Skip to main content

Somatic Evolution of Acquired Drug Resistance in Cancer

  • Chapter
  • First Online:
Targeted Therapies

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

Abstract

Acquired drug resistance is a central problem in cancer medicine. The diverse molecular mechanisms of acquired drug resistance all arise through the same process of somatic (within-body) cellular evolution. Even targeted drugs are subject to this failure. Genetic instability causes high genetic diversity among the cells of most cancers, but because somatic evolution results from selection as well as mutation, some classes of therapies are less prone than others to failure through acquired resistance. Cytotoxins, whether targeted or not, are especially prone to acquired drug resistance. Among the most promising classes of therapies expected to be robust against acquired resistance are: those that target systemic cancer symptoms instead of cancer cells, those that target cell motility rather than survival and proliferation, and those that target secreted metabolites of cancer cells rather than the cells themselves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lewontin RC. The units of selection. Annu Rev Ecol Syst. 1970;1:1–18.

    Article  Google Scholar 

  2. Gould SJ. Gulliver’s further travels: the necessity and difficulty of a hierarchical theory of selection. Philos Trans R Soc Lond B. 1998;353:307–14.

    Article  CAS  Google Scholar 

  3. Keller LK. Levels of selection in evolution. Princeton: Princeton University Press; 1999.

    Google Scholar 

  4. Cairns J. Mutation selection and the natural history of cancer. Nature. 1975;255:197–200.

    Article  PubMed  CAS  Google Scholar 

  5. Leroi AM, Koufopanou V, Burt A. Cancer selection. Nat Rev Cancer. 2003;3:226–31.

    Article  PubMed  CAS  Google Scholar 

  6. Summers K, da Silva J, Farwell M. Intragenomic conflict and cancer. Med Hypotheses. 2002;59:170–9.

    Article  PubMed  CAS  Google Scholar 

  7. Weinstein BS, Ciszek D. The reserve-capacity hypothesis: evolutionary origins and modern implications of the trade-off between tumor-suppression and tissue-repair. Exp Gerontol. 2002;37:615–27.

    Article  PubMed  CAS  Google Scholar 

  8. Frank SA, Nowak MA. Problems of somatic mutation and cancer. Bioessays. 2004;26:291–9.

    Article  PubMed  CAS  Google Scholar 

  9. Campisi J. Aging, tumor suppression and cancer: high wire-act! Mech Ageing Dev. 2005;126:51–8.

    Article  PubMed  CAS  Google Scholar 

  10. Crespi B, Summers K. Evolutionary biology of cancer. Trends Ecol Evol. 2005;20:545–52.

    Article  PubMed  Google Scholar 

  11. Pepper JW, Sprouffske K, Maley CC. Animal cell differentiation patterns suppress somatic evolution. PLoS Comput Biol. 2007;3:2532–45.

    Article  CAS  Google Scholar 

  12. Greaves M. Darwinian medicine: a case for cancer. Nat Rev Cancer. 2007;7:213–21.

    Article  PubMed  CAS  Google Scholar 

  13. Negrini S, Gorgoulis VG, Halazonetis TD. Genomic instability – an evolving hallmark of cancer. Nat Rev Mol Cell Biol. 2010;11:220–8.

    Article  PubMed  CAS  Google Scholar 

  14. Merlo LMF, Wang L, Pepper JW, Rabinovitch PS, Maley CC. Chapter 1: Polyploidy, aneuploidy and the evolution of cancer. In: Poon RYC, editor. Polyploidization and cancer. Austin: Landes Bioscience; 2010. p. 1–13.

    Chapter  Google Scholar 

  15. Huang Q, Yu GP, McCormick SA, Mo J, Datta B, Mahimkar M, et al. Genetic differences detected by comparative genomic hybridization in head and neck squamous cell carcinomas from different tumor sites: construction of oncogenetic trees for tumor progression. Genes Chromosom Cancer. 2002;34:224–33.

    Article  PubMed  CAS  Google Scholar 

  16. Siegmund KD, Marjoram P, Woo YJ, Tavare S, Shibata D. Inferring clonal expansion and cancer stem cell dynamics from DNA methylation patterns in colorectal cancers. Proc Natl Acad Sci USA. 2009;106:4828–33.

    Article  PubMed  CAS  Google Scholar 

  17. Shackleton M, Quintana E, Fearon ER, Morrison SJ. Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell. 2009;138:822–9.

    Article  PubMed  CAS  Google Scholar 

  18. Merlo LMF, Pepper JW, Reid BJ, Maley CC. Cancer as an evolutionary and ecological process. Nat Rev Cancer. 2006;6:924–35.

    Article  PubMed  CAS  Google Scholar 

  19. Pepper JW, Findlay CS, Kassen R, Spencer SL, Maley CC. Cancer research meets evolutionary biology. Evol Appl. 2009;2(1):62–70.

    Article  Google Scholar 

  20. Kobayashi S, Boggon TJ, Dayaram T, Janne PA, Kocher O, Meyerson M, et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med. 2005;352:786–92.

    Article  PubMed  CAS  Google Scholar 

  21. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science. 2001;293:876–80.

    Article  PubMed  CAS  Google Scholar 

  22. Wang TL et al. Digital karyotyping identifies thymidylate synthase amplification as a mechanism of resistance to 5-fluorouracil in metastatic colorectal cancer patients. Proc Natl Acad Sci USA. 2004;101:3089–94.

    Article  PubMed  CAS  Google Scholar 

  23. Donnenberg VS, Donnenberg AD. Multiple drug resistance in cancer revisited: the cancer stem cell hypothesis. J Clin Pharmacol. 2005;45:872–7.

    Article  PubMed  CAS  Google Scholar 

  24. Michor F, Hughes TP, Iwasa Y, Branford S, Shah NP, Sawyers CL, et al. Dynamics of chronic myeloid leukaemia. Nature. 2005;435:1267–70.

    Article  PubMed  CAS  Google Scholar 

  25. Williams PD. Darwinian interventions: taming pathogens through evolutionary ecology. Trends Parasitol. 2010;26:83–92.

    Article  PubMed  Google Scholar 

  26. Wargo AR, Huijben S, de Roode JC, Shepherd J, Read AF. Competitive release and facilitation of drug-resistant parasites after therapeutic chemotherapy in a rodent malaria model. Proc Natl Acad Sci USA. 2007;104:19914–9.

    Article  PubMed  CAS  Google Scholar 

  27. Gatenby RA. A change of strategy in the war on cancer. Nature. 2009;459:508–9.

    Article  PubMed  CAS  Google Scholar 

  28. Chabner BA, Roberts TG. Chemotherapy and the war on cancer. Nat Rev Cancer. 2005;5:65–72.

    Article  PubMed  CAS  Google Scholar 

  29. Garber K. Melanoma drug vindicates targeted approach. Science. 2009;326:1619.

    Article  PubMed  CAS  Google Scholar 

  30. Deisboeck TS, Couzin ID. Collective behavior in cancer cell populations. Bioessays. 2009;31:190–7.

    Article  PubMed  Google Scholar 

  31. Laviano A, Meguid MM, Inui A, Muscaritoli M, Rossi-Fanelli F. Therapy Insight: cancer anorexia-cachexia syndrome – when all you can eat is yourself. Nat Clin Pract Gastroenterol Hepatol. 2005;2:B158–65.

    Article  Google Scholar 

  32. Muscaritoli M, Bossola M, Aversa Z, Bellantone R, Fanelli FR. Prevention and treatment of cancer cachexia: new insights into an old problem. Eur J Cancer. 2006;42:31–41.

    Article  PubMed  CAS  Google Scholar 

  33. Evans C, Dalgleish AG, Kumar D. Review article: immune suppression and colorectal cancer. Aliment Pharmacol Ther. 2006;24:1163–77.

    Article  PubMed  CAS  Google Scholar 

  34. Whiteside TL. Immune suppression in cancer: effects on immune cells, mechanisms and future therapeutic intervention. Semin Cancer Biol. 2006;16:3–15.

    Article  PubMed  CAS  Google Scholar 

  35. Herber DL, Nagaraj S, Djeu JY, Gabrilovich DI. Mechanism and therapeutic reversal of immune suppression in cancer. Cancer Res. 2007;67:5067–9.

    Article  PubMed  CAS  Google Scholar 

  36. Torres MP, Ponnusamy MP, Lakshmanan I, Batra SK. Immunopathogenesis of ovarian cancer. Minerva Medica. 2009;100:385–400.

    PubMed  CAS  Google Scholar 

  37. Friedl P, Wolf K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer. 2003;3:362–74.

    Article  PubMed  CAS  Google Scholar 

  38. Wang WG, Goswami S, Sahai E, Wyckoff JB, Segall JE, Condeelis JS. Tumor cells caught in the act of invading: their strategy for enhanced cell motility. Trends Cell Biol. 2005;15:138–45.

    Article  PubMed  CAS  Google Scholar 

  39. Mouneimne G, Brugge JS. Tensins: a new switch in cell migration. Dev Cell. 2007;13:317–9.

    Article  PubMed  CAS  Google Scholar 

  40. Wicki A, Christofori G. The potential role of podoplanin in tumour invasion. Br J Cancer. 2007;96:1–5.

    Article  PubMed  CAS  Google Scholar 

  41. Pepper JW. Defeating pathogen drug resistance: guidance from evolutionary theory. Evolution. 2008;62:3185–91.

    Article  PubMed  Google Scholar 

  42. Driscoll WW, Pepper JW. Theory for the evolution of diffusible external goods. Evolution. 2010;64:2682–7.

    Article  PubMed  Google Scholar 

  43. Kerbel RS. A cancer therapy resistant to resistance. Nature. 1997;390:335–6.

    Article  PubMed  CAS  Google Scholar 

  44. Boehm T, Folkman J, Browder T, O’Reilly MS. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature. 1997;390:404–7.

    Article  PubMed  CAS  Google Scholar 

  45. Gatenby RA, Gawlinski ET. The glycolytic phenotype in carcinogenesis and tumor invasion: insights through mathematical models. Cancer Res. 2003;63:3847–54.

    PubMed  CAS  Google Scholar 

  46. Brunner N, Dano K. Invasion and metastasis factors in breast cancer. Breast Cancer Res Treat. 1993;24:173–4.

    Article  Google Scholar 

  47. Farias EF, Ghiso JAA, Ladeda V, Joffe EBD. Verapamil inhibits tumor protease production, local invasion and metastasis development in murine carcinoma cells. Int J Cancer. 1998;78:727–34.

    Article  PubMed  CAS  Google Scholar 

  48. Loberg RD, Ying C, Craig M, Yan L, Snyder LA, Pienta KJ. CCL2 as an important mediator of prostate cancer growth in vivo through the regulation of macrophage infiltration. Neoplasia. 2007;9:556–62.

    Article  PubMed  CAS  Google Scholar 

  49. Loberg RD, Ying C, Craig M, Day LL, Sargent E, Neeley C, et al. Targeting CCL2 with systemic delivery of neutralizing antibodies induces prostate cancer tumor regression in vivo. Cancer Res. 2007;67:9417–24.

    Article  PubMed  CAS  Google Scholar 

  50. Aktipis CA, Maley CC, Pepper JW. Dispersal evolution in neoplasms: the role of disregulated metabolism in the evolution of cell motility. Cancer Prevention Res. 2011; in press.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Pepper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pepper, J.W. (2011). Somatic Evolution of Acquired Drug Resistance in Cancer. In: Gioeli, D. (eds) Targeted Therapies. Molecular and Translational Medicine. Humana Press. https://doi.org/10.1007/978-1-60761-478-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-478-4_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-477-7

  • Online ISBN: 978-1-60761-478-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics