Skip to main content

Molecular Aspects of Parasite – Vector Interactions In Leishmaniasis

  • Chapter
  • First Online:
National Institute of Allergy and Infectious Diseases, NIH

Part of the book series: Infectious Disease ((ID))

  • 729 Accesses

Abstract

Leishmania are pathogenic protozoa of the order Kinetoplastida and the family Trypanosomatidae, and they are responsible for diseases affecting more than 12 million people a year throughout tropical and sub-tropical regions. Leishmania have a dimorphic life cycle consisting of extracellular promastigotes that multiply and develop within the alimentary tract of their sand fly vectors and intracellular amastigotes that reside and multiply within the phagolysosomal vacuoles of their host macrophages. Depending mainly upon the species of Leishmania, human infection can display a spectrum of clinical manifestation from localized cutaneous involvement to late destruction of mucous membranes to generalized systemic disease with fatal outcome. Distribution of the more than 20 species and sub-species of Leishmania and the diseases they produce are determined by the availability of competent vectors. Phlebotomine sand flies are the only known natural vectors of Leishmania, and of the more than 400 phlebotomine species described, fewer than fifty are known to be involved in the transmission cycle of these parasites. Furthermore, some vectors species are highly restricted to the species of Leishmania that they transmit in nature. This chapter reviews our vector biological studies, which over the last 20 yrs have sought to better understand the natural habitat of Leishmania parasites during their transformation, growth, differentiation, and migration in the alimentary tract of their competent sand fly vectors and the barriers to survival that are encountered in refractory flies. The review emphasizes those of our studies that have sought to define the parasite-derived molecules that permit the development of transmissible infections to proceed. The work will hopefully serve to better inform the search of the Leishmania and sand fly genomes so that a fuller accounting of the molecules controlling parasite-vector interactions can be achieved, with a longer view toward the development of a successful transmission blocking vaccine(s).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sacks D & Kamhawi S (2001). Molecular aspects of parasite-vector and vector-host interactions in leishmaniasis, Annu Rev Microbiol, 55, 453–483

    Article  PubMed  CAS  Google Scholar 

  2. Sacks D L & Perkins P V (1984). Identification of an infective stage of Leishmania promastigotes, Science, 223, 1417–1419

    Article  PubMed  CAS  Google Scholar 

  3. Sacks D L & Perkins PV (1985). Development of infective stage Leishmania promastigotes within phlebotomine sand flies, Am J Trop Med Hyg, 34, 456–459

    PubMed  CAS  Google Scholar 

  4. Sacks D L, Hieny S, & Sher A (1985). Identification of cell surface carbohydrate and antigenic changes between noninfective and infective developmental stages of Leishmania major promastigotes, J Immunol, 135, 564–569

    PubMed  CAS  Google Scholar 

  5. Sacks D L & da Silva R P (1987). The generation of infective stage Leishmania major promastigotes is associated with the cell-surface expression and release of a developmentally regulated glycolipid, J Immunol, 139, 3099–3106

    PubMed  CAS  Google Scholar 

  6. Turco S J & Descoteaux A (1992). The lipophosphoglycan of Leishmania parasites, Annu Rev Microbiol, 46, 65–94

    Article  PubMed  CAS  Google Scholar 

  7. Sacks D L, Brodin T N & Turco S J (1990). Developmental modification of the lipophosphoglycan from Leishmania major promastigotes during metacyclogenesis, Mol Biochem Parasitol, 42, 225–233

    Article  PubMed  CAS  Google Scholar 

  8. Pimenta P F, da Silva R P, Sacks D L & et al (1989). Cell surface nanoanatomy of Leishmania major as revealed by fracture-flip. A surface meshwork of 44 nm fusiform filaments identifies infective developmental stage promastigotes, Eur J Cell Biol, 48, 180–190

    PubMed  CAS  Google Scholar 

  9. Pimenta P F, Saraiva E M & Sacks D L (1991) The comparative fine structure and surface glycoconjugate expression of three life stages of Leishmania major, Exp Parasitol, 72, 191–204

    Article  PubMed  CAS  Google Scholar 

  10. McConville M J, Turco S J, Ferguson M A & et al (1992). Developmental modification of lipophosphoglycan during the differentiation of Leishmania major promastigotes to an infectious stage, EMBO J, 11, 3593–3600

    PubMed  CAS  Google Scholar 

  11. Franke E D, McGreevy P B, Katz S P & et al (1985). Growth cycle-dependent generation of complement-resistant Leishmania promastigotes, J Immunol, 134, 2713–2718

    PubMed  CAS  Google Scholar 

  12. Puentes S M, Sacks D L, da Silva R P & et al (1998). Complement binding by two developmental stages of Leishmania major promastigotes varying in expression of a surface lipophosphoglycan, J Exp Med, 167, 887–902

    Article  Google Scholar 

  13. Puentes S M, da Silva R P, Sacks D L & et al (1990). Serum resistance of metacyclic stage Leishmania major promastigotes is due to release of C5b-9, J Immunol, 145, 4311–4316

    PubMed  CAS  Google Scholar 

  14. da Silva R P, Hall B F, Joiner K A & et al (1989). CR1, the C3b receptor, mediates binding of infective Leishmania major metacyclic promastigotes to human macrophages, J Immunol, 143, 617–622

    PubMed  Google Scholar 

  15. Pimenta P F, Turco S J, McConville M J & et al (1992). Stage-specific adhesion of Leishmania promastigotes to the sandfly midgut, Science, 256, 1812–1815

    Article  PubMed  CAS  Google Scholar 

  16. Kamhawi S, Modi G B Pimenta P F & et al (2000). The vectorial competence of phlebotomus sergenti is specific for Leishmania tropica and is controlled by species-specific, lipophosphoglycan-mediated midgut attachment, Parasitology, 121, 25–33

    Article  PubMed  CAS  Google Scholar 

  17. Sacks D L, Pimenta P F, McConville M J & et al (1995). Stage- specific binding of Leishmania donovani to the sand fly vector midgut is regulated by conformational changes in the abundant surface lipophosphoglycan, J Exp Med, 181, 685– 697

    Article  PubMed  CAS  Google Scholar 

  18. Butcher B A, Turco S J, Hilty B A & et al (1996). Deficiency in beta1,3-galactosyltransferase of a Leishmania major lipophosphoglycan mutant adversely influences the Leishmania-sand fly interaction, J Biol Chem, 271, 20573–9

    Article  PubMed  CAS  Google Scholar 

  19. Sacks D L, Modi G, Rowton E & et al (2000). The role of phosphoglycans in Leishmania- sand fly interactions, Proc Natl Acad Sci USA, 97, 406–411

    Article  PubMed  CAS  Google Scholar 

  20. Pimenta P F, Saraiva E M, Rowton E & et al (1994). Evidence that the vectorial competence of phlebotomine sand flies for different species of Leishmania is controlled by structural polymorphisms in the surface lipophosphoglycan, Proc Natl Acad Sci USA, 91, 9155–9156

    Article  PubMed  CAS  Google Scholar 

  21. Kamhawi S, Ramalho-Ortigao M, Pham V M & et al (2004). A role for insect galectins in parasite survival, Cell, 119, 329–341

    Article  PubMed  CAS  Google Scholar 

  22. Saraiva E M, Pimenta P F, Brodin T N & et al (1995). Changes in lipophosphoglycan and gene expression associated with the development of Leishmania major in Phlebotomus papatasi, Parasitology, 111, 275–287

    Article  PubMed  CAS  Google Scholar 

  23. Mahoney A B, Sacks D L, Saraiva E & et al (1999). Intra-species and stage-specific polymorphisms in lipophosphoglycan structure control Leishmania donovani- sand fly interactions, Biochemistry, 38, 9813–9823

    Article  PubMed  CAS  Google Scholar 

  24. Lira R, Mendez S, Carrera L & et al (1998). Leishmania tropica: the identification and purification of metacyclic promastigotes and use in establishing mouse and hamster models of cutaneous and visceral disease, Exp Parasitol, 89, 331–342

    Article  PubMed  CAS  Google Scholar 

  25. Adler S (1938). Factors determining the behaviour of Leishmania sp. in sandflies, Harefuah, 14, 1–6

    Google Scholar 

  26. Pimenta P F, Modi G B, Pereira S T & et al (1997). A novel role for the peritrophic matrix in protecting Leishmania from the hydrolytic activities of the sand fly midgut, Parasitology, 115, 359–369

    Article  PubMed  Google Scholar 

  27. Spath G F, Lye L F, Segawa H & et al (2003). Persistence without pathology in phosphoglycan-deficient Leishmania major, Science, 301, 1241–1243

    Article  PubMed  Google Scholar 

  28. Joshi P B, Kelly B L, Kamhawi S & et al (2002). Targeted gene deletion in Leishmania major identifies leishmanolysin (GP63) as a virulence factor, Mol Biochem Parasitol, 120, 33–40

    Article  PubMed  CAS  Google Scholar 

  29. Sacks D L, Kenney R T Kreutzer R D & et al (1995). Indian kala-azar caused by Leishmania tropica, Lancet, 345, 959–961

    Article  PubMed  CAS  Google Scholar 

  30. Tonui W K, Ngumbi P M, Mpoke S S & et al (2004). Leishmania major-Phlebotomus duboscqi interactions: inhibition of anti-LPG antibodies and characterisation of two proteins with shared epitopes, East Afr Med J, 81, 97–103

    PubMed  CAS  Google Scholar 

  31. Ivens A C, Peacock C S, Worthey E A & et al (2005). The genome of the kinetoplastid parasite, Leishmania major, Science, 309, 436–442

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sacks, D. (2010). Molecular Aspects of Parasite – Vector Interactions In Leishmaniasis. In: Georgiev, V. (eds) National Institute of Allergy and Infectious Diseases, NIH. Infectious Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-512-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-512-5_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-511-8

  • Online ISBN: 978-1-60761-512-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics