinase C βII induces colonic hyperproliferation and increased sensitivity to colon carcinogenesis. Journal of Cell Biology, 145, 699–711.

    Article  PubMed  CAS  Google Scholar 

  • Ng, T., Parsons, M., Hughes, W.E., Monypenny, J., Zicha, D., Gautreau, A., et al. (2001). Ezrin is a downstream effector of trafficking PKC-integrin complexes involved in the control of cell motility. EMBO Journal, 20, 2723–2741.

    Article  PubMed  CAS  Google Scholar 

  • Ng, T., Shima, D., Squire, A., Bastiaens, P.I.H., Gschmeissner, S., Humphries, M.J., et al (1999). PKCα regulates β1 integrin-dependent cell motility through association and control of integrin traffic. EMBO Journal, 18, 3909–3923.

    Article  PubMed  CAS  Google Scholar 

  • Nishimura, T., Kato, K., Yamaguchi, T., Fukata, Y., Ohno, S., & Kaibuchi, K. (2004). Role of the PAR-3-KIF3 complex in the establishment of neuronal polarity. Nature Cell Biology, 6, 328–334.

    Article  PubMed  CAS  Google Scholar 

  • Oh, E.S., Woods, A., Lim, S.T., Theibert, A.W., & Couchman, J.R. (1998). Syndecan-4 proteoglycan cytoplasmic domain and phosphatidylinositol 4, 5-bisphosphate coordinately regulate protein kinase C activity. Journal of Biological Chemistry, 273, 10624–10629.

    Article  PubMed  CAS  Google Scholar 

  • Ohba, M., Ishino, K., Kashiwagi, M., Kawabe, S., Chida, K., Huh, N.H., et al. (1998) Induction of differentiation in normal human keratinocytes by adenovirus-mediated introduction of the eta and delta isoforms of protein kinase C. Molecular and Cell Biology, 18, 5199–5207.

    CAS  Google Scholar 

  • Okhrimenko, H., Lu, W., Xiang, C., Hamburger, N., Kazimirsky, G., & Brodie, C., (2005). Protein Kinase C-ε Regulates the Apoptosis and Survival of Glioma Cells. Cancer Research, 65, 7301–7309.

    Article  PubMed  CAS  Google Scholar 

  • Patel, R., Win, H., Desai, S., Patel, K., Matthews, J.A., & Acevedo-Duncan, M. (2008). Involvement of PKC-iota in glioma proliferation. Cell Proliferation, 41, 122–135.

    Article  PubMed  CAS  Google Scholar 

  • Perletti, G.P., Concari, P., Brusaferri, S., Marras, E., Piccinini, F., & Tashjian, A.H., Jr. (1998) Protein kinase Cε is oncogenic in colon epithelial cells by interaction with the ras signal transduction pathway. Oncogene, 16, 3345–3348.

    Article  PubMed  CAS  Google Scholar 

  • Påhlman, S., Odelstad, L., Larsson, E., Grotte, G., & Nilsson, K. (1981). Phenotypic changes of human neuroblastoma cells in culture induced by 12-O-tetradecanoyl-phorbol-13-acetate. International Journal of Cancer, 28, 583–589.

    Article  Google Scholar 

  • Ruvolo, P.P., Deng, X., Carr, B.K., & May, W.S. (1998). A functional role for mitochondrial protein kinase Cα in Bcl2 phosphorylation and suppression of apoptosis. Journal of Biological Chemistry, 273, 25436–25442.

    Article  PubMed  CAS  Google Scholar 

  • Short, M.D., Fox, S.M., Lam, C.F., Stenmark, K.R., & Das, M. (2006). Protein kinase Cζ attenuates hypoxia-induced proliferation of fibroblasts by regulating MAP kinase phosphatase-1 expression. Molecular Biology of the Cell, 17, 1995–2008.

    Article  PubMed  CAS  Google Scholar 

  • Sivaprasad, U., Shankar, E., & Basu, A. (2007). Downregulation of Bid is associated with PKCepsilon-mediated TRAIL resistance. Cell Death and Differentiation, 14, 851–860.

