Skip to main content

Amyloid Diseases at the Molecular Level: General Overview and Focus on AL Amyloidosis

  • Chapter
  • First Online:
Amyloid and Related Disorders

Abstract

The amyloidoses encompass a heterogeneous group of diseases, wherein a misfolded protein accumulates extracellularly in the form of amyloid deposits, resulting in tissue damage and organ dysfunction.

Intrinsic instability, increased concentration, proteolytic cleavage and/or mutations of a precursor protein favour its conversion into an aggregation-prone misfolded state, which ultimately results in the formation of amyloid fibrils through poorly identified prefibrilllar oligomeric species. The latter are believed to be the main culprit for the toxicity.

Numerous unrelated proteins can undergo this process, resulting in different types of the disease. Among these, systemic immunoglobulin light chain (AL) amyloidosis is caused by a usually small and non-proliferating plasma cell clone, which resides in the bone marrow and secretes an amyloidogenic light chain into the circulation. Almost any organ can be the site of amyloid deposition, rendering AL a truly protean condition. The identification of a monoclonal component in a patient with histological evidence of amyloid disease is strongly suggestive, but not pathognomonic, of AL amyloidosis.

Correct typing requires a scrupulous and multidisciplinary approach and forms the basis for an etiological therapy. Standard therapies aim at eradicating the amyloidogenic precursor, but novel complementary therapeutic approaches are under intense scrutiny.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Merlini G, Bellotti V. Molecular mechanisms of ­amyloidosis. N Engl J Med. 2003;349:583–96.

    Article  PubMed  CAS  Google Scholar 

  2. Carrell RW, Lomas DA. Conformational disease. Lancet. 1997;350:134–8.

    Article  PubMed  CAS  Google Scholar 

  3. Chiti F, Dobson CM. Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem. 2006;75:333–66.

    Article  PubMed  CAS  Google Scholar 

  4. Fandrich M, Fletcher MA, Dobson CM. Amyloid fibrils from muscle myoglobin. Nature. 2001;410:165–6.

    Article  PubMed  CAS  Google Scholar 

  5. Chiti F, Dobson CM. Amyloid formation by globular proteins under native conditions. Nat Chem Biol. 2009;5:15–22.

    Article  PubMed  CAS  Google Scholar 

  6. Powers ET, Morimoto RI, Dillin A, et al. Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem. 2009;78:959–91.

    Article  PubMed  CAS  Google Scholar 

  7. Westermark GT, Westermark P. Serum amyloid A and protein AA: molecular mechanisms of a transmissible amyloidosis. FEBS Lett. 2009;583:2685–90.

    Article  PubMed  CAS  Google Scholar 

  8. Heegaard NH. Beta(2)-microglobulin: from physiology to amyloidosis. Amyloid. 2009;16:151–73.

    Article  PubMed  CAS  Google Scholar 

  9. Abrahamson M, Grubb A. Increased body temperature accelerates aggregation of the Leu-68→Gln mutant ­cystatin C, the amyloid-forming protein in hereditary cystatin C amyloid angiopathy. Proc Natl Acad Sci USA. 1994;91:1416–20.

    Article  PubMed  CAS  Google Scholar 

  10. McCutchen SL, Lai Z, Miroy GJ, et al. Comparison of lethal and nonlethal transthyretin variants and their relationship to amyloid disease. Biochemistry. 1995;34:13527–36.

    Article  PubMed  CAS  Google Scholar 

  11. Booth DR, Sunde M, Bellotti V, et al. Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis. Nature. 1997;385:787–93.

    Article  PubMed  CAS  Google Scholar 

  12. Isaacson RL, Weeds AG, Fersht AR. Equilibria and kinetics of folding of gelsolin domain 2 and mutants involved in familial amyloidosis—Finnish type. Proc Natl Acad Sci USA. 1999;96:11247–52.

    Article  PubMed  CAS  Google Scholar 

  13. Raimondi S, Guglielmi F, Giorgetti S, et al. Effects of the known pathogenic mutations on the aggregation pathway of the amyloidogenic peptide of apolipoprotein a-I. J Mol Biol. 2011;407:465–76.

    Article  PubMed  CAS  Google Scholar 

  14. Benson MD. The hereditary amyloidoses. Best Pract Res Clin Rheumatol. 2003;17:909–27.

    Article  PubMed  CAS  Google Scholar 

  15. Kim SH, Wang R, Gordon DJ, et al. Furin mediates enhanced production of fibrillogenic ABri peptides in familial British dementia. Nat Neurosci. 1999; 2:984–8.

    Article  PubMed  CAS  Google Scholar 

  16. Chen CD, Huff ME, Matteson J, et al. Furin initiates gelsolin familial amyloidosis in the Golgi through a defect in Ca(2+) stabilization. EMBO J. 2001;20:6277–87.

    Article  PubMed  CAS  Google Scholar 

  17. De Strooper B, Vassar R, Golde T. The secretases: enzymes with therapeutic potential in Alzheimer disease. Nat Rev Neurol. 2010;6:99–107.

    Article  PubMed  CAS  Google Scholar 

  18. Tanzi RE, Bertram L. Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell. 2005;120:545–55.

    Article  PubMed  CAS  Google Scholar 

  19. Saraiva MJ. Transthyretin amyloidosis: a tale of weak interactions. FEBS Lett. 2001;498:201–3.

    Article  PubMed  CAS  Google Scholar 

  20. Westermark P, Mucchiano G, Marthin T, et al. Apolipoprotein A1-derived amyloid in human aortic atherosclerotic plaques. Am J Pathol. 1995;147:1186–92.

    PubMed  CAS  Google Scholar 

  21. Solomon A, Murphy CL, Kestler D, et al. Amyloid contained in the knee joint meniscus is formed from apolipoprotein A-I. Arthritis Rheum. 2006;54:3545–50.

    Article  PubMed  CAS  Google Scholar 

  22. Connors LH, Lim A, Prokaeva T, et al. Tabulation of human transthyretin (TTR) variants, 2003. Amyloid. 2003;10:160–84.

    Article  PubMed  CAS  Google Scholar 

  23. Obici L, Franceschini G, Calabresi L, et al. Structure, function and amyloidogenic propensity of apolipoprotein A-I. Amyloid. 2006;13:191–205.

    Article  PubMed  CAS  Google Scholar 

  24. Yazaki M, Tokuda T, Nakamura A, et al. Cardiac amyloid in patients with familial amyloid polyneuropathy consists of abundant wild-type transthyretin. Biochem Biophys Res Commun. 2000;274:702–6.

    Article  PubMed  CAS  Google Scholar 

  25. Tsuchiya A, Yazaki M, Kametani F, et al. Marked regression of abdominal fat amyloid in patients with familial amyloid polyneuropathy during long-term follow-up after liver transplantation. Liver Transpl. 2008;14:563–70.

    Article  PubMed  Google Scholar 

  26. Liepnieks JJ, Zhang LQ, Benson MD. Progression of transthyretin amyloid neuropathy after liver transplantation. Neurology. 2010;75:324–7.

    Article  PubMed  CAS  Google Scholar 

  27. Ihse E, Suhr OB, Hellman U, et al. Variation in amount of wild-type transthyretin in different fibril and tissue types in ATTR amyloidosis. J Mol Med. 2011;89:171–80.

    Article  PubMed  CAS  Google Scholar 

  28. Obici L, Perfetti V, Palladini G, et al. Clinical aspects of systemic amyloid diseases. Biochim Biophys Acta. 2005;1753:11–22.

    PubMed  CAS  Google Scholar 

  29. Obici L, Raimondi S, Lavatelli F, et al. Susceptibility to AA amyloidosis in rheumatic diseases: a critical overview. Arthritis Rheum. 2009;61:1435–40.

    Article  PubMed  CAS  Google Scholar 

  30. Saraiva MJ. Hereditary transthyretin amyloidosis: molecular basis and therapeutical strategies. Expert Rev Mol Med. 2002;4:1–11.

    Article  PubMed  Google Scholar 

  31. Sipe JD, Benson MD, Buxbaum JN, et al. Amyloid fibril protein nomenclature: 2010 recommendations from the nomenclature committee of the International Society of Amyloidosis. Amyloid. 2010;17:101–4.

    Article  PubMed  CAS  Google Scholar 

  32. Kisilevsky R, Fraser P. Proteoglycans and amyloid fibrillogenesis. Ciba Found Symp. 1996;199:58–67. discussion 68–72, 90–103.

    PubMed  CAS  Google Scholar 

  33. Nelson SR, Lyon M, Gallagher JT, et al. Isolation and characterization of the integral glycosaminoglycan constituents of human amyloid A and monoclonal light-chain amyloid fibrils. Biochem J. 1991;275(Pt 1):67–73.

    PubMed  CAS  Google Scholar 

  34. Pepys MB, Rademacher TW, Amatayakul-Chantler S, et al. Human serum amyloid P component is an ­invariant constituent of amyloid deposits and has a uniquely homogeneous glycostructure. Proc Natl Acad Sci USA. 1994;91:5602–6.

    Article  PubMed  CAS  Google Scholar 

  35. Pepys MB. Amyloidosis. Annu Rev Med. 2006;57: 223–41.

    Article  PubMed  CAS  Google Scholar 

  36. Hawkins PN, Myers MJ, Lavender JP, et al. Diagnostic radionuclide imaging of amyloid: biological targeting by circulating human serum amyloid P component. Lancet. 1988;1:1413–8.

    Article  PubMed  CAS  Google Scholar 

  37. Hazenberg BP, van Rijswijk MH, Piers DA, et al. Diagnostic performance of 123I-labeled serum amyloid P component scintigraphy in patients with ­amyloidosis. Am J Med. 2006;119:355.e15–24.

    Article  Google Scholar 

  38. Tennent GA, Lovat LB, Pepys MB. Serum amyloid P component prevents proteolysis of the amyloid fibrils of Alzheimer disease and systemic amyloidosis. Proc Natl Acad Sci USA. 1995;92:4299–303.

    Article  PubMed  CAS  Google Scholar 

  39. Botto M, Hawkins PN, Bickerstaff MC, et al. Amyloid deposition is delayed in mice with targeted deletion of the serum amyloid P component gene. Nat Med. 1997;3:855–9.

    Article  PubMed  CAS  Google Scholar 

  40. Pepys MB, Herbert J, Hutchinson WL, et al. Targeted pharmacological depletion of serum amyloid P component for treatment of human amyloidosis. Nature. 2002;417:254–9.

    Article  PubMed  CAS  Google Scholar 

  41. Bodin K, Ellmerich S, Kahan MC, et al. Antibodies to human serum amyloid P component eliminate visceral amyloid deposits. Nature. 2010;468:93–7.

    Article  PubMed  CAS  Google Scholar 

  42. Gillmore JD, Tennent GA, Hutchinson WL, et al. Sustained pharmacological depletion of serum amyloid P component in patients with systemic amyloidosis. Br J Haematol. 2010;148:760–7.

    Article  PubMed  CAS  Google Scholar 

  43. Cohen AS, Calkins E. Electron microscopic observations on a fibrous component in amyloid of diverse origins. Nature. 1959;183:1202–3.

    Article  PubMed  CAS  Google Scholar 

  44. Eanes ED, Glenner GG. X-ray diffraction studies on amyloid filaments. J Histochem Cytochem. 1968;16:673–7.

    Article  PubMed  CAS  Google Scholar 

  45. Termine JD, Eanes ED, Ein D, et al. Infrared spectroscopy of human amyloid fibrils and immunoglobulin proteins. Biopolymers. 1972;11:1103–13.

    Article  PubMed  CAS  Google Scholar 

  46. Petkova AT, Ishii Y, Balbach JJ, et al. A structural model for Alzheimer’s beta-amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci USA. 2002;99:16742–7.

    Article  PubMed  CAS  Google Scholar 

  47. Jaroniec CP, MacPhee CE, Astrof NS, et al. Molecular conformation of a peptide fragment of transthyretin in an amyloid fibril. Proc Natl Acad Sci USA. 2002;99:16748–53.

    Article  PubMed  CAS  Google Scholar 

  48. Ritter C, Maddelein ML, Siemer AB, et al. Correlation of structural elements and infectivity of the HET-s prion. Nature. 2005;435:844–8.

    Article  PubMed  CAS  Google Scholar 

  49. Makin OS, Atkins E, Sikorski P, et al. Molecular basis for amyloid fibril formation and stability. Proc Natl Acad Sci USA. 2005;102:315–20.

    Article  PubMed  CAS  Google Scholar 

  50. Nelson R, Sawaya MR, Balbirnie M, et al. Structure of the cross-beta spine of amyloid-like fibrils. Nature. 2005;435:773–8.

    Article  PubMed  CAS  Google Scholar 

  51. Greenwald J, Riek R. Biology of amyloid: structure, function, and regulation. Structure. 2010;18:1244–60.

    Article  PubMed  CAS  Google Scholar 

  52. Sawaya MR, Sambashivan S, Nelson R, et al. Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature. 2007;447:453–7.

    Article  PubMed  CAS  Google Scholar 

  53. Dobson CM, Karplus M. The fundamentals of protein folding: bringing together theory and experiment. Curr Opin Struct Biol. 1999;9:92–101.

    Article  PubMed  CAS  Google Scholar 

  54. Dobson CM. Getting out of shape. Nature. 2002;418:729–30.

    Article  PubMed  CAS  Google Scholar 

  55. Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol. 2007;8:101–12.

    Article  PubMed  CAS  Google Scholar 

  56. Glabe CG. Structural classification of toxic amyloid oligomers. J Biol Chem. 2008;283:29639–43.

    Article  PubMed  CAS  Google Scholar 

  57. Stefani M. Structural polymorphism of amyloid oligomers and fibrils underlies different fibrillization pathways: immunogenicity and cytotoxicity. Curr Protein Pept Sci. 2010;11:343–54.

    Article  PubMed  CAS  Google Scholar 

  58. Serio TR, Cashikar AG, Kowal AS, et al. Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science. 2000;289:1317–21.

    Article  PubMed  CAS  Google Scholar 

  59. Hawkins PN, Pepys MB. A primed state exists in vivo following histological regression of amyloidosis. Clin Exp Immunol. 1990;81:325–8.

    Article  PubMed  CAS  Google Scholar 

  60. Harris DL, King E, Ramsland PA, et al. Binding of nascent collagen by amyloidogenic light chains and amyloid fibrillogenesis in monolayers of human fibrocytes. J Mol Recognit. 2000;13:198–212.

    Article  PubMed  CAS  Google Scholar 

  61. Stevens FJ, Kisilevsky R. Immunoglobulin light chains, glycosaminoglycans, and amyloid. Cell Mol Life Sci. 2000;57:441–9.

    Article  PubMed  CAS  Google Scholar 

  62. Yan SD, Zhu H, Zhu A, et al. Receptor-dependent cell stress and amyloid accumulation in systemic amyloidosis. Nat Med. 2000;6:643–51.

    Article  PubMed  CAS  Google Scholar 

  63. Sousa MM, Cardoso I, Fernandes R, et al. Deposition of transthyretin in early stages of familial amyloidotic polyneuropathy: evidence for toxicity of nonfibrillar aggregates. Am J Pathol. 2001;159:1993–2000.

    Article  PubMed  CAS  Google Scholar 

  64. Andersson K, Olofsson A, Nielsen EH, et al. Only amyloidogenic intermediates of transthyretin induce apoptosis. Biochem Biophys Res Commun. 2002; 294:309–14.

    Article  PubMed  CAS  Google Scholar 

  65. Lambert MP, Barlow AK, Chromy BA, et al. Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA. 1998;95:6448–53.

    Article  PubMed  CAS  Google Scholar 

  66. Hartley DM, Walsh DM, Ye CP, et al. Protofibrillar intermediates of amyloid beta-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J Neurosci. 1999;19: 8876–84.

    PubMed  CAS  Google Scholar 

  67. Walsh DM, Klyubin I, Fadeeva JV, et al. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature. 2002;416:535–9.

    Article  PubMed  CAS  Google Scholar 

  68. Liao R, Jain M, Teller P, et al. Infusion of light chains from patients with cardiac amyloidosis causes diastolic dysfunction in isolated mouse hearts. Circulation. 2001;104:1594–7.

    PubMed  CAS  Google Scholar 

  69. Brenner DA, Jain M, Pimentel DR, et al. Human amyloidogenic light chains directly impair cardiomyocyte function through an increase in cellular oxidant stress. Circ Res. 2004;94:1008–10.

    Article  PubMed  CAS  Google Scholar 

  70. Shi J, Guan J, Jiang B, et al. Amyloidogenic light chains induce cardiomyocyte contractile dysfunction and apoptosis via a non-canonical p38alpha MAPK pathway. Proc Natl Acad Sci USA. 2010;107:4188–93.

    Article  PubMed  CAS  Google Scholar 

  71. Silveira JR, Raymond GJ, Hughson AG, et al. The most infectious prion protein particles. Nature. 2005;437:257–61.

    Article  PubMed  CAS  Google Scholar 

  72. Campioni S, Mannini B, Zampagni M, et al. A causative link between the structure of aberrant protein oligomers and their toxicity. Nat Chem Biol. 2010;6:140–7.

    Article  PubMed  CAS  Google Scholar 

  73. Kyle RA, Linos A, Beard CM, et al. Incidence and natural history of primary systemic amyloidosis in Olmsted County, Minnesota, 1950 through 1989. Blood. 1992;79:1817–22.

    PubMed  CAS  Google Scholar 

  74. Merlini G, Stone MJ. Dangerous small B-cell clones. Blood. 2006;108:2520–30.

    Article  PubMed  CAS  Google Scholar 

  75. Gertz MA, Kyle RA, Greipp PR. The plasma cell labeling index: a valuable tool in primary systemic amyloidosis. Blood. 1989;74:1108–11.

    PubMed  CAS  Google Scholar 

  76. Rajkumar SV, Gertz MA, Kyle RA. Primary systemic amyloidosis with delayed progression to multiple myeloma. Cancer. 1998;82:1501–5.

    Article  PubMed  CAS  Google Scholar 

  77. Gertz MA, Kyle RA, Noel P. Primary systemic amyloidosis: a rare complication of immunoglobulin M monoclonal gammopathies and Waldenstrom’s macroglobulinemia. J Clin Oncol. 1993;11:914–20.

    PubMed  CAS  Google Scholar 

  78. Hofmann-Guilaine C, Nochy D, Jacquot C, et al. Association light chain deposition disease (LCDD) and amyloidosis. One case. Pathol Res Pract. 1985;180:214–9.

    Article  PubMed  CAS  Google Scholar 

  79. Adami F, Briani C, Binotto G, et al. Coexistence of primary AL amyloidosis and POEMS syndrome: efficacy of melphalan-dexamethasone and role of biochemical markers in monitoring the diseases course. Am J Hematol. 2010;85:131–2.

    PubMed  CAS  Google Scholar 

  80. Adams D, Lozeron P, Theaudin M, et al. New elements in the diagnosis and the treatment of primary AL amyloid polyneuropathy and neuropathy due to POEMS syndrome. Rev Neurol (Paris). 2011;167:57–63.

    Article  CAS  Google Scholar 

  81. Cohen AD, Zhou P, Xiao Q, et al. Systemic AL amyloidosis due to non-Hodgkin’s lymphoma: an unusual clinicopathologic association. Br J Haematol. 2004;124:309–14.

    Article  PubMed  CAS  Google Scholar 

  82. Telio D, Bailey D, Chen C, et al. Two distinct syndromes of lymphoma-associated AL amyloidosis: a case series and review of the literature. Am J Hematol. 2010;85:805–8.

    Article  PubMed  Google Scholar 

  83. Ikee R, Kobayashi S, Hemmi N, et al. Amyloidosis associated with chronic lymphocytic leukemia. Amyloid. 2005;12:131–4.

    Article  PubMed  CAS  Google Scholar 

  84. Perfetti V, Bellotti V, Garini P, et al. AL amyloidosis. Characterization of amyloidogenic cells by anti-­idiotypic monoclonal antibodies. Lab Invest. 1994;71:853–61.

    PubMed  CAS  Google Scholar 

  85. McElroy Jr EA, Witzig TE, Gertz MA, et al. Detection of monoclonal plasma cells in the peripheral blood of patients with primary amyloidosis. Br J Haematol. 1998;100:326–7.

    Article  PubMed  Google Scholar 

  86. Perfetti V, Ubbiali P, Magni M, et al. Cells with clonal light chains are present in peripheral blood at diagnosis and in apheretic stem cell harvests of primary amyloidosis. Bone Marrow Transplant. 1999;23:323–7.

    Article  PubMed  CAS  Google Scholar 

  87. Manske MK, Zuckerman NS, Timm MM, et al. Quantitative analysis of clonal bone marrow CD19+ B cells: use of B cell lineage trees to delineate their role in the pathogenesis of light chain amyloidosis. Clin Immunol. 2006;120:106–20.

    Article  PubMed  CAS  Google Scholar 

  88. Solomon A, Macy SD, Wooliver C, et al. Splenic plasma cells can serve as a source of amyloidogenic light chains. Blood. 2009;113:1501–3.

    Article  PubMed  CAS  Google Scholar 

  89. Perfetti V, Vignarelli MC, Bellotti V, et al. Membrane CD22 defines circulating myeloma-related cells as mature or later B cells. Lab Invest. 1997;77:333–44.

    PubMed  CAS  Google Scholar 

  90. Perfetti V, Vignarelli MC, Casarini S, et al. Biological features of the clone involved in primary amyloidosis (AL). Leukemia. 2001;15:195–202.

    Article  PubMed  CAS  Google Scholar 

  91. Perfetti V, Colli Vignarelli M, Anesi E, et al. The degrees of plasma cell clonality and marrow infiltration adversely influence the prognosis of AL amyloidosis patients. Haematologica. 1999;84:218–21.

    PubMed  CAS  Google Scholar 

  92. Paiva B, Vidriales MB, Perez JJ, et al. The clinical utility and prognostic value of multiparameter flow cytometry immunophenotyping in light-chain amyloidosis. Blood. 2011;117:3613–6.

    Article  PubMed  CAS  Google Scholar 

  93. Pardanani A, Witzig TE, Schroeder G, et al. Circulating peripheral blood plasma cells as a prognostic indicator in patients with primary systemic amyloidosis. Blood. 2003;101:827–30.

    Article  PubMed  CAS  Google Scholar 

  94. Dispenzieri A, Lacy MQ, Katzmann JA, et al. Absolute values of immunoglobulin free light chains are prognostic in patients with primary systemic amyloidosis undergoing peripheral blood stem cell transplantation. Blood. 2006;107:3378–83.

    Article  PubMed  CAS  Google Scholar 

  95. Wechalekar A et al. A new staging system for AL amyloidosis incorporating serum free light chains, cardiac troponin-T and NT-proBNP. Blood 2009;114:abstr. 2796.

    Google Scholar 

  96. Kumar S et al. A novel prognostic staging system for light chain amyloidosis (AL) incorporating markers of plasma cell burden and organ involvement. Blood 2009;114:abstr. 2797.

    Google Scholar 

  97. Merlini G, Seldin DC, Gertz MA. Amyloidosis: pathogenesis and new therapeutic options. J Clin Oncol. 2011;29:1924–33.

    Article  PubMed  Google Scholar 

  98. Comenzo RL, Michelle D, LeBlanc M, et al. Mobilized CD34+ cells selected as autografts in patients with primary light-chain amyloidosis: rationale and application. Transfusion. 1998;38:60–9.

    Article  PubMed  CAS  Google Scholar 

  99. Fonseca R, Ahmann GJ, Jalal SM, et al. Chromosomal abnormalities in systemic amyloidosis. Br J Haematol. 1998;103:704–10.

    Article  PubMed  CAS  Google Scholar 

  100. Hayman SR, Bailey RJ, Jalal SM, et al. Translocations involving the immunoglobulin heavy-chain locus are possible early genetic events in patients with primary systemic amyloidosis. Blood. 2001;98:2266–8.

    Article  PubMed  CAS  Google Scholar 

  101. Perfetti V, Coluccia AM, Intini D, et al. Translocation T(4;14)(p16.3;q32) is a recurrent genetic lesion in primary amyloidosis. Am J Pathol. 2001;158:1599–603.

    Article  PubMed  CAS  Google Scholar 

  102. Bochtler T, Hegenbart U, Heiss C, et al. Hyperdiploidy is less frequent in AL amyloidosis compared with monoclonal gammopathy of undetermined significance and inversely associated with translocation t(11;14). Blood. 2011;117:3809–15.

    Article  PubMed  CAS  Google Scholar 

  103. Abraham RS, Ballman KV, Dispenzieri A, et al. Functional gene expression analysis of clonal plasma cells identifies a unique molecular profile for light chain amyloidosis. Blood. 2005;105:794–803.

    Article  PubMed  CAS  Google Scholar 

  104. Zhou P, Hoffman J, Landau H, et al. Clonal plasma cell pathophysiology and clinical features of disease are linked to clonal plasma cell expression of cyclin D1 in systemic light-chain amyloidosis. Clin Lymphoma Myeloma Leuk. 2012;12:49–58.

    Google Scholar 

  105. Zhou P, Comenzo RL, Olshen AB, et al. CD32B is highly expressed on clonal plasma cells from patients with systemic light-chain amyloidosis and provides a target for monoclonal antibody-based therapy. Blood. 2008;111:3403–6.

    Article  PubMed  CAS  Google Scholar 

  106. Deshmukh M, Elderfield K, Rahemtulla A, et al. Immunophenotype of neoplastic plasma cells in AL amyloidosis. J Clin Pathol. 2009;62:724–30.

    Article  PubMed  CAS  Google Scholar 

  107. Kumar S, Kimlinger TK, Lust JA, et al. Expression of CD52 on plasma cells in plasma cell proliferative disorders. Blood. 2003;102:1075–7.

    Article  PubMed  CAS  Google Scholar 

  108. Kyle RA, Therneau TM, Rajkumar SV, et al. A long-term study of prognosis in monoclonal gammopathy of undetermined significance. N Engl J Med. 2002;346:564–9.

    Article  PubMed  Google Scholar 

  109. Perfetti V, Casarini S, Palladini G, et al. Analysis of V(lambda)-J(lambda) expression in plasma cells from primary (AL) amyloidosis and normal bone marrow identifies 3r (lambdaIII) as a new amyloid-associated germline gene segment. Blood. 2002;100:948–53.

    Article  PubMed  CAS  Google Scholar 

  110. Comenzo RL, Zhang Y, Martinez C, et al. The tropism of organ involvement in primary systemic amyloidosis: contributions of Ig V(L) germ line gene use and clonal plasma cell burden. Blood. 2001;98:714–20.

    Article  PubMed  CAS  Google Scholar 

  111. Abraham RS, Geyer SM, Price-Troska TL, et al. Immunoglobulin light chain variable (V) region genes influence clinical presentation and outcome in light chain-associated amyloidosis (AL). Blood. 2003;101:3801–8.

    Article  PubMed  CAS  Google Scholar 

  112. Bellavia D, Abraham RS, Pellikka PA, et al. Utility of Doppler myocardial imaging, cardiac biomarkers, and clonal immunoglobulin genes to assess left ventricular performance and stratify risk following peripheral blood stem cell transplantation in patients with systemic light chain amyloidosis (Al). J Am Soc Echocardiogr. 2011;24:444–54.

    Article  PubMed  Google Scholar 

  113. Perfetti V, Ubbiali P, Vignarelli MC, et al. Evidence that amyloidogenic light chains undergo antigen-driven selection. Blood. 1998;91:2948–54.

    PubMed  CAS  Google Scholar 

  114. Abraham RS, Geyer SM, Ramirez-Alvarado M, et al. Analysis of somatic hypermutation and antigenic selection in the clonal B cell in immunoglobulin light chain amyloidosis (AL). J Clin Immunol. 2004;24:340–53.

    Article  PubMed  CAS  Google Scholar 

  115. Abraham RS, Manske MK, Zuckerman NS, et al. Novel analysis of clonal diversification in blood B cell and bone marrow plasma cell clones in immunoglobulin light chain amyloidosis. J Clin Immunol. 2007;27:69–87.

    Article  PubMed  CAS  Google Scholar 

  116. Hurle MR, Helms LR, Li L, et al. A role for destabilizing amino acid replacements in light-chain amyloidosis. Proc Natl Acad Sci USA. 1994;91:5446–50.

    Article  PubMed  CAS  Google Scholar 

  117. Helms LR, Wetzel R. Specificity of abnormal assembly in immunoglobulin light chain deposition disease and amyloidosis. J Mol Biol. 1996;257:77–86.

    Article  PubMed  CAS  Google Scholar 

  118. Bellotti V, Merlini G. Toward understanding the molecular pathogenesis of monoclonal immunoglobulin light-chain deposition. Nephrol Dial Transplant. 1996;11:1708–11.

    PubMed  CAS  Google Scholar 

  119. Raffen R, Dieckman LJ, Szpunar M, et al. Physicochemical consequences of amino acid variations that contribute to fibril formation by immunoglobulin light chains. Protein Sci. 1999;8:509–17.

    Article  PubMed  CAS  Google Scholar 

  120. Myatt EA, Westholm FA, Weiss DT, et al. Pathogenic potential of human monoclonal immunoglobulin light chains: relationship of in vitro aggregation to in vivo organ deposition. Proc Natl Acad Sci USA. 1994;91:3034–8.

    Article  PubMed  CAS  Google Scholar 

  121. Wall J, Murphy CL, Solomon A. In vitro immunoglobulin light chain fibrillogenesis. Methods Enzymol. 1999;309:204–17.

    Article  PubMed  CAS  Google Scholar 

  122. Ramirez-Alvarado M, Merkel JS, Regan L. A systematic exploration of the influence of the protein stability on amyloid fibril formation in vitro. Proc Natl Acad Sci USA. 2000;97:8979–84.

    Article  PubMed  CAS  Google Scholar 

  123. Wall JS, Gupta V, Wilkerson M, et al. Structural basis of light chain amyloidogenicity: comparison of the thermodynamic properties, fibrillogenic potential and tertiary structural features of four Vlambda6 proteins. J Mol Recognit. 2004;17:323–31.

    Article  PubMed  CAS  Google Scholar 

  124. Baden EM, Randles EG, Aboagye AK, et al. Structural insights into the role of mutations in amyloidogenesis. J Biol Chem. 2008;283:30950–6.

    Article  PubMed  CAS  Google Scholar 

  125. Schormann N, Murrell JR, Liepnieks JJ, et al. Tertiary structure of an amyloid immunoglobulin light chain protein: a proposed model for amyloid fibril formation. Proc Natl Acad Sci USA. 1995;92:9490–4.

    Article  PubMed  CAS  Google Scholar 

  126. Pokkuluri PR, Solomon A, Weiss DT, et al. Tertiary structure of human lambda 6 light chains. Amyloid. 1999;6:165–71.

    Article  PubMed  CAS  Google Scholar 

  127. Randles EG, Thompson JR, Martin DJ, et al. Structural alterations within native amyloidogenic immunoglobulin light chains. J Mol Biol. 2009;389:199–210.

    Article  PubMed  CAS  Google Scholar 

  128. Poshusta TL, Sikkink LA, Leung N, et al. Mutations in specific structural regions of immunoglobulin light chains are associated with free light chain levels in patients with AL amyloidosis. PLoS One. 2009;4:e5169.

    Article  PubMed  CAS  Google Scholar 

  129. Bellotti V, Mangione P, Merlini G. Review: immunoglobulin light chain amyloidosis—the archetype of structural and pathogenic variability. J Struct Biol. 2000;130:280–9.

    Article  PubMed  CAS  Google Scholar 

  130. Sletten K, Natvig JB, Husby G, et al. The complete amino acid sequence of a prototype immunoglobulin-lambda light-chain-type amyloid-fibril protein AR. Biochem J. 1981;195:561–72.

    PubMed  CAS  Google Scholar 

  131. Omtvedt LA, Bailey D, Renouf DV, et al. Glycosylation of immunoglobulin light chains associated with amyloidosis. Amyloid. 2000;7:227–44.

    Article  PubMed  CAS  Google Scholar 

  132. Connors LH, Jiang Y, Budnik M, et al. Heterogeneity in primary structure, post-translational modifications, and germline gene usage of nine full-length amyloidogenic kapp a1 immunoglobulin light chains. Biochemistry. 2007;46:14259–71.

    Article  PubMed  CAS  Google Scholar 

  133. Lim A, Wally J, Walsh MT, et al. Identification and location of a cysteinyl posttranslational modification in an amyloidogenic kapp a1 light chain protein by electrospray ionization and matrix-assisted laser desorption/ionization mass spectrometry. Anal Biochem. 2001;295:45–56.

    Article  PubMed  CAS  Google Scholar 

  134. Lavatelli F, Brambilla F, Valentini V, et al. A novel approach for the purification and proteomic analysis of pathogenic immunoglobulin free light chains from serum. Biochim Biophys Acta. 2011;1814:409–19.

    PubMed  CAS  Google Scholar 

  135. Lavatelli F, Perlman DH, Spencer B, et al. Amyloidogenic and associated proteins in systemic amyloidosis proteome of adipose tissue. Mol Cell Proteomics. 2008;7:1570–83.

    Article  PubMed  CAS  Google Scholar 

  136. Solomon A, Weiss DT, Murphy CL, et al. Light chain-associated amyloid deposits comprised of a novel kappa constant domain. Proc Natl Acad Sci USA. 1998;95:9547–51.

    Article  PubMed  CAS  Google Scholar 

  137. Klimtchuk ES, Gursky O, Patel RS, et al. The critical role of the constant region in thermal stability and aggregation of amyloidogenic immunoglobulin light chain. Biochemistry. 2010;49:9848–57.

    Article  PubMed  CAS  Google Scholar 

  138. Reixach N, Deechongkit S, Jiang X, et al. Tissue damage in the amyloidoses: transthyretin monomers and nonnative oligomers are the major cytotoxic species in tissue culture. Proc Natl Acad Sci USA. 2004;101:2817–22.

    Article  PubMed  CAS  Google Scholar 

  139. Comenzo RL, Vosburgh E, Simms RW, et al. Dose-intensive melphalan with blood stem cell support for the treatment of AL amyloidosis: one-year follow-up in five patients. Blood. 1996;88:2801–6.

    PubMed  CAS  Google Scholar 

  140. Dember LM, Sanchorawala V, Seldin DC, et al. Effect of dose-intensive intravenous melphalan and autologous blood stem-cell transplantation on al amyloidosis-associated renal disease. Ann Intern Med. 2001;134:746–53.

    PubMed  CAS  Google Scholar 

  141. Palladini G, Lavatelli F, Russo P, et al. Circulating amyloidogenic free light chains and serum N-terminal natriuretic peptide type B decrease simultaneously in association with improvement of survival in AL. Blood. 2006;107:3854–8.

    Article  PubMed  CAS  Google Scholar 

  142. Trinkaus-Randall V, Walsh MT, Steeves S, et al. Cellular response of cardiac fibroblasts to amyloidogenic light chains. Am J Pathol. 2005;166:197–208.

    Article  PubMed  CAS  Google Scholar 

  143. Monis GF, Schultz C, Ren R, et al. Role of endocytic inhibitory drugs on internalization of amyloidogenic light chains by cardiac fibroblasts. Am J Pathol. 2006;169:1939–52.

    Article  PubMed  CAS  Google Scholar 

  144. Teng J, Russell WJ, Gu X, et al. Different types of glomerulopathic light chains interact with mesangial cells using a common receptor but exhibit different intracellular trafficking patterns. Lab Invest. 2004;84:440–51.

    Article  PubMed  CAS  Google Scholar 

  145. Keeling J, Teng J, Herrera GA. AL-amyloidosis and light-chain deposition disease light chains induce divergent phenotypic transformations of human mesangial cells. Lab Invest. 2004;84:1322–38.

    Article  PubMed  CAS  Google Scholar 

  146. Perfetti V, Casarini S, Palladini G, et al. The ­repertoire of immunoglobulin l light chains causing predominant cardiac involvement and identification of a preferentially involved germline gene, IGLV1-44. Blood. 2012;119:144–50.

    Google Scholar 

  147. Prokaeva T, Spencer B, et al. Contribution of light chain variable region genes to organ tropism and survival in AL amyloidosis. Amyloid 2010;17:62, Abstract OP-046.

    Google Scholar 

  148. Enqvist S, Sletten K, Stevens FJ, et al. Germ line origin and somatic mutations determine the target tissues in systemic AL-amyloidosis. PLoS One. 2007;2:e981.

    Article  PubMed  CAS  Google Scholar 

  149. Falk RH, Comenzo RL, Skinner M. The systemic amyloidoses. N Engl J Med. 1997;337:898–909.

    Article  PubMed  CAS  Google Scholar 

  150. Cowan AJ, Skinner M, Berk JL, et al. Macroglossia—not always AL amyloidosis. Amyloid. 2011;18:83–6.

    Article  PubMed  Google Scholar 

  151. Prokaeva T, Spencer B, Kaut M, et al. Soft tissue, joint, and bone manifestations of AL amyloidosis: clinical presentation, molecular features, and survival. Arthritis Rheum. 2007;56:3858–68.

    Article  PubMed  Google Scholar 

  152. Merlini G, Palladini G. Amyloidosis: is a cure possible? Ann Oncol. 2008;19 Suppl 4:iv63–6.

    Article  PubMed  Google Scholar 

  153. Gertz MA, Lacy MQ, Dispenzieri A. Immunoglobulin light chain amyloidosis and the kidney. Kidney Int. 2002;61:1–9.

    Article  PubMed  Google Scholar 

  154. Gertz MA, Leung N, Lacy MQ, et al. Clinical outcome of immunoglobulin light chain amyloidosis affecting the kidney. Nephrol Dial Transplant. 2009;24:3132–7.

    Article  PubMed  CAS  Google Scholar 

  155. Bergesio F, Ciciani AM, Manganaro M, et al. Renal involvement in systemic amyloidosis: an Italian collaborative study on survival and renal outcome. Nephrol Dial Transplant. 2008;23:941–51.

    Article  PubMed  CAS  Google Scholar 

  156. Leung N, Dispenzieri A, Lacy MQ, et al. Severity of baseline proteinuria predicts renal response in immunoglobulin light chain-associated amyloidosis after autologous stem cell transplantation. Clin J Am Soc Nephrol. 2007;2:440–4.

    Article  PubMed  Google Scholar 

  157. Leung N, Dispenzieri A, Fervenza FC, et al. Renal response after high-dose melphalan and stem cell transplantation is a favorable marker in patients with primary systemic amyloidosis. Am J Kidney Dis. 2005;46:270–7.

    Article  PubMed  CAS  Google Scholar 

  158. Falk RH. Diagnosis and management of the cardiac amyloidoses. Circulation. 2005;112:2047–60.

    Article  PubMed  Google Scholar 

  159. Dubrey SW, Hawkins PN, Falk RH. Amyloid ­diseases of the heart: assessment, diagnosis, and referral. Heart. 2011;97:75–84.

    Article  PubMed  CAS  Google Scholar 

  160. Rapezzi C, Merlini G, Quarta CC, et al. Systemic cardiac amyloidoses: disease profiles and clinical courses of the 3 main types. Circulation. 2009;120:1203–12.

    Article  PubMed  CAS  Google Scholar 

  161. Maceira AM, Joshi J, Prasad SK, et al. Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation. 2005;111:186–93.

    Article  PubMed  Google Scholar 

  162. Bellavia D, Pellikka PA, Al-Zahrani GB, et al. Independent predictors of survival in primary systemic (Al) amyloidosis, including cardiac biomarkers and left ventricular strain imaging: an observational cohort study. J Am Soc Echocardiogr. 2010;23:643–52.

    Article  PubMed  Google Scholar 

  163. Koyama J, Falk RH. Prognostic significance of strain Doppler imaging in light-chain amyloidosis. JACC Cardiovasc Imaging. 2010;3:333–42.

    Article  PubMed  Google Scholar 

  164. Palladini G, Campana C, Klersy C, et al. Serum N-terminal pro-brain natriuretic peptide is a sensitive marker of myocardial dysfunction in AL amyloidosis. Circulation. 2003;107:2440–5.

    Article  PubMed  CAS  Google Scholar 

  165. Dispenzieri A, Kyle RA, Gertz MA, et al. Survival in patients with primary systemic amyloidosis and raised serum cardiac troponins. Lancet. 2003;361:1787–9.

    Article  PubMed  CAS  Google Scholar 

  166. Palladini G, Barassi A, Klersy C, et al. The combination of high-sensitivity cardiac troponin T (hs-cTnT) at presentation and changes in N-terminal natriuretic peptide type B (NT-proBNP) after chemotherapy best predicts survival in AL amyloidosis. Blood. 2010;116:3426–30.

    Google Scholar 

  167. Dispenzieri A, Gertz MA, Kyle RA, et al. Serum cardiac troponins and N-terminal pro-brain natriuretic peptide: a staging system for primary systemic amyloidosis. J Clin Oncol. 2004;22:3751–7.

    Article  PubMed  CAS  Google Scholar 

  168. Palladini G, Malamani G, Co F, et al. Holter monitoring in AL amyloidosis: prognostic implications. Pacing Clin Electrophysiol. 2001;24:1228–33.

    Article  PubMed  CAS  Google Scholar 

  169. Park MA, Mueller PS, Kyle RA, et al. Primary (AL) hepatic amyloidosis: clinical features and natural history in 98 patients. Medicine (Baltimore). 2003;82:291–8.

    Article  Google Scholar 

  170. Peters RA, Koukoulis G, Gimson A, et al. Primary amyloidosis and severe intrahepatic cholestatic jaundice. Gut. 1994;35:1322–5.

    Article  PubMed  CAS  Google Scholar 

  171. Rubinow A, Koff RS, Cohen AS. Severe intrahepatic cholestasis in primary amyloidosis: a report of four cases and a review of the literature. Am J Med. 1978;64:937–46.

    Article  PubMed  CAS  Google Scholar 

  172. Ooi LL, Lynch SV, Graham DA, et al. Spontaneous liver rupture in amyloidosis. Surgery. 1996;120:117–9.

    Article  PubMed  CAS  Google Scholar 

  173. Kacem C, Helali K, Puisieux F. Recurrent spontaneous hepatic rupture in primary hepatic amyloidosis. Ann Intern Med. 1998;129:339.

    PubMed  CAS  Google Scholar 

  174. Di Sabatino A, Carsetti R, Corazza GR. Post-splenectomy and hyposplenic states. Lancet. 2011;378:86–97.

    Article  PubMed  Google Scholar 

  175. Renzulli P, Schoepfer A, Mueller E, et al. Atraumatic splenic rupture in amyloidosis. Amyloid. 2009;16: 47–53.

    Article  PubMed  Google Scholar 

  176. Matsuda M, Gono T, Morita H, et al. Peripheral nerve involvement in primary systemic AL amyloidosis: a clinical and electrophysiological study. Eur J Neurol. 2011;18:604–10.

    Article  PubMed  CAS  Google Scholar 

  177. Caccialanza R, Palladini G, Klersy C, et al. Nutritional status of outpatients with systemic immunoglobulin light-chain amyloidosis 1. Am J Clin Nutr. 2006;83:350–4.

    PubMed  CAS  Google Scholar 

  178. Gertz MA, Comenzo R, Falk RH, et al. Definition of organ involvement and treatment response in immunoglobulin light chain amyloidosis (AL): a consensus opinion from the 10th International Symposium on Amyloid and Amyloidosis, Tours, France, 18–22 April 2004. Am J Hematol. 2005;79:319–28.

    Article  PubMed  Google Scholar 

  179. Gertz MA, Merlini G. Definition of organ involvement and tratment response in immunoglobulin light chain amyloidosis (AL): a consensus opinion. Amyloid. 2010;17:48–9.

    Google Scholar 

  180. Merlini G, Marciano S, Gasparro C, et al. The Pavia approach to clinical protein analysis. Clin Chem Lab Med. 2001;39:1025–8.

    PubMed  CAS  Google Scholar 

  181. Palladini G, Russo P, Bosoni T, et al. Identification of amyloidogenic light chains requires the combination of serum-free light chain assay with immunofixation of serum and urine. Clin Chem. 2009;55:499–504.

    Article  PubMed  CAS  Google Scholar 

  182. Anesi E, Palladini G, Perfetti V, et al. Therapeutic advances demand accurate typing of amyloid deposits. Am J Med. 2001;111:243–4.

    Article  PubMed  CAS  Google Scholar 

  183. Lachmann HJ, Booth DR, Booth SE, et al. Misdiagnosis of hereditary amyloidosis as AL (primary) amyloidosis. N Engl J Med. 2002;346:1786–91.

    Article  PubMed  CAS  Google Scholar 

  184. Palladini G, Obici L, Merlini G. Hereditary amyloidosis. N Engl J Med. 2002;347:1206–7. author reply 1206–1207.

    Article  PubMed  Google Scholar 

  185. Kyle RA, Rajkumar SV. Epidemiology of the plasma-cell disorders. Best Pract Res Clin Haematol. 2007;20:637–64.

    Article  PubMed  CAS  Google Scholar 

  186. Comenzo RL, Zhou P, Fleisher M, et al. Seeking confidence in the diagnosis of systemic AL (Ig light-chain) amyloidosis: patients can have both monoclonal gammopathies and hereditary amyloid proteins. Blood. 2006;107:3489–91.

    Article  PubMed  CAS  Google Scholar 

  187. Wechalekar AD, Offer M, Gillmore JD, et al. Cardiac amyloidosis, a monoclonal gammopathy and a potentially misleading mutation. Nat Clin Pract Cardiovasc Med. 2009;6:128–33.

    Article  PubMed  CAS  Google Scholar 

  188. Kyle RA, Gertz MA, Greipp PR, et al. Long-term survival (10 years or more) in 30 patients with ­primary amyloidosis. Blood. 1999;93:1062–6.

    PubMed  CAS  Google Scholar 

  189. Palladini G, Russo P, Nuvolone M, et al. Treatment with oral melphalan plus dexamethasone produces long-term remissions in AL amyloidosis. Blood. 2007;110:787–8.

    Article  PubMed  CAS  Google Scholar 

  190. Merlini G, Ascari E, Amboldi N, et al. Interaction of the anthracycline 4′-iodo-4′-deoxydoxorubicin with amyloid fibrils: inhibition of amyloidogenesis. Proc Natl Acad Sci USA. 1995;92:2959–63.

    Article  PubMed  CAS  Google Scholar 

  191. Gianni L, Bellotti V, Gianni AM, et al. New drug therapy of amyloidoses: resorption of AL-type deposits with 4′-iodo-4′-deoxydoxorubicin. Blood. 1995;86:855–61.

    PubMed  CAS  Google Scholar 

  192. Gertz MA, Lacy MQ, Dispenzieri A, et al. A multicenter phase II trial of 4′-iodo-4′deoxydoxorubicin (IDOX) in primary amyloidosis (AL). Amyloid. 2002;9:24–30.

    Article  PubMed  CAS  Google Scholar 

  193. Ohno S, Yoshimoto M, Honda S, et al. The antisense approach in amyloid light chain amyloidosis: identification of monoclonal Ig and inhibition of its production by antisense oligonucleotides in in vitro and in vivo models. J Immunol. 2002;169:4039–45.

    PubMed  CAS  Google Scholar 

  194. Phipps JE, Kestler DP, Foster JS, et al. Inhibition of pathologic immunoglobulin-free light chain ­production by small interfering RNA molecules. Exp Hematol. 2010;38:1006–13.

    Article  PubMed  CAS  Google Scholar 

  195. Hovey BM, Ward JE, Soo Hoo P, et al. Preclinical development of siRNA therapeutics for AL amyloidosis. Gene Ther. 2011;18:1150–6.

    Article  PubMed  CAS  Google Scholar 

  196. Hrncic R, Wall J, Wolfenbarger DA, et al. Antibody-mediated resolution of light chain-associated ­amyloid deposits. Am J Pathol. 2000;157:1239–46.

    Article  PubMed  CAS  Google Scholar 

  197. Solomon A, Weiss DT, Wall JS. Immunotherapy in systemic primary (AL) amyloidosis using amyloid-reactive monoclonal antibodies. Cancer Biother Radiopharm. 2003;18:853–60.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by Grant No. 9965 from the Associazione Italiana per la Ricerca sul Cancro Special Program Molecular Clinical Oncology, Fondazione Cariplo Nobel Project, Italian Ministry of University and Research (PRIN No. 2007AE8FX2_003 and 2007XY59ZJ_005); Ministry of Health (Ricerca Finalizzata Malattie Rare), “Istituto Superiore di Sanità” (526D/63). MN is partially supported by an investigator fellowship from Collegio Ghislieri, Pavia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giampaolo Merlini M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Businees Media, LLC

About this chapter

Cite this chapter

Nuvolone, M., Palladini, G., Merlini, G. (2012). Amyloid Diseases at the Molecular Level: General Overview and Focus on AL Amyloidosis. In: Picken MD, PhD, FASN, M., Dogan, M.D., Ph.D., A., Herrera, M.D., G. (eds) Amyloid and Related Disorders. Current Clinical Pathology. Humana Press. https://doi.org/10.1007/978-1-60761-389-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-389-3_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-388-6

  • Online ISBN: 978-1-60761-389-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics