Skip to main content

What Does It Take to Make a Beta Cell?

  • Chapter
  • First Online:
Stem Cell Therapy for Diabetes

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1310 Accesses

Abstract

As diabetes with its devastating complications results from β-cell deficiency, there is a compelling need to know more about the culprit. Whereas type 1 diabetes has a near complete loss of β cells owing to autoimmune destruction, type 2 diabetes is associated with a 40–60% reduction in β-cell mass. Insulin resistance, brought on by our Western lifestyle coupled with genetic factors, is clearly of major importance, but diabetes only develops when β-cell deficiency with its associated dysfunctional insulin secretion occurs. Replenishment of β cells by transplantation or by stimulating regeneration of endogenous islets would eliminate the diabetic state. Improving the dysfunctional insulin secretion of diabetes could also provide help. This chapter is written with an eye toward how β cells, or some kind of β-cell surrogate, might function when transplanted. It is important to understand β cells in their normal pancreatic environment to fully appreciate the compromises that will necessarily accompany β-cell replacement therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bennett BD, Jetton TL, Ying G, et al. (1996) Quantitative subcellular imaging of glucose metabolism within intact pancreatic islets. J Biol Chem. 27:3647–3651.

    Google Scholar 

  • Bonner-Weir S. (1988) Morphological evidence for pancreatic polarity of β-cell within the islets of Langerhans. Diabetes. 37:616–621.

    Article  CAS  PubMed  Google Scholar 

  • Bonner-Weir S, Orci L. (1982) New perspectives on the microvasculature of the islets of Langerhans in the rat. Diabetes. 31:883–939.

    Article  CAS  PubMed  Google Scholar 

  • Bonner-Weir S, Taneja M, Weir GC, et al. (2000) In vitro cultivation of human islets from expanded ductal tissue. Proc Natl Acad Sci USA. 97:7999–8004.

    Article  CAS  PubMed  Google Scholar 

  • Bonner-Weir S, Toschi E, Inada A, et al. (2004) The pancreatic ductal epithelium serves as a potential pool of progenitor cells. Pediatr Diabetes. 5(Suppl 2):16–22.

    Article  PubMed  Google Scholar 

  • Bonner-Weir S, Weir GC. (2005) New sources of pancreatic beta-cells. Nat Biotechnol. 23:857–861.

    Article  CAS  PubMed  Google Scholar 

  • Brissova M, Powers AC. (2008) Revascularization of transplanted islets: can it be improved? Diabetes. 57:2269–2271.

    Article  CAS  PubMed  Google Scholar 

  • Brunzell JD, Robertson RP, Lerner RL, et al. (1976) Relationships between fasting plasma glucose levels and insulin secretion during intravenous glucose tolerance tests. J Clin Endocrinol Metab. 42:222–229.

    Article  CAS  PubMed  Google Scholar 

  • Butler AE, Janson J, Bonner-Weir S, et al. (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes. 52:102–110.

    Article  CAS  PubMed  Google Scholar 

  • Carlsson PO, Palm F, Andersson A, et al. (2001) Markedly decreased oxygen tension in transplanted rat pancreatic islets irrespective of the implantation site. Diabetes. 50:489–495.

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Appel MC, Alam T, et al. (1992) Factors regulating islet regeneration in the post-insulinoma NEDH rat. Adv Exp Med Biol. 321:71–84.

    CAS  PubMed  Google Scholar 

  • Cleaver O, Melton DA. (2003) Endothelial signaling during development. Nat Med. 9:661–668.

    Article  CAS  PubMed  Google Scholar 

  • Colella RM, Bonner-Weir S, Braunstein LP, et al. (1985) Pancreatic islets of variable size—insulin secretion and glucose utilization. Life Sci. 37:1059–1065.

    Article  CAS  PubMed  Google Scholar 

  • Cryer PE. (2008) The barrier of hypoglycemia in diabetes. Diabetes. 57:3169–3176.

    Article  CAS  PubMed  Google Scholar 

  • De Vos A, Heimberg H, Quartier E, et al. (1995) Human and rat beta cells differ in glucose transporter but not in glucokinase gene expression. J Clin Invest. 96:2489–2495.

    Article  PubMed  Google Scholar 

  • Dionne KE, Colton CK, Yarmush ML. (1993) Effect of hypoxia on insulin secretion by isolated rat and canine islets of Langerhans. Diabetes. 42:12–21.

    Article  CAS  PubMed  Google Scholar 

  • Efrat S, Fusco-DeMane D, Lemberg H, et al. (1995) Conditional transformation of a pancreatic β-cell line derived from transgenic mice expressing a tetracycline-regulated oncogene. Proc Natl Acad Sci USA. 92:3576–3580.

    Article  CAS  PubMed  Google Scholar 

  • Ferber S, Halkin A, Cohen H, et al. (2000) Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nat Med. 6:505–506.

    Article  CAS  Google Scholar 

  • Gepts W. (1965) Pathological anatomy of the pancreas in juvenile diabetes. Diabetes. 14:619–633.

    CAS  PubMed  Google Scholar 

  • Gromada J, Franklin I, Wollheim CB. (2007) Alpha-cells of the endocrine pancreas: 35 years of research but the enigma remains. Endocr Rev. 28:84–116.

    Article  CAS  PubMed  Google Scholar 

  • Halban PA. (1982) Differential rates of release of newly synthesized and of stored insulin from pancreatic islets. Endocrinology. 110:1183–1188.

    Article  CAS  PubMed  Google Scholar 

  • Halban PA. (2004) Towards a perfect beta cell replacement. Semin Cell Dev Biol. 15:325–326.

    Article  PubMed  Google Scholar 

  • Halban PA, Kahn SE, Lernmark A, et al. (2001) Gene and cell-replacement therapy in the treatment of type 1 diabetes: how high must the standards be set? Diabetes. 50:2181–2191.

    Article  CAS  PubMed  Google Scholar 

  • Halban PA, Wollheim CB. (1980) Intracellular degradation of insulin stores by rat pancreatic islets in vitro: an alternative pathway for homeostases of pancreatic insulin content. J Biol Chem. 255:6003–6006.

    CAS  PubMed  Google Scholar 

  • Henderson JR. (1969) Why are the islets of Langerhans? Lancet. ii:469–470.

    Article  Google Scholar 

  • Henquin JC. (2000) Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes. 49:1751–1760.

    Article  CAS  PubMed  Google Scholar 

  • Iype T, Francis J, Garmey JC, et al. (2005) Mechanism of insulin gene regulation by the pancreatic transcription factor Pdx-1: application of pre-mRNA analysis and chromatin immunoprecipitation to assess formation of functional transcriptional complexes. J Biol Chem. 280:16798–16807.

    Article  CAS  PubMed  Google Scholar 

  • Jung HS, Chung KW, Won Kim J, et al. (2008) Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab. 8:318–324.

    Article  CAS  PubMed  Google Scholar 

  • Keymeulen B, Anselmo J, Pipeleers D. (1997) Length of metabolic normalization after rat islet cell transplantation depends on endocrine cell composition of graft and on donor age. Diabetologia. 40:1152–1158.

    Article  CAS  PubMed  Google Scholar 

  • King AJ, Fernandes JR, Hollister-Lock J, et al. (2007) Normal relationship of beta- and non-beta-cells not needed for successful islet transplantation. Diabetes. 56:2312–2318.

    Article  CAS  PubMed  Google Scholar 

  • Korsgren O, Jansson L, Andersson A, et al. (1993) Reinnervation of transplanted pancreatic islets. A comparison among islets implanted into the kidney, spleen, and liver. Transplantation. 56:138–143.

    Article  CAS  PubMed  Google Scholar 

  • Kroon E, Martinson LA, Kadoya K, et al. (2008) Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol. 26:443–452.

    Article  CAS  PubMed  Google Scholar 

  • Laybutt DR, Glandt M, Xu G, et al. (2003) Critical reduction in beta-cell mass results in two distinct outcomes over time. Adaptation with impaired glucose tolerance or decompensated diabetes. J Biol Chem. 278:2997–3005.

    Article  CAS  PubMed  Google Scholar 

  • Lee HC, Kim SJ, Kim KS, et al. (2000) Remission in models of type 1 diabetes by gene therapy using a single-chain insulin analogue. Nature. 408:483–488.

    Article  CAS  PubMed  Google Scholar 

  • Lehmann R, Zuellig RA, Kugelmeier P, et al. (2007) Superiority of small islets in human islet transplantation. Diabetes. 56:594–603.

    Article  CAS  PubMed  Google Scholar 

  • Lewis AS (2008) Elminating oxygen supply limitations for transplanted microencapsulated islets in the treatment of type 1 diabetes. PhD Thesis. Massachusetts Institute of Technology, Cambridge, MA.

    Google Scholar 

  • Lifson N, Kramlinger KG, Mayrand RR, et al. (1980) Blood flow to the rabbit pancreas with special reference to the islets of Langerhans. Gastroenterology. 79:466–473.

    CAS  PubMed  Google Scholar 

  • Maruyama H, Hisatomi A, Orci L, et al. (1984) Insulin within islets is a physiologic glucagon release inhibitor. J Clin Invest. 74:2296–2299.

    Article  CAS  PubMed  Google Scholar 

  • Matschinsky FM. (1996) A lesson in metabolic regulation inspired by the glucokinase glucose sensor paradigm. Diabetes. 45:223–241.

    Article  CAS  PubMed  Google Scholar 

  • Mattsson G, Jansson L, Nordin A, et al. (2003) Impaired revascularization of transplanted mouse pancreatic islets is chronic and glucose-independent. Transplantation. 75:736–739.

    Article  PubMed  Google Scholar 

  • Nishimura W, Kondo T, Salameh T, et al. (2006) A switch from MafB to MafA expression accompanies differentiation to pancreatic beta-cells. Dev Biol. 293:526–539.

    Article  CAS  PubMed  Google Scholar 

  • Ouziel-Yahalom L, Zalzman M, Anker-Kitai L, et al. (2006) Expansion and redifferentiation of adult human pancreatic islet cells. Biochem Biophys Res Commun. 341:291–298.

    Article  CAS  PubMed  Google Scholar 

  • Porksen N, Nyholm B, Veldhuis JD, et al. (1997) In humans at least 75% of insulin secretion arises from punctuated insulin secretory bursts. Am J Physiol. 273:E908–E914.

    CAS  PubMed  Google Scholar 

  • Ritzel RA, Butler AE, Rizza RA, et al. (2006) Relationship between beta-cell mass and fasting blood glucose concentration in humans. Diabetes Care. 29:717–718.

    Article  PubMed  Google Scholar 

  • Robertson RP, Porte JD. (1973) The glucose receptor. A defective mechanism in diabetes mellitus distinct from the beta adrenergic diabetes. J Clin Invest. 52:870–876.

    Article  CAS  PubMed  Google Scholar 

  • Rutter GA, Hill EV. (2006) Insulin vesicle release: walk, kiss, pause…then run. Physiology (Bethesda). 21:189–196.

    CAS  Google Scholar 

  • Serre-Beinier V, Le Gurun S, Belluardo N, et al. (2000) Cx36 preferentially connects beta-cells within pancreatic islets. Diabetes. 49:727–734.

    Article  CAS  PubMed  Google Scholar 

  • Song SH, McIntyre SS, Shah H, et al. (2000) Direct measurement of pulsatile insulin secretion from the portal vein in human subjects. J Clin Endocrinol Metab. 85:4491–4499.

    Article  CAS  PubMed  Google Scholar 

  • Stagner JI, Samols E. (1992) The vascular order of islet cellular perfusion in the human pancreas. Diabetes. 41:93–97.

    Article  CAS  PubMed  Google Scholar 

  • Stagner JI, Samols E, Weir GC. (1980) Sustained oscillations of insulin, glucagon, and somatostatin from the isolated canine pancreas during exposure to a constant glucose concentration. J Clin Invest. 65:939–942.

    Article  CAS  PubMed  Google Scholar 

  • Stefan Y, Orci L, Malaisse-Lagae F, et al. (1982) Quantitation of endocrine cell content in the pancreas of nondiabetic and diabetic humans. Diabetes. 31:694–700.

    Article  CAS  PubMed  Google Scholar 

  • Stein DT, Esser V, Stevenson BE, et al. (1996) Essentiality of circulating fatty acids for glucose-stimulated insulin secretion in the fasted rat. J Clin Invest. 97:2728–2735.

    Article  CAS  PubMed  Google Scholar 

  • Straub SG, Sharp GW. (2004) Hypothesis: one rate-limiting step controls the magnitude of both phases of glucose-stimulated insulin secretion. Am J Physiol Cell Physiol. 287:C565–C571.

    Article  CAS  PubMed  Google Scholar 

  • Suarez-Pinzon WL, Lakey JR, Brand SJ, et al. (2005) Combination therapy with epidermal growth factor and gastrin induces neogenesis of human islet beta-cells from pancreatic duct cells and an increase in functional beta-cell mass. J Clin Endocrinol Metab. 90:3401–3409.

    Article  CAS  PubMed  Google Scholar 

  • Taborsky GJ Jr, Ahren B, Mundinger TO, et al. (2002) Autonomic mechanism and defects in the glucagon response to insulin-induced hypoglycaemia. Diabetes Nutr Metab. 15:318–323.

    CAS  PubMed  Google Scholar 

  • Teff KL, Mattes RD, Engelman K. (1991) Cephalic phase insulin release in normal weight males: verification and reliability. Am J Physiol. 261:E430–E436.

    CAS  PubMed  Google Scholar 

  • Tornheim K. (1997) Are metabolic oscillations responsible for normal oscillatory insulin secretion? Diabetes. 46:1375–1380.

    Article  CAS  PubMed  Google Scholar 

  • Trimble ER, et al. (1982) Functional differences between rat islets of ventral and dorsal pancreatic origin. J Clin Invest. 69:405–413.

    Article  CAS  PubMed  Google Scholar 

  • Trimble ER, Bruzzone R, Gjinovci A, et al. (1985) Activity of the insulo-acinar axis in the isolated perfused rat pancreas. Endocrinology. 117:1246–1252.

    Article  CAS  PubMed  Google Scholar 

  • Van Schravendijik CFH, Kiekens R, Pipeleers DG. (1992) Pancreatic beta cell heterogeneity in glucose-induced insulin secretion. J Biol Chem. 267:21344–21348.

    Google Scholar 

  • Weir GC, Bonner-Weir S. (1990) Islets of Langerhans: the puzzle of intraislet interactions and their relevance to diabetes. J Clin Invest. 85:983–987.

    Article  CAS  PubMed  Google Scholar 

  • Weir GC, Bonner-Weir S. (2004) Five stages of evolving beta-cell dysfunction during progression to diabetes. Diabetes. 53(Suppl 3):S16–S21.

    Article  CAS  PubMed  Google Scholar 

  • Weir GC, Bonner-Weir S. (2007) A dominant role for glucose in beta cell compensation of insulin resistance. J Clin Invest. 117:81–83.

    Article  CAS  PubMed  Google Scholar 

  • Weir GC, Leahy JL, Barras E, et al. (1986) Characteristics of insulin and glucagon release from the perfused pancreas, intact isolated islets, and dispersed islet cells. Horm Res. 24:62–72.

    Article  CAS  PubMed  Google Scholar 

  • Zalzman M, Gupta S, Giri RK, et al. (2003) Reversal of hyperglycemia in mice by using human expandable insulin-producing cells differentiated from fetal liver progenitor cells. Proc Natl Acad Sci USA. 100:7253–7258.

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Brown J, Kanarek A, et al. (2008) In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature. 455:627–632.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon C. Weir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Weir, G.C., Bonner-Weir, S. (2010). What Does It Take to Make a Beta Cell?. In: Efrat, S. (eds) Stem Cell Therapy for Diabetes. Stem Cell Biology and Regenerative Medicine. Humana Press. https://doi.org/10.1007/978-1-60761-366-4_6

Download citation

Publish with us

Policies and ethics