    Article  PubMed  CAS  Google Scholar 

  • Soh, J.W., & Weinstein, I.B. (2003). Roles of specific isoforms of protein kinase C in the transcriptional control of cyclin D1 and related genes. Journal of Biological Chemistry, 278, 34709–34716.

    Article  PubMed  CAS  Google Scholar 

  • Sumitomo, M., Ohba, M., Asakuma, J., Asano, T., Kuroki, T., Asano, T., et al. (2002). Protein kinase Cδ amplifies ceramide formation via mitochondrial signaling in prostate cancer cells. Journal of Clinical Investigation, 109, 827–836.

    PubMed  CAS  Google Scholar 

  • Thelen, M., Rosen, A., Nairn, A.C. & Aderem, A. (1991). Regulation by phosphorylation of reversible association of a myristoylated protein kinase C substrate with the plasma membrane. Nature, 351, 320–322.

    Article  PubMed  CAS  Google Scholar 

  • Tonetti, D.A., Henning-Chubb, C., Yamanishi, D.T., & Huberman, E. (1994). Protein kinase C-β is required for macrophage differentiation of human HL-60 leukemia cells. Journal of Biological Chemistry, 269, 23230–23235.

    PubMed  CAS  Google Scholar 

  • Ueda, Y., Hirai, S., Osada, S., Suzuki, A., Mizuno, K., & Ohno, S. (1996). Protein kinase C activates the MEK-ERK pathway in a manner independent of Ras and dependent on Raf. Journal of Biological Chemistry, 271, 23512–23519.

    Article  PubMed  CAS  Google Scholar 

  • Uht, R.M., Amos, S., Martin, P.M., Riggan, A.E., & Hussaini, I.M. (2007). The protein kinase C-η isoform induces proliferation in glioblastoma cell lines through an ERK//Elk-1 pathway. Oncogene, 26, 2885–2893

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, T., Ono, Y., Taniyama, Y., Hazama, K., Igarashi, K., Ogita, K., et al. (1992). Cell division arrest induced by phorbol ester in CHO cells overexpressing protein kinase C-δ subspecies. Proceedings of the National Academy of Sciences of the United States of America, 89, 10159–10163.

    Article  PubMed  CAS  Google Scholar 

  • Verma, A.K., Wheeler, D.L., Aziz, M.H., & Manoharan, H. (2006). Protein kinase Cε and development of squamous cell carcinoma, the nonmelanoma human skin cancer. Molecular Carcinogenesis, 45, 381–388.

    Article  PubMed  CAS  Google Scholar 

  • Volkov, Y., Long, A., McGrath, S., Ni Eidhin, D., & Kelleher, D. (2001). Crucial importance of PKC-β(I) in LFA-1-mediated locomotion of activated T cells. Nature Immunology, 2, 508–514.

    Article  PubMed  CAS  Google Scholar 

  • Woods, A., & Couchman, J.R. (1992). Protein kinase C involvement in focal adhesion formation. Journal of Cell Science, 101, 277–290.

    PubMed  CAS  Google Scholar 

  • Xiang, Y., Li, Y., Zhang, Z., Cui, K., Wang, S., Yuan, X.B., et al. (2002). Nerve growth cone guidance mediated by G protein-coupled receptors. Nature Neuroscience, 5, 843–848.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, K., Wang, H-G., Miki, Y., & Kufe, D. (2003). Protein kinase Cδ is responsible for constitutive and DNA damage-induced phosphorylation of Rad9. EMBO Journal, 22, 1431–1441.

    Article  PubMed  CAS  Google Scholar 

  • Zeidman, R., Löfgren, B., Påhlman, S., & Larsson, C. (1999). PKCε, via its regulatory domain and independently of its catalytic domain, induces neurite-like processes in neuroblastoma cells. Journal of Cell Biology, 145, 713–726.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christer Larsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lønne, G.K., Larsson, C. (2010). Introduction: PKC Isozymes in the Control of Cell Function. In: Kazanietz, M. (eds) Protein Kinase C in Cancer Signaling and Therapy. Current Cancer Research. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-543-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-543-9_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-542-2

  • Online ISBN: 978-1-60761-543-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics