Skip to main content

Rho Kinase-Mediated Vasoconstriction in Pulmonary Hypertension

  • Conference paper
  • First Online:
Membrane Receptors, Channels and Transporters in Pulmonary Circulation

Part of the book series: Advances in Experimental Medicine and Biology ((volume 661))

Abstract

Rho kinase-mediated vasoconstriction rather than fixed arterial wall thickening is responsible for increased pulmonary vascular resistance and pulmonary hypertension in chronically hypoxic and monocrotaline-injected rats. In the absence of vascular tone, the medial and adventitial thickening in these models has only minimal impact on the cross-sectional area of the pulmonary arterial bed. In contrast, increased pulmonary vascular resistance in left-pneumonectomized plus monocrotaline-injected rats and VEGF receptor blocker-injected plus chronic hypoxia rats is attributable to both Rho kinase-mediated vasoconstriction and formation of lumen obliterating lesions in small pulmonary arteries. The upstream signals responsible for activation of RhoA/Rho kinase signaling in hypertensive pulmonary arteries and whether or not they differ in different forms of pulmonary hypertension are unclear. The RhoA/Rho kinase pathway is a convergence point of several different vasoconstrictor signals, including those mediated by G protein-coupled receptors, receptor tyrosine kinases, and integrin clustering. Both isoforms of Rho kinase can also be constitutively activated by cleavage, and cleaved Rho kinase 1 has been detected in the hypertensive lungs of left-pneumonectomized plus monocrotaline-injected rats. That such diverse stimuli can lead to activation of Rho kinase, which may cause hypercontraction of smooth muscle by promoting both actomyosin interaction and remodeling of the cytoskeleton, may explain why in various rat models of pulmonary hypertension Rho kinase inhibitors are more effective pulmonary vasodilators than conventional agents such as nitric oxide, prostacyclin, and nifedipine. We suspect the same will be true in at least some forms of human pulmonary arterial hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pietra GG, Capron F, Stewart S et al (2004) Pathologic assessment of vasculopathies in pulmonary hypertension. J Am Coll Cardiol 43:25S-32S

    Article  PubMed  Google Scholar 

  2. Rich S (2009) The effects of vasodilators in pulmonary hypertension. Pulmonary vascular or peripheral vascular? Circ Heart Fail 2:145-150

    Article  PubMed  Google Scholar 

  3. Sitbon O, Humbert M, Jais X et al (2005) Long-term response to calcium channel blockers in idiopathic pulmonary arterial hypertension. Circulation 111:3105-3111

    Article  PubMed  CAS  Google Scholar 

  4. Rabinovitch M (2008) Molecular pathogenesis of pulmonary arterial hypertension. J Clin Invest 118:2372-2379

    Article  PubMed  CAS  Google Scholar 

  5. Oka M, Fagan KA, Jones PL, McMurtry IF (2008) Therapeutic potential of RhoA/Rho kinase inhibitors in pulmonary hypertension. Br J Pharmacol 155:444-454

    Article  PubMed  CAS  Google Scholar 

  6. Oka M, Homma N, McMurtry IF (2008) Rho kinase-mediated vasoconstriction in rat models of pulmonary hypertension. Methods Enzymol 439:191-204

    Article  PubMed  CAS  Google Scholar 

  7. Gunst SJ, Zhang W (2008) Actin cytoskeletal dynamics in smooth muscle: a new paradigm for the regulation of smooth muscle contraction. Am J Physiol Cell Physiol 295:C576-C587

    Article  PubMed  CAS  Google Scholar 

  8. Kim HR, Appel S, Vetterkind S, Gangopadhyay SS, Morgan KG (2008) Smooth muscle signalling pathways in health and disease. J Cell Mol Med 12:2165-2180

    Article  PubMed  CAS  Google Scholar 

  9. Ratz PH, Berg KM, Urban NH, Miner AS (2005) Regulation of smooth muscle calcium sensitivity: KCl as a calcium-sensitizing stimulus. Am J Physiol Cell Physiol 288:C769-C783

    Article  PubMed  CAS  Google Scholar 

  10. Somlyo AP, Somlyo AV (2003) Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev 83:1325-1358

    PubMed  CAS  Google Scholar 

  11. Tang DD, Anfinogenova Y (2008) Physiologic properties and regulation of the actin cytoskeleton in vascular smooth muscle. J Cardiovasc Pharmacol Ther 13:130-140

    Article  PubMed  CAS  Google Scholar 

  12. Broughton BR, Walker BR, Resta TC (2008) Chronic hypoxia induces Rho kinase-dependent myogenic tone in small pulmonary arteries. Am J Physiol Lung Cell Mol Physiol 294:L797-L806

    Article  PubMed  CAS  Google Scholar 

  13. Jernigan NL, Walker BR, Resta TC (2008) Reactive oxygen species mediate RhoA/Rho kinase-induced Ca2+ sensitization in pulmonary vascular smooth muscle following chronic hypoxia. Am J Physiol Lung Cell Mol Physiol 295:L515-L529

    Article  PubMed  CAS  Google Scholar 

  14. Weigand L, Sylvester JT, Shimoda LA (2006) Mechanisms of endothelin-1-induced contraction in pulmonary arteries from chronically hypoxic rats. Am J Physiol Lung Cell Mol Physiol 290:L284-L290

    Article  PubMed  CAS  Google Scholar 

  15. Wang J, Weigand L, Foxson J, Shimoda LA, Sylvester JT (2007) Ca2+ signaling in hypoxic pulmonary vasoconstriction: effects of myosin light chain and rho kinase antagonists. Am J Physiol Lung Cell Mol Physiol 293:L674-L685

    Article  PubMed  CAS  Google Scholar 

  16. Badejo AM Jr, Dhaliwal JS, Casey DB, Gallen TB, Greco AJ, Kadowitz PJ (2008) Analysis of pulmonary vasodilator responses to the Rho-kinase inhibitor fasudil in the anesthetized rat. Am J Physiol Lung Cell Mol Physiol 295:L828-L836

    Article  PubMed  CAS  Google Scholar 

  17. Fagan KA, Oka M, Bauer NR et al (2004) Attenuation of acute hypoxic pulmonary vasoconstriction and hypoxic pulmonary hypertension in mice by inhibition of Rho-kinase. Am J Physiol Lung Cell Mol Physiol 287:L656-L664

    Article  PubMed  CAS  Google Scholar 

  18. Nagaoka T, Morio Y, Casanova N et al (2004) Rho/Rho kinase signaling mediates increased basal pulmonary vascular tone in chronically hypoxic rats. Am J Physiol Lung Cell Mol Physiol 287:L665-L672

    Article  PubMed  CAS  Google Scholar 

  19. Robertson TP, Dipp M, Ward JPT, Aaronson PI, Evans AM (2000) Inhibition of sustained hypoxic vasoconstriction by Y-27632 in isolated intrapulmonary arteries and perfused lung of the rat. Br J Pharmacol 131:5-9

    Article  PubMed  CAS  Google Scholar 

  20. Knock GA, Snetkov VA, Shaifta Y et al (2009) Superoxide constricts rat pulmonary arteries via Rho-kinase-mediated Ca2+ sensitization. Free Radic Biol Med 46:633-642

    Article  PubMed  CAS  Google Scholar 

  21. Homma N, Nagaoka T, Morio Y et al (2007) Endothelin-1 and serotonin are involved in activation of RhoA/Rho kinase signaling in the chronically hypoxic hypertensive rat pulmonary circulation. J Cardiovasc Pharmacol 50:697-702

    Article  PubMed  CAS  Google Scholar 

  22. Barman SA (2007) Vasoconstrictor effect of endothelin-1 on hypertensive pulmonary arterial smooth muscle involves Rho-kinase and protein kinase C. Am J Physiol Lung Cell Mol Physiol 293:L472-L479

    Article  PubMed  CAS  Google Scholar 

  23. Alapati VR, McKenzie C, Blair A, Kenny D, MacDonald A, Shaw AM (2007) Mechanisms of U46619- and 5-HT-induced contraction of bovine pulmonary arteries: role of chloride ions. Br J Pharmacol 151:1224-1234

    Article  PubMed  CAS  Google Scholar 

  24. Janssen LJ, Premji M, Netherton S, Coruzzi J, Lu-Chao H, Cox PG (2001) Vasoconstrictor actions of isoprostanes via tyrosine kinase and Rho kinase in human and canine pulmonary vascular smooth muscles. Br J Pharmacol 132:127-134

    Article  PubMed  CAS  Google Scholar 

  25. Martin C, Goggel R, Ressmeyer AR, Uhlig S (2004) Pressor responses to platelet-activating factor and thromboxane are mediated by Rho-kinase. Am J Physiol Lung Cell Mol Physiol 287:L250-L257

    Article  PubMed  CAS  Google Scholar 

  26. Knock GA, Shaifta Y, Snetkov VA et al (2008) Interaction between src family kinases and Rho-kinase in agonist-induced Ca2+-sensitization of rat pulmonary artery. Cardiovasc Res 77:570-579

    Article  PubMed  CAS  Google Scholar 

  27. Rodat-Despoix L, Crevel H, Marthan R, Savineau JP, Guibert C (2008) Heterogeneity in 5-HT-induced contractile and proliferative responses in rat pulmonary arterial bed. J Vasc Res 45:181-192

    Article  PubMed  CAS  Google Scholar 

  28. Witzenrath M, Ahrens B, Kube SM et al (2006) Allergic lung inflammation induces pulmonary vascular hyperresponsiveness. Eur Respir J 28:370-377

    Article  PubMed  CAS  Google Scholar 

  29. Boer C, van der Linden PJ, Scheffer GJ, Westerhof N, de Lange JJ, Sipkema P (2002) RhoA/Rho kinase and nitric oxide modulate the agonist-induced pulmonary artery diameter response time. Am J Physiol Heart Circ Physiol 282:H990-H998

    PubMed  CAS  Google Scholar 

  30. Damron DS, Kanaya N, Homma Y, Kim SO, Murray PA (2002) Role of PKC, tyrosine kinases, and Rho kinase in α-adrenoreceptor-mediated PASM contraction. Am J Physiol Lung Cell Mol Physiol 283:L1051-L1064

    PubMed  CAS  Google Scholar 

  31. Losapio JL, Sprague RS, Lonigro AJ, Stephenson AH (2005) 5,6-EET-induced contraction of intralobar pulmonary arteries depends on the activation of Rho-kinase. J Appl Physiol 99:1391-1396

    Article  PubMed  CAS  Google Scholar 

  32. Thomas GD, Snetkov VA, Patel R, Leach RM, Aaronson PI, Ward JPT (2005) Sphingosylphosphorylcholine-induced vasoconstriction of pulmonary artery: activation of non-store-operated Ca2+ entry. Cardiovasc Res 68:56-64

    Article  PubMed  CAS  Google Scholar 

  33. Beutz MA, Nagaoka T, Oka M, McMurtry IF (2005) Sphingosine-1-phosphate constricts fawn-hooded rat pulmonary arteries. Proc Am Thorac Soc 2:A706

    Google Scholar 

  34. Hyvelin JM, Howell K, Nichol A, Costello CM, Preston RJ, McLoughlin P (2005) Inhibition of Rho-kinase attenuates hypoxia-induced angiogenesis in the pulmonary circulation. Circ Res 97:185-191

    Article  PubMed  CAS  Google Scholar 

  35. McNamara PJ, Murthy P, Kantores C et al (2008) Acute vasodilator effects of Rho-kinase inhibitors in neonatal rats with pulmonary hypertension unresponsive to nitric oxide. Am J Physiol Lung Cell Mol Physiol 294:L205-L213

    Article  PubMed  CAS  Google Scholar 

  36. Stenmark KR, McMurtry IF (2005) Vascular remodeling versus vasoconstriction in chronic hypoxic pulmonary hypertension: a time for reappraisal? Circ Res 97:95-98

    Article  PubMed  CAS  Google Scholar 

  37. Howell K, Preston RJ, McLoughlin P (2003) Chronic hypoxia causes angiogenesis in addition to remodelling in the adult rat pulmonary circulation. J Physiol 547:133-145

    Article  PubMed  CAS  Google Scholar 

  38. van Suylen RJ, Smits JF, Daemen MJ (1998) Pulmonary artery remodeling differs in hypoxia- and monocrotaline-induced pulmonary hypertension. Am J Respir Crit Care Med 157:1423-1428

    PubMed  Google Scholar 

  39. Crossno JT Jr, Garat CV, Reusch JE et al (2007) Rosiglitazone attenuates hypoxia-induced pulmonary arterial remodeling. Am J Physiol Lung Cell Mol Physiol 292:L885-L897

    Article  PubMed  CAS  Google Scholar 

  40. Daley E, Emson C, Guignabert C et al (2008) Pulmonary arterial remodeling induced by a Th2 immune response. J Exp Med 205:361-372

    Article  PubMed  CAS  Google Scholar 

  41. Hopkins N, Cadogan E, Giles S, McLoughlin P (2001) Chronic airway infection leads to angiogenesis in the pulmonary circulation. J Appl Physiol 91:919-928

    PubMed  CAS  Google Scholar 

  42. Nagaoka T, Fagan KA, Gebb SA et al (2005) Inhaled Rho kinase inhibitors are potent and selective vasodilators in rat pulmonary hypertension. Am J Respir Crit Care Med 171:494-499

    Article  PubMed  Google Scholar 

  43. Homma N, Nagaoka T, Karoor V et al (2008) Involvement of RhoA/Rho kinase signaling in protection against monocrotaline-induced pulmonary hypertension in pneumonectomized rats by dehydroepiandrosterone. Am J Physiol Lung Cell Mol Physiol 295:L71-L78

    Article  PubMed  CAS  Google Scholar 

  44. Oka M, Homma N, Taraseviciene-Stewart L et al (2007) Rho kinase-mediated vasoconstriction is important in severe occlusive pulmonary arterial hypertension in rats. Circ Res 100:923-929

    Article  PubMed  CAS  Google Scholar 

  45. Nagaoka T, Gebb SA, Karoor V et al (2006) Involvement of RhoA/Rho kinase signaling in pulmonary hypertension of the fawn-hooded rat. J Appl Physiol 100:996-1002

    Article  PubMed  CAS  Google Scholar 

  46. Jiang BH, Tawara S, Abe K, Takaki A, Fukumoto Y, Shimokawa H (2007) Acute vasodilator effect of fasudil, a Rho-kinase inhibitor, in monocrotaline-induced pulmonary hypertension in rats. J Cardiovasc Pharmacol 49:85-89

    Article  PubMed  CAS  Google Scholar 

  47. Parker TA, Roe G, Grover TR, Abman SH (2006) Rho kinase activation maintains high pulmonary vascular resistance in the ovine fetal lung. Am J Physiol Lung Cell Mol Physiol 291:L976-L982

    Article  PubMed  CAS  Google Scholar 

  48. Young KA, Ivester C, West J, Carr M, Rodman DM (2006) BMP signaling controls PASMC Kv channel expression in vitro and in vivo. Am J Physiol Lung Cell Mol Physiol 290:L841-L848

    Article  PubMed  CAS  Google Scholar 

  49. Long L, MacLean MR, Jeffery TK et al (2006) Serotonin increases susceptibility to pulmonary hypertension in BMPR2-deficient mice. Circ Res 98:818-827

    Article  PubMed  CAS  Google Scholar 

  50. Frank DB, Lowery J, Anderson L, Brink M, Reese J, de Caestecker M (2008) Increased susceptibility to hypoxic pulmonary hypertension in bmpr2 mutant mice is associated with endothelial dysfunction in the pulmonary vasculature. Am J Physiol Lung Cell Mol Physiol 294:L98-L109

    Article  PubMed  CAS  Google Scholar 

  51. Song Y, Coleman L, Shi J et al (2008) Inflammation, endothelial injury, and persistent pulmonary hypertension in heterozygous BMPR2-mutant mice. Am J Physiol Heart Circ Physiol 295:H677-H690

    Article  PubMed  CAS  Google Scholar 

  52. Doe Z, Fukumoto Y, Takaki A et al (2008) Evidence for Rho-kinase activation in patients with pulmonary hypertension. Circulation 118:S-446

    Google Scholar 

  53. Guilluy C, Eddahibi S, Agard C et al (2009) Rhoa and Rho kinase activation in human pulmonary hypertension - role of 5-HT signaling. Am J Respir Crit Care Med 179(12):1151-1158

    Article  PubMed  CAS  Google Scholar 

  54. Hemnes AR, Wigley F, Rodrigues FW, Girgis RE, Yang SC, Conte JV (2005) Pulmonary hypertension is associated with increased expression and activity of phosphodiesterase type 5a. Circulation 112:II-221-II-222

    Google Scholar 

  55. Laumanns IP, Fink L, Wilhelm J et al (2009) The non-canonical WNT-pathway is operative in idiopathic pulmonary arterial hypertension. Am J Respir Cell Mol Biol 40(6):683-691

    Article  PubMed  CAS  Google Scholar 

  56. Fukumoto Y, Matoba T, Ito A et al (2005) Acute vasodilator effects of a Rho-kinase inhibitor, fasudil, in patients with severe pulmonary hypertension. Heart 91:391-392

    Article  PubMed  CAS  Google Scholar 

  57. Ishikura K, Yamada N, Ito M et al (2006) Beneficial acute effects of Rho-kinase inhibitor in patients with pulmonary arterial hypertension. Circ J 70:174-178

    Article  PubMed  CAS  Google Scholar 

  58. Li F, Xia W, Yuan S, Sun R (2009) Acute inhibition of Rho-kinase attenuates pulmonary hypertension in patients with congenital heart disease. Pediatr Cardiol 30(3):363-366

    Article  PubMed  Google Scholar 

  59. Schermuly RT, Dony E, Ghofrani HA et al (2005) Reversal of experimental pulmonary hypertension by PDGF inhibition. J Clin Invest 115:2811-2821

    Article  PubMed  CAS  Google Scholar 

  60. Gokina NI, Park KM, McElroy-Yaggy K, Osol G (2005) Effects of Rho kinase inhibition on cerebral artery myogenic tone and reactivity. J Appl Physiol 98:1940-1948

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan F. McMurtry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this paper

Cite this paper

McMurtry, I.F., Abe, K., Ota, H., Fagan, K.A., Oka, M. (2010). Rho Kinase-Mediated Vasoconstriction in Pulmonary Hypertension. In: Yuan, JJ., Ward, J. (eds) Membrane Receptors, Channels and Transporters in Pulmonary Circulation. Advances in Experimental Medicine and Biology, vol 661. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-500-2_19

Download citation

Publish with us

Policies and ethics