Skip to main content

Prevention of Islet Graft Rejection and Recipient Tolerization

  • Chapter
  • First Online:
Stem Cell Therapy for Diabetes

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1265 Accesses

Abstract

Type 1 diabetes is thought to be caused by an immune-mediated destruction of β cells that occurs over years and continues even after presentation with hyperglycemia. Adaptive immune mechanisms are believed to be primary mediators of this process. Immune memory for the initial process that resulted in β-cell failure, the high frequency of alloreactive T cells, and the nonphysiologic environment into which islets have been transplanted all create obstacles for successful reversal of diabetes with islet replacement. In this chapter we review the immune mechanisms that are thought to be responsible for β-cell destruction and discuss the obstacles that stand in the way of the successful achievement of β-cell replacement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agata Y, Kawasaki A, Nishimura H, et al. (1996) Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol 8: 765–772.

    Article  CAS  PubMed  Google Scholar 

  • Akirav E, Kushner JA, Herold KC (2008) Beta-cell mass and type 1 diabetes: going, going, gone?. Diabetes 57: 2883–2888.

    Article  CAS  PubMed  Google Scholar 

  • Alejandro R, Lehmann R, Ricordi C, et al. (1997) Long-term function (6 years) of islet allografts in type 1 diabetes. Diabetes 46: 1983–1989.

    Article  CAS  PubMed  Google Scholar 

  • Anderson MS, Bluestone JA (2005) The NOD mouse: a model of immune dys-regulation. Annu Rev Immunol 23: 447–485.

    Article  CAS  PubMed  Google Scholar 

  • Andre-Schmutz I, Hindelang C, Benoist C, et al. (1999) Cellular and molecular changes accompanying the progression from insulitis to diabetes. Eur J Immu-nol 29: 245–255.

    Article  CAS  Google Scholar 

  • Ansari MJ, Salama AD, Chitnis T, et al. (2003) The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in nonobese diabetic (NOD) mice. J Exp Med 198: 63–69.

    Article  CAS  PubMed  Google Scholar 

  • Balasa B, Krahl T, Patstone G, et al. (1997) CD40 ligand-CD40 interactions are necessary for the initiation of insulitis and diabetes in nonobese diabetic mice. J Immunol 159: 4620–4627.

    CAS  PubMed  Google Scholar 

  • Belghith M, Bluestone JA, Barriot S, et al. (2003) TGF-beta-dependent mechanisms mediate restoration of self-tolerance induced by antibodies to CD3 in overt autoimmune diabetes. Nat Med 9: 1202–1208.

    Article  CAS  PubMed  Google Scholar 

  • Bittscheidt H, Bektas H, Winkler M, et al. (2004) Impact of donor-recipient MHC matching on experimental islet allotransplant survival in naive and presensitized Lewis rats. Transplantation 78: 162–164.

    Article  CAS  PubMed  Google Scholar 

  • Bretscher P, Cohn M (1970) A theory of self-nonself discrimination. Science 169: 1042–1049.

    Article  CAS  PubMed  Google Scholar 

  • Campbell IL, Cutri A, Wilkinson D, et al. (1989) Intercellular adhesion molecule 1 is induced on isolated endocrine islet cells by cytokines but not by reovirus infection. Proc Natl Acad Sci USA 86: 4282–4286.

    Article  CAS  PubMed  Google Scholar 

  • Chapoval AI, Ni J, Lau JS, et al. (2001) B7-H3: a costimulatory molecule for T cell activation and IFN-gamma production. Nat Immunol 2: 269–274.

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Kapturczak MH, Joseph R, et al. (2007) Adeno-associated viral vector-mediated interleukin-10 prolongs allograft survival in a rat kidney transplantation model. Am J Transplant 7: 1112–1120.

    Article  CAS  PubMed  Google Scholar 

  • Close NC, Hering BJ, Eggerman TL (2005) Results from the inaugural year of the Collaborative Islet Transplant Registry. Transplant Proc 37: 1305–1308.

    Article  CAS  PubMed  Google Scholar 

  • Efrat S, Serreze D, Svetlanov A, et al. (2001) Adenovirus early region 3(E3) immunomodulatory genes decrease the incidence of autoimmune diabetes in NOD mice. Diabetes 50: 980–984.

    Article  CAS  PubMed  Google Scholar 

  • Fallarino F, Grohmann U, Hwang KW, et al. (2003) Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol 4: 1206–1212.

    Article  CAS  PubMed  Google Scholar 

  • Greeley SA, Katsumata M, Yu L, et al. (2002) Elimination of maternally transmitted autoantibodies prevents diabetes in nonobese diabetic mice. Nat Med 8: 399–402.

    Article  CAS  PubMed  Google Scholar 

  • Hering BJ, Kandaswamy R, Harmon JV, et al. (2004) Transplantation of cultured islets from two-layer preserved pancreases in type 1 diabetes with anti-CD3 anti-body. Am J Transplant 4: 390–401.

    Article  CAS  PubMed  Google Scholar 

  • Hering BJ, Kandaswany R, Harmon JV, et al. (2001) Insulin independence after single-donor islet transplantation in type 1 diabetes with hOKT3g-1(ala-ala), sirolimus, tacrolimus therapy. Am J Transplant 1: 180A.

    Google Scholar 

  • Herold KC, Gitelman SE, Masharani U, et al. (2005) a single course of anti-CD3 monoclonal antibody hOKT3{gamma}1(Ala-Ala) results in improvement in C-peptide responses and clinical parameters for at least 2 years after onset of type 1 diabetes. Diabetes 54: 1763–1769.

    Article  CAS  PubMed  Google Scholar 

  • Herold KC, Hagopian W, Auger JA, et al. (2002) Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N Engl J Med 346: 1692–1698.

    Article  CAS  PubMed  Google Scholar 

  • Herold KC, Nagamatsu S, Buse JB, et al. (1993) Inhibition of glucose-stimulated insulin release from beta TC3 cells and rodent islets by an analog of FK506. Transplantation 55: 186–192.

    Article  CAS  PubMed  Google Scholar 

  • Hoglund P, Mintern J, Waltzinger C, et al. (1999) Initiation of autoimmune diabetes by developmentally regulated presentation of islet cell antigens in the pancreatic lymph nodes. J Exp Med 189: 331–339.

    Article  CAS  PubMed  Google Scholar 

  • Hoppu S, Ronkainen MS, Kulmala P, et al. (2004) GAD65 antibody isotypes and epitope recognition during the prediabetic process in siblings of children with type I diabetes. Clin Exp Immunol 136: 120–128.

    Article  CAS  PubMed  Google Scholar 

  • Hu CY, Rodriguez-Pinto D, Du W, et al. (2007) Treatment with CD20-specific antibody prevents and reverses autoimmune diabetes in mice. J Clin Invest 117: 3857–3867.

    Article  CAS  PubMed  Google Scholar 

  • Hu C, Deng S, Wong FS, et al. (2008) Anti-CD20 treatment prolongs syngeneic islet graft survival and delays the onset of recurrent autoimmune diabetes. Ann N Y Acad Sci 1150: 217–219.

    Article  PubMed  Google Scholar 

  • Huurman VA, Hilbrands R, Pinkse GG, et al. (2008) Cellular islet autoimmunity associates with clinical outcome of islet cell transplantation. PLoS ONE 3: e2435.

    Article  PubMed  Google Scholar 

  • Ikemizu S, Gilbert RJ, Fennelly JA, et al. (2000) Structure and dimerization of a soluble form of B7-1. Immunity 12: 51–60.

    Article  CAS  PubMed  Google Scholar 

  • Itoh N, Hanafusa T, Miyazaki A, et al. (1993) Mononuclear cell infiltration and its relation to the expression of major histocompatibility complex antigens and adhesion molecules in pancreas biopsy specimens from newly diagnosed insulin-dependent diabetes mellitus patients. J Clin Invest 92: 2313–2322.

    Article  CAS  PubMed  Google Scholar 

  • Jaeger C, Brendel MD, Hering BJ, et al. (1997) Progressive islet graft failure occurs significantly earlier in autoantibody-positive than in autoantibody-negative IDDM recipients of intrahepatic islet allografts. Diabetes 46: 1907–1910.

    Article  CAS  PubMed  Google Scholar 

  • Jenkins MK, Pardoll DM, Mizuguchi J, et al. (1987) T-cell unresponsiveness in vivo and in vitro: fine specificity of induction and molecular characterization of the unresponsive state. Immunol Rev 95: 113–135.

    Article  CAS  PubMed  Google Scholar 

  • Karandikar NJ, Vanderlugt CL, Walunas TL, et al. (1996) CTLA-4: a negative regulator of autoimmune disease. J Exp Med 184: 783–788.

    Article  CAS  PubMed  Google Scholar 

  • Kawai T, Andrews D, Colvin RB, et al. (2000) Thromboembolic complications after treatment with monoclonal antibody against CD40 ligand. Nat Med 6: 114.

    Article  CAS  Google Scholar 

  • Kenyon NS, Chatzipetrou M, Masetti M, et al. (1999) Long-term survival and function of intrahepatic islet allografts in rhesus monkeys treated with humanized anti-CD154. Proc Natl Acad Sci USA 96: 8132–8137.

    Article  CAS  PubMed  Google Scholar 

  • Knip M, Siljander H (2008) Autoimmune mechanisms in type 1 diabetes. Autoimmun Rev 7: 550–557.

    Article  CAS  PubMed  Google Scholar 

  • Kojaoghlanian T, Joseph A, Follenzi A, et al. (2009) Lentivectors encoding immunosuppressive proteins genetically engineer pancreatic beta-cells to correct diabetes in allogeneic mice. Gene Ther 16: 340–348.

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurthy B, Mariana L, Gellert SA, et al. (2008) Autoimmunity to both pro-insulin and IGRP is required for diabetes in nonobese diabetic 8.3 TCR transgenic mice. J Immunol 180: 4458–4464.

    CAS  PubMed  Google Scholar 

  • Kupfer TM, Crawford ML, Pham K, et al. (2005) MHC-mismatched islet allografts are vulnerable to autoimmune recognition in vivo. J Immunol 175: 2309–2316.

    CAS  PubMed  Google Scholar 

  • Lakey JR, Mirbolooki M, Shapiro AM (2006) Current status of clinical islet cell transplantation. Methods Mol Biol 333: 47–104.

    PubMed  Google Scholar 

  • Lenschow DJ, Herold KC, Rhee L, et al. (1996) CD28/B7 regulation of Th1 and Th2 subsets in the development of autoimmune diabetes. Immunity 5: 285–293.

    Article  CAS  PubMed  Google Scholar 

  • Lenschow DJ, Ho SC, Sattar H, et al. (1995) Differential effects of anti-B7-1 and anti-B7-2 monoclonal antibody treatment on the development of diabetes in the nonobese diabetic mouse. J Exp Med 181: 1145–1155.

    Article  CAS  PubMed  Google Scholar 

  • Lenschow DJ, Zeng Y, Thistlethwaite JR, et al. (1992) Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA4lg. Science 257: 789–792.

    Article  CAS  PubMed  Google Scholar 

  • Levisetti MG, Padrid PA, Szot GL, et al. (1997) Immunosuppressive effects of human CTLA4Ig in a non-human primate model of allogeneic pancreatic islet transplantation. J Immunol 159: 5187–5191.

    CAS  PubMed  Google Scholar 

  • Makhlouf L, Kishimoto K, Smith RN, et al. (2002) The role of autoimmunity in islet allograft destruction: major histocompatibility complex class II matching is necessary for autoimmune destruction of allogeneic islet transplants after T-cell costimulatory blockade. Diabetes 51: 3202–3210.

    Article  CAS  PubMed  Google Scholar 

  • Mallone R, Kochik SA, Laughlin EM, et al. (2004) Differential recognition and activation thresholds in human autoreactive GAD-specific T-cells. Diabetes 53: 971–977.

    Article  CAS  PubMed  Google Scholar 

  • Martin S, Hibino T, Faust A, et al. (1996) Differential expression of ICAM-1 and LFA-1 versus L-selectin and VCAM-1 in autoimmune insulitis of NOD mice and association with both Th1- and Th2-type infiltrates. J Autoimmun 9: 637–643.

    Article  CAS  PubMed  Google Scholar 

  • Martin S, Wolf-Eichbaum D, Duinkerken G, et al. (2001) Development of type 1 diabetes despite severe hereditary B-lymphocyte deficiency. N Engl J Med 345: 1036–1040.

    Article  CAS  PubMed  Google Scholar 

  • Monti P, Scirpoli M, Maffi P, et al. (2008) Islet transplantation in patients with autoimmune diabetes induces homeostatic cytokines that expand autoreactive memory T cells. J Clin Invest 118: 1806–1814.

    CAS  PubMed  Google Scholar 

  • Munn DH, Sharma MD, Mellor AL (2004) Ligation of B7-1/B7-2 by human CD4+ T cells triggers indoleamine 2,3-dioxygenase activity in dendritic cells. J Immunol 172: 4100–4110.

    CAS  PubMed  Google Scholar 

  • Nakayama M, Abiru N, Moriyama H, et al. (2005) Prime role for an insulin epitope in the development of type 1 diabetes in NOD mice. Nature 435: 220–223.

    Article  CAS  PubMed  Google Scholar 

  • Nir T, Melton DA, Dor Y (2007) Recovery from diabetes in mice by beta cell regeneration. J Clin Invest 117: 2553–2561.

    Article  CAS  PubMed  Google Scholar 

  • Nishimura H, Nose M, Hiai H, et al. (1999) Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11: 141–151.

    Article  CAS  PubMed  Google Scholar 

  • Oetjen E, Baun D, Beimesche S, et al. (2003) Inhibition of human insulin gene transcription by the immunosuppressive drugs cyclosporin A and tacrolimus in primary, mature islets of transgenic mice. Mol Pharmacol 63: 1289–1295.

    Article  CAS  PubMed  Google Scholar 

  • Ott PA, Dittrich MT, Herzog BA, et al. (2004) T cells recognize multiple GAD65 and proinsulin epitopes in human type 1 diabetes, suggesting determinant spreading. J Clin Immunol 24: 327–339.

    Article  CAS  PubMed  Google Scholar 

  • Pierce MA, Chapman HD, Post CM, et al. (2003) Adenovirus early region 3 antiapoptotic 10.4 K, 14.5 K, and 14.7 K genes decrease the incidence of autoimmune diabetes in NOD mice. Diabetes 52: 1119–1127.

    Article  CAS  PubMed  Google Scholar 

  • Pinkse GG, Tysma OH, Bergen CA, et al. (2005) Autoreactive CD8 T cells associated with beta cell destruction in type 1 diabetes. Proc Natl Acad Sci USA 102: 18425–18430.

    Article  CAS  PubMed  Google Scholar 

  • Pujol-Borrell R, Todd I, Doshi M, et al. (1987) HLA class II induction in human islet cells by interferon-gamma plus tumour necrosis factor or lymphotoxin. Nature 326: 304–306.

    Article  CAS  PubMed  Google Scholar 

  • Reijonen H, Kwok WW (2003) Use of HLA class II tetramers in tracking antigen-specific T cells and mapping T-cell epitopes. Methods 29: 282–288.

    Article  CAS  PubMed  Google Scholar 

  • Reijonen H, Kwok WW, Nepom GT (2003) Detection of CD4+ autoreactive T cells in T1D using HLA class II tetramers. Ann N Y Acad Sci 1005: 82–87.

    Article  PubMed  Google Scholar 

  • Reijonen H, Novak EJ, Kochik S, et al. (2002) Detection of GAD65-specific T-cells by major histocompatibility complex class II tetramers in type 1 diabetic patients and at-risk subjects. Diabetes 51: 1375–1382.

    Article  CAS  PubMed  Google Scholar 

  • Rigby MR, Trexler AM, Pearson TC, et al. (2008) CD28/CD154 blockade prevents autoimmune diabetes by inducing nondeletional tolerance after effector T-cell inhibition and regulatory T-cell expansion. Diabetes 57: 2672–2683.

    Article  CAS  PubMed  Google Scholar 

  • Ronkainen MS, Hoppu S, Korhonen S, et al. (2006) Early epitope- and isotype-specific humoral immune responses to GAD65 in young children with genetic susceptibility to type 1 diabetes. Eur J Endocrinol 155: 633–642.

    Article  CAS  PubMed  Google Scholar 

  • Ryan EA, Paty BW, Senior PA, et al. (2005) Five-year follow-up after clinical islet transplantation. Diabetes 54: 2060–2069.

    Article  CAS  PubMed  Google Scholar 

  • Salomon B, Bluestone JA (2001) Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu Rev Immunol 19: 225–252.

    Article  CAS  PubMed  Google Scholar 

  • Salomon B, Lenschow DJ, Rhee L, et al. (2000) B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12: 431–440.

    Article  CAS  PubMed  Google Scholar 

  • Serreze DV, Fleming SA, Chapman HD, et al. (1998) B lymphocytes are critical antigen-presenting cells for the initiation of T cell-mediated autoimmune diabetes in nonobese diabetic mice. J Immunol 161: 3912–3918.

    CAS  PubMed  Google Scholar 

  • Shapiro AM, Lakey JR, Ryan EA, et al. (2000) Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 343: 230–238.

    Article  CAS  PubMed  Google Scholar 

  • Shapiro AM, Ricordi C, Hering BJ, et al. (2006) International trial of the Edmonton protocol for islet transplantation. N Engl J Med 355: 1318–1330.

    Article  CAS  PubMed  Google Scholar 

  • Sherr J, Sosenko J, Skyler JS, et al. (2008) Prevention of type 1 diabetes: the time has come. Nat Clin Pract Endocrinol Metab 4: 334–343.

    PubMed  Google Scholar 

  • Sherry NA, Kushner JA, Glandt M, et al. (2006) Effects of autoimmunity and immune therapy on beta-cell turnover in type 1 diabetes. Diabetes 55: 3238–3245.

    Article  CAS  PubMed  Google Scholar 

  • Silveira PA, Johnson E, Chapman HD, et al. (2002) The preferential ability of B lymphocytes to act as diabetogenic APC in NOD mice depends on expression of self-antigen-specific immunoglobulin receptors. Eur J Immunol 32: 3657–3666.

    Article  CAS  PubMed  Google Scholar 

  • Sosenko JM, Palmer JP, Greenbaum CJ, et al. (2006) Patterns of metabolic progression to type 1 diabetes in the Diabetes Prevention Trial-Type 1. Diabetes Care 29: 643–649.

    Article  PubMed  Google Scholar 

  • Sreenan S, Pick AJ, Levisetti M, et al. (1999) Increased beta-cell proliferation and reduced mass before diabetes onset in the nonobese diabetic mouse. Diabetes 48: 989–996.

    Article  CAS  PubMed  Google Scholar 

  • Steele C, Hagopian WA, Gitelman S, et al. (2004) Insulin secretion in type 1 diabetes. Diabetes 53: 426–433.

    Article  CAS  PubMed  Google Scholar 

  • Subudhi SK, Zhou P, Yerian LM, et al. (2004) Local expression of B7-H1 promotes organ-specific autoimmunity and transplant rejection. J Clin Invest 113: 694–700.

    CAS  PubMed  Google Scholar 

  • Suh WK, Gajewska BU, Okada H, et al. (2003) The B7 family member B7-H3 preferentially down-regulates T helper type 1-mediated immune responses. Nat Immunol 4: 899–906.

    Article  CAS  PubMed  Google Scholar 

  • Tan M, Di Carlo A, Liu SQ, et al. (2002) Hepatic sinusoidal endothelium upregulates IL-1alpha, IFN-gamma, and iNOS in response to discordant xenogeneic islets in an in vitro model of xenoislet transplantation. J Surg Res 102: 229–236.

    Article  CAS  PubMed  Google Scholar 

  • Tang Q, Adams JY, Tooley AJ, et al. (2006) Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nat Immunol 7: 83–92.

    Article  CAS  PubMed  Google Scholar 

  • Tivol EA, Borriello F, Schweitzer AN, et al. (1995) Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3: 541–547.

    Article  CAS  PubMed  Google Scholar 

  • Toma A, Haddouk S, Briand JP, et al. (2005) Recognition of a subregion of human proinsulin by class I-restricted T cells in type 1 diabetic patients. Proc Natl Acad Sci USA 102: 10581–10586.

    Article  CAS  PubMed  Google Scholar 

  • Truong W, Hancock WW, Anderson CC, et al. (2006) Coinhibitory T-cell signaling in islet allograft rejection and tolerance. Cell Transplant 15: 105–119.

    Article  PubMed  Google Scholar 

  • Turley S, Poirot L, Hattori M, et al. (2003) Physiological beta cell death triggers priming of self-reactive T cells by dendritic cells in a type-1 diabetes model. J Exp Med 198: 1527–1537.

    Article  CAS  PubMed  Google Scholar 

  • Type 1 Diabetes Study Group (2002) Effects of insulin in relatives of patients with type 1 diabetes mellitus. N Engl J Med 346: 1685–1691.

    Article  Google Scholar 

  • van der Windt DJ, Echeverri GJ, Ijzermans JN, et al. (2008) The choice of anatomical site for islet transplantation. Cell Transplant 17: 1005–1014.

    Article  PubMed  Google Scholar 

  • Velthuis JH, Unger WW, van der Slik AR, et al. (2009) Accumulation of autoreactive effector T cells and allo-specific regulatory T cells in the pancreas allograft of a type 1 diabetic recipient. Diabetologia 52: 494–503.

    Article  CAS  PubMed  Google Scholar 

  • Voltarelli JC, Couri CE, Stracieri AB, et al. (2007) Autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. JAMA 297: 1568–1576.

    Article  CAS  PubMed  Google Scholar 

  • von Herrath M, Sanda S, Herold K (2007) Type 1 diabetes as a relapsing-remitting disease?. Nat Rev Immunol 7: 988–994.

    Article  Google Scholar 

  • von Herrath MG, Efrat S, Oldstone MB, et al. (1997) Expression of adenoviral E3 transgenes in beta cells prevents autoimmune diabetes. Proc Natl Acad Sci USA 94: 9808–9813.

    Article  Google Scholar 

  • Wong FS, Wen L, Tang M, et al. (2004) Investigation of the role of B-cells in type 1 diabetes in the NOD mouse. Diabetes 53: 2581–2587.

    Article  CAS  PubMed  Google Scholar 

  • Wu DC, Wieckiewicz J, Wood KJ (2008) Human regulatory T cells prevent islet allograft rejection. Clin Invest Med 31: S25.

    Google Scholar 

  • Yu L, Cuthbertson DD, Maclaren N, et al. (2001) Expression of GAD65 and islet cell antibody (ICA512) autoantibodies among cytoplasmic ICA+ relatives is associated with eligibility for the Diabetes Prevention Trial-Type 1. Diabetes 50: 1735–1740.

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Rewers M, Gianani R, et al. (1996) Antiislet autoantibodies usually develop sequentially rather than simultaneously. J Clin Endocrinol Metab 81: 4264–4267.

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Robles DT, Abiru N, et al. (2000) Early expression of antiinsulin autoantibodies of humans and the NOD mouse: evidence for early determination of subsequent diabetes. Proc Natl Acad Sci USA 97: 1701–1706.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eitan M. Akirav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Akirav, E.M., Herold, K.C. (2010). Prevention of Islet Graft Rejection and Recipient Tolerization. In: Efrat, S. (eds) Stem Cell Therapy for Diabetes. Stem Cell Biology and Regenerative Medicine. Humana Press. https://doi.org/10.1007/978-1-60761-366-4_13

Download citation

Publish with us

Policies and ethics