Skip to main content

Structural Abnormalities in Congenital Growth Hormone Deficiency

  • Chapter
  • First Online:
Growth Hormone Related Diseases and Therapy

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Until the advent of magnetic resonance imaging (MRI), only small advances were made in the field of pituitary imaging. MRI, however, led to an enormous increase in our detailed knowledge of pituitary morphology, thus improving the differential diagnosis of hypopituitarism. Indeed, MRI represents the examination method of choice for evaluating hypothalamic-pituitary-related endocrine diseases thanks to its ability to provide strongly contrasted high-resolution multiplanar and spatial images. Specifically, MRI allows for a detailed and precise anatomical study of the pituitary gland by differentiating between the anterior and posterior pituitary lobes. The MRI identification of pituitary hyperintensity in the posterior part of the sella, now considered a marker of neurohypophyseal functional integrity, has been the most striking finding for the diagnosis and understanding of some forms of “idiopathic” and permanent growth hormone deficiency (GHD). Published data show a number of correlations between pituitary abnormalities as observed on MRI and a patient’s endocrine profile. Indeed, several trends have emerged and have been confirmed: (1) normal MRI or anterior pituitary hypoplasia generally indicates isolated GHD which is transient and not confirmed after adult height achievement; (2) patients with MPHD seldom show a normal pituitary gland; (3) the classic triad of ectopic posterior pituitary gland, pituitary stalk hypoplasia/agenesis, and anterior pituitary gland hypoplasia is more frequently reported in MPHD patients and is generally associated with permanent GHD. Pituitary abnormalities have been reported in patients with GHD carrying mutations in several genes encoding transcription factors such as POU1F1, PROP1, HESX1, LHX3, LHX4, GLI2, PITX1, PITX2, SOX3, SOX2, and OTX2. Establishing endocrine and MRI phenotypes is extremely helpful in the selection and management of patients with hypopituitarism, both in terms of possible genetic counseling, as well as that of early diagnosis of evolving anterior pituitary hormone deficiencies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takuma N, Sheng HZ, Furuta Y, et al. Formation of Rathke’s pouch requires dual induction from the diencephalon. Development. 1998;125(23):4835–40.

    PubMed  CAS  Google Scholar 

  2. Sheng HZ, Westphal H. Early steps in pituitary organogenesis. Trends Genet. 1999;15(6):236–40.

    Article  PubMed  CAS  Google Scholar 

  3. Sheng HZ, Moriyama K, Yamashita T, et al. Multistep control of pituitary organogenesis. Science. 1997;278(5344):1809–12.

    Article  PubMed  CAS  Google Scholar 

  4. Tortori-Donati P, Rossi A, Biancheri R. Sellar and suprasellar disorders. In: Tortori-Donati P, editor. Pediatric neuroradiology. Berlin: Springer; 2005. p. 855–91.

    Chapter  Google Scholar 

  5. Malinger G, Lev D, Kidron D, Heredia F, Hershkovitz R, Lerman-Sagie T. Differential diagnosis in fetuses with absent septum pellucidum. Ultrasound Obstet Gynecol. 2005;25(1):42–9.

    Article  PubMed  CAS  Google Scholar 

  6. Argyropoulou MI, Xydis V, Kiortsis DN, et al. Pituitary gland signal in pre-term infants during the first year of life: an MRI study. Neuroradiology. 2004;46(12):1031–5.

    Article  PubMed  Google Scholar 

  7. Maghnie M, Ghirardello S, Genovese E. Magnetic resonance imaging of the hypothalamus-pituitary unit in childrensuspected of hypopituitarism: who, how and when to investigate. J Endocrinol Invest. 2004;27(5):496–509.

    PubMed  CAS  Google Scholar 

  8. Fink AM, Vidmar S, Kumbla S, et al. Age-related pituitary volumes in prepubertal children with normal endocrine function: volumetric magnetic resonance data. J Clin Endocrinol Metab. 2005;90(6):3274–8.

    Article  PubMed  CAS  Google Scholar 

  9. Takano K, Utsunomiya H, Ono H, Ohfu M, Okazaki M. Normal development of the pituitary gland: assessment with three-dimensional MR volumetry. AJNR Am J Neuroradiol. 1999;20(2):312–5.

    PubMed  CAS  Google Scholar 

  10. Marziali S, Gaudiello F, Bozzao A, et al. Evaluation of anterior pituitary gland volume in childhood using three-dimensional MRI. Pediatr Radiol. 2004;34(7):547–51.

    Article  PubMed  Google Scholar 

  11. Dattani MT, Martinez-Barbera JP, Thomas PQ, et al. Mutations in the homeobox gene HESX1/Hesx1 associated with septo-optic dysplasia in human and mouse. Nat Genet. 1998;19(2):125–33.

    Article  PubMed  CAS  Google Scholar 

  12. Dasen JS, Barbera JP, Herman TS, et al. Temporal regulation of a paired-like homeodomain repressor/TLE corepressor complex and a related activator is required for pituitary organogenesis. Genes Dev. 2001;15(23):3193–207.

    Article  PubMed  CAS  Google Scholar 

  13. Brickman JM, Clements M, Tyrell R, et al. Molecular effects of novel mutations in Hesx1/HESX1 associated with human pituitary disorders. Development. 2001;128(24):5189–99.

    PubMed  CAS  Google Scholar 

  14. De Morsier G. Studies on malformation of cranio-encephalic sutures. III. Agenesis of the septum lucidum with malformation of the optic tract. Schweiz Arch Neurol Psychiatr. 1956;77(1–2):267–92.

    Google Scholar 

  15. Kelberman D, Dattani MT. Hypothalamic and pituitary development: novel insights into the aetiology. Eur J Endocrinol. 2007;157 Suppl 1:S3–14.

    Article  PubMed  CAS  Google Scholar 

  16. St John JR, Reeves DL. Congenital absence of the septum pellucidum: a review of the literature with case report. Am J Surg. 1957;94(6):974–80.

    Article  PubMed  CAS  Google Scholar 

  17. Hoyt WF, Kaplan SL, Grumbach MM, Glaser JS. Septo-optic dysplasia and pituitary dwarfism. Lancet. 1970;1(7652):893–4.

    Article  PubMed  CAS  Google Scholar 

  18. Arslanian SA, Rothfus WE, Foley Jr TP, Becker DJ. Hormonal, metabolic, and neuroradiologic abnormalities associated with septo-optic dysplasia. Acta Endocrinol (Copenh). 1984;107(2):282–8.

    CAS  Google Scholar 

  19. Stanhope R, Preece MA, Brook CG. Hypoplastic optic nerves and pituitary dysfunction. A spectrum of anatomical and endocrine abnormalities. Arch Dis Child. 1984;59(2):111–4.

    Article  PubMed  CAS  Google Scholar 

  20. Patel L, McNally RJ, Harrison E, Lloyd IC, Clayton PE. Geographical distribution of optic nerve hypoplasia and septo-optic dysplasia in Northwest England. J Pediatr. 2006;148(1):85–8.

    Article  PubMed  Google Scholar 

  21. McNay DE, Turton JP, Kelberman D, et al. HESX1 mutations are an uncommon cause of septooptic dysplasia and hypopituitarism. J Clin Endocrinol Metab. 2007;92(2):691–7.

    Article  PubMed  CAS  Google Scholar 

  22. Acers TE. Optic nerve hypoplasia: septo-optic-pituitary dysplasia syndrome. Trans Am Ophthalmol Soc. 1981;79:425–57.

    PubMed  CAS  Google Scholar 

  23. Izenberg N, Rosenblum M, Parks JS. The endocrine spectrum of septo-optic dysplasia. Clin Pediatr (Phila). 1984;23(11):632–6.

    Article  CAS  Google Scholar 

  24. Morishima A, Aranoff GS. Syndrome of septo-optic-pituitary dysplasia: the clinical spectrum. Brain Dev. 1986;8(3):233–9.

    PubMed  CAS  Google Scholar 

  25. Wales JK, Quarrell OW. Evidence for possible Mendelian inheritance of septo-optic dysplasia. Acta Paediatr. 1996;85(3):391–2.

    Article  PubMed  CAS  Google Scholar 

  26. Blethen SL, Weldon VV. Hypopituitarism and septooptic “dysplasia” in first cousins. Am J Med Genet. 1985;21(1):123–9.

    Article  PubMed  CAS  Google Scholar 

  27. Benner JD, Preslan MW, Gratz E, Joslyn J, Schwartz M, Kelman S. Septo-optic dysplasia in two siblings. Am J Ophthalmol. 1990;109(6):632–7.

    PubMed  CAS  Google Scholar 

  28. Thomas PQ, Dattani MT, Brickman JM, et al. Heterozygous HESX1 mutations associated with isolated congenital pituitary hypoplasia and septo-optic dysplasia. Hum Mol Genet. 2001;10(1):39–45.

    Article  PubMed  CAS  Google Scholar 

  29. Cohen RN, Cohen LE, Botero D, et al. Enhanced repression by HESX1 as a cause of hypopituitarism and septooptic dysplasia. J Clin Endocrinol Metab. 2003;88(10):4832–9.

    Article  PubMed  CAS  Google Scholar 

  30. Tajima T, Hattorri T, Nakajima T, et al. Sporadic heterozygous frameshift mutation of HESX1 causing pituitary and optic nerve hypoplasia and combined pituitary hormone deficiency in a Japanese patient. J Clin Endocrinol Metab. 2003;88(1):45–50.

    Article  PubMed  CAS  Google Scholar 

  31. Sobrier ML, Netchine I, Heinrichs C, et al. Alu-element insertion in the homeodomain of HESX1 and aplasia of the anterior pituitary. Hum Mutat. 2005;25(5):503.

    Article  PubMed  Google Scholar 

  32. Sobrier ML, Maghnie M, Vie-Luton MP, et al. Novel HESX1 mutations associated with a life-threatening neonatal phenotype, pituitary aplasia, but normally located posterior pituitary and no optic nerve abnormalities. J Clin Endocrinol Metab. 2006;91(11):4528–36.

    Article  PubMed  CAS  Google Scholar 

  33. Bach I, Rhodes SJ, Pearse II RV, et al. P-Lim, a LIM homeodomain factor, is expressed during pituitary organ and cell commitment and synergizes with Pit-1. Proc Natl Acad Sci USA. 1995;92(7):2720–4.

    Article  PubMed  CAS  Google Scholar 

  34. Schmitt S, Biason-Lauber A, Betts D, Schoenle EJ. Genomic structure, chromosomal localization, and expression pattern of the human LIM-homeobox3 (LHX 3) gene. Biochem Biophys Res Commun. 2000;274(1):49–56.

    Article  PubMed  CAS  Google Scholar 

  35. Treier M, Gleiberman AS, O’Connell SM, et al. Multistep signaling requirements for pituitary organogenesis in vivo. Genes Dev. 1998;12(11):1691–704.

    Article  PubMed  CAS  Google Scholar 

  36. Zhadanov AB, Bertuzzi S, Taira M, Dawid IB, Westphal H. Expression pattern of the murine LIM class homeobox gene Lhx3 in subsets of neural and neuroendocrine tissues. Dev Dyn. 1995;202(4):354–64.

    Article  PubMed  CAS  Google Scholar 

  37. Rajab A, Kelberman D, de Castro SC, et al. Novel mutations in LHX3 are associated with hypopituitarism and sensorineural hearing loss. Hum Mol Genet. 2008;17(14):2150–9.

    Article  PubMed  CAS  Google Scholar 

  38. Netchine I, Sobrier ML, Krude H, et al. Mutations in LHX3 result in a new syndrome revealed by combined pituitary hormone deficiency. Nat Genet. 2000;25(2):182–6.

    Article  PubMed  CAS  Google Scholar 

  39. Bhangoo AP, Hunter CS, Savage JJ, et al. Clinical case seminar: a novel LHX3 mutation presenting as combined pituitary hormonal deficiency. J Clin Endocrinol Metab. 2006;91(3):747–53.

    Article  PubMed  CAS  Google Scholar 

  40. Pfaeffle RW, Savage JJ, Hunter CS, et al. Four novel mutations of the LHX3 gene cause combined pituitary hormone deficiencies with or without limited neck rotation. J Clin Endocrinol Metab. 2007;92(5):1909–19.

    Article  PubMed  CAS  Google Scholar 

  41. Kristrom B, Zdunek AM, Rydh A, Jonsson H, Sehlin P, Escher SA. A novel mutation in the LIM homeobox 3 gene is responsible for combined pituitary hormone deficiency, hearing impairment, and vertebral malformations. J Clin Endocrinol Metab. 2009;94(4):1154–61.

    Article  PubMed  CAS  Google Scholar 

  42. Sobrier ML, Attie-Bitach T, Netchine I, Encha-Razavi F, Vekemans M, Amselem S. Pathophysiology of syndromic combined pituitary hormone deficiency due to a LHX3 defect in light of LHX3 and LHX4 expression during early human development. Gene Expr Patterns. 2004;5(2):279–84.

    Article  PubMed  CAS  Google Scholar 

  43. Machinis K, Pantel J, Netchine I, et al. Syndromic short stature in patients with a germline mutation in the LIM homeobox LHX4. Am J Hum Genet. 2001;69(5):961–8.

    Article  PubMed  CAS  Google Scholar 

  44. Tajima T, Hattori T, Nakajima T, Okuhara K, Tsubaki J, Fujieda K. A novel missense mutation (P366T) of the LHX4 gene causes severe combined pituitary hormone deficiency with pituitary hypoplasia, ectopic posterior lobe and a poorly developed sella turcica. Endocr J. 2007;54(4):637–41.

    Article  PubMed  CAS  Google Scholar 

  45. Pfaeffle RW, Hunter CS, Savage JJ, et al. Three novel missense mutations within the LHX4 gene are associated with variable pituitary hormone deficiencies. J Clin Endocrinol Metab. 2008;93(3):1062–71.

    Article  PubMed  CAS  Google Scholar 

  46. Castinetti F, Saveanu A, Reynaud R, et al. A novel dysfunctional LHX4 mutation with high phenotypical variability in patients with hypopituitarism. J Clin Endocrinol Metab. 2008;93(7):2790–9.

    Article  PubMed  CAS  Google Scholar 

  47. Tajima T, Yorifuji T, Ishizu K, Fujieda K. A novel mutation (V101A) of the LHX4 gene in a Japanese patient with combined pituitary hormone deficiency. Exp Clin Endocrinol Diabetes. 2010;118:405–9.

    Article  PubMed  CAS  Google Scholar 

  48. Stevanovic M, Lovell-Badge R, Collignon J, Goodfellow PN. SOX3 is an X-linked gene related to SRY. Hum Mol Genet. 1993;2(12):2013–8.

    Article  PubMed  CAS  Google Scholar 

  49. Pevny L, Placzek M. SOX genes and neural progenitor identity. Curr Opin Neurobiol. 2005;15(1):7–13.

    Article  PubMed  CAS  Google Scholar 

  50. Rizzoti K, Lovell-Badge R. Early development of the pituitary gland: induction and shaping of Rathke’s pouch. Rev Endocr Metab Disord. 2005;6(3):161–72.

    Article  PubMed  Google Scholar 

  51. Rizzoti K, Brunelli S, Carmignac D, Thomas PQ, Robinson IC, Lovell-Badge R. SOX3 is required during the formation of the hypothalamo-pituitary axis. Nat Genet. 2004;36(3):247–55.

    Article  PubMed  CAS  Google Scholar 

  52. Weiss J, Meeks JJ, Hurley L, Raverot G, Frassetto A, Jameson JL. Sox3 is required for gonadal function, but not sex determination, in males and females. Mol Cell Biol. 2003;23(22):8084–91.

    Article  PubMed  CAS  Google Scholar 

  53. Laumonnier F, Ronce N, Hamel BC, et al. Transcription factor SOX3 is involved in X-linked mental retardation with growth hormone deficiency. Am J Hum Genet. 2002;71(6):1450–5.

    Article  PubMed  CAS  Google Scholar 

  54. Solomon NM, Nouri S, Warne GL, Lagerstrom-Fermer M, Forrest SM, Thomas PQ. Increased gene dosage at Xq26-q27 is associated with X-linked hypopituitarism. Genomics. 2002;79(4):553–9.

    Article  PubMed  CAS  Google Scholar 

  55. Hamel BC, Smits AP, Otten BJ, van den Helm B, Ropers HH, Mariman EC. Familial X-linked mental retardation and isolated growth hormone deficiency: clinical and molecular findings. Am J Med Genet. 1996;64(1):35–41.

    Article  PubMed  CAS  Google Scholar 

  56. Lagerstrom-Fermer M, Sundvall M, Johnsen E, et al. X-linked recessive panhypopituitarism associated with a regional duplication in Xq25-q26. Am J Hum Genet. 1997;60(4):910–6.

    PubMed  CAS  Google Scholar 

  57. Hol FA, Schepens MT, van Beersum SE, et al. Identification and characterization of an Xq26-q27 duplication in a family with spina bifida and panhypopituitarism suggests the involvement of two distinct genes. Genomics. 2000;69(2):174–81.

    Article  PubMed  CAS  Google Scholar 

  58. Woods KS, Cundall M, Turton J, et al. Over- and underdosage of SOX3 is associated with infundibular hypoplasia and hypopituitarism. Am J Hum Genet. 2005;76(5):833–49.

    Article  PubMed  CAS  Google Scholar 

  59. Stankiewicz P, Thiele H, Schlicker M, et al. Duplication of Xq26.2-q27.1, including SOX3, in a mother and daughter with short stature and dyslalia. Am J Med Genet A. 2005;138(1):11–7.

    PubMed  Google Scholar 

  60. Albrecht AN, Kornak U, Boddrich A, et al. A molecular pathogenesis for transcription factor associated poly-alanine tract expansions. Hum Mol Genet. 2004;13(20):2351–9.

    Article  PubMed  CAS  Google Scholar 

  61. Wood HB, Episkopou V. Comparative expression of the mouse Sox1, Sox2 and Sox3 genes from pre-gastrulation to early somite stages. Mech Dev. 1999;86(1–2):197–201.

    Article  PubMed  CAS  Google Scholar 

  62. Williamson KA, Hever AM, Rainger J, et al. Mutations in SOX2 cause anophthalmia-esophageal-genital (AEG) syndrome. Hum Mol Genet. 2006;15(9):1413–22.

    Article  PubMed  CAS  Google Scholar 

  63. Taranova OV, Magness ST, Fagan BM, et al. SOX2 is a dose-dependent regulator of retinal neural progenitor competence. Genes Dev. 2006;20(9):1187–202.

    Article  PubMed  CAS  Google Scholar 

  64. Kelberman D, Rizzoti K, Avilion A, et al. Mutations within Sox2/SOX2 are associated with abnormalities in the hypothalamo-pituitary-gonadal axis in mice and humans. J Clin Invest. 2006;116(9):2442–55.

    PubMed  CAS  Google Scholar 

  65. Fantes J, Ragge NK, Lynch SA, et al. Mutations in SOX2 cause anophthalmia. Nat Genet. 2003;33(4):461–3.

    Article  PubMed  CAS  Google Scholar 

  66. Ragge NK, Lorenz B, Schneider A, et al. SOX2 anophthalmia syndrome. Am J Med Genet A. 2005;135(1):1–7; discussion 8.

    Google Scholar 

  67. Hagstrom SA, Pauer GJ, Reid J, et al. SOX2 mutation causes anophthalmia, hearing loss, and brain anomalies. Am J Med Genet A. 2005;138A(2):95–8.

    Article  PubMed  Google Scholar 

  68. Zenteno JC, Gascon-Guzman G, Tovilla-Canales JL. Bilateral anophthalmia and brain ­malformations caused by a 20-bp deletion in the SOX2 gene. Clin Genet. 2005;68(6):564–6.

    Article  PubMed  CAS  Google Scholar 

  69. Sisodiya SM, Ragge NK, Cavalleri GL, et al. Role of SOX2 mutations in human hippocampal malformations and epilepsy. Epilepsia. 2006;47(3):534–42.

    Article  PubMed  CAS  Google Scholar 

  70. Sato N, Kamachi Y, Kondoh H, et al. Hypogonadotropic hypogonadism in an adult female with a heterozygous hypomorphic mutation of SOX2. Eur J Endocrinol. 2007;156(2):167–71.

    Article  PubMed  CAS  Google Scholar 

  71. Kelberman D, de Castro SC, Huang S, et al. SOX2 plays a critical role in the pituitary, forebrain, and eye during human embryonic development. J Clin Endocrinol Metab. 2008;93(5):1865–73.

    Article  PubMed  CAS  Google Scholar 

  72. Roessler E, Belloni E, Gaudenz K, et al. Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nat Genet. 1996;14(3):357–60.

    Article  PubMed  CAS  Google Scholar 

  73. Roessler E, Du YZ, Mullor JL, et al. Loss-of-function mutations in the human GLI2 gene are associated with pituitary anomalies and holoprosencephaly-like features. Proc Natl Acad Sci USA. 2003;100(23):13424–9.

    Article  PubMed  CAS  Google Scholar 

  74. Larsen KB, Lutterodt M, Rath MF, Moller M. Expression of the homeobox genes PAX6, OTX2, and OTX1 in the early human fetal retina. Int J Dev Neurosci. 2009;27(5):485–92.

    Article  PubMed  CAS  Google Scholar 

  75. Lemyre E, Lemieux N, Decarie JC, Lambert M. Del(14)(q22.1q23.2) in a patient with anophthalmia and pituitary hypoplasia. Am J Med Genet. 1998;77(2):162–5.

    Article  PubMed  CAS  Google Scholar 

  76. Nolen LD, Amor D, Haywood A, et al. Deletion at 14q22-23 indicates a contiguous gene syndrome comprising anophthalmia, pituitary hypoplasia, and ear anomalies. Am J Med Genet A. 2006;140(16):1711–8.

    PubMed  Google Scholar 

  77. Dateki S, Fukami M, Sato N, Muroya K, Adachi M, Ogata T. OTX2 mutation in a patient with anophthalmia, short stature, and partial growth hormone deficiency: functional studies using the IRBP, HESX1, and POU1F1 promoters. J Clin Endocrinol Metab. 2008;93(10):3697–702.

    Article  PubMed  CAS  Google Scholar 

  78. Tajima T, Ohtake A, Hoshino M, et al. OTX2 loss of function mutation causes anophthalmia and combined pituitary hormone deficiency with a small anterior and ectopic posterior pituitary. J Clin Endocrinol Metab. 2009;94(1):314–9.

    Article  PubMed  CAS  Google Scholar 

  79. Diaczok D, Romero C, Zunich J, Marshall I, Radovick S. A novel dominant negative mutation of OTX2 associated with combined pituitary hormone deficiency. J Clin Endocrinol Metab. 2008;93(11):4351–9.

    Article  PubMed  CAS  Google Scholar 

  80. Henderson RH, Williamson KA, Kennedy JS, et al. A rare de novo nonsense mutation in OTX2 causes early onset retinal dystrophy and pituitary dysfunction. Mol Vis. 2009;15:2442–7.

    PubMed  CAS  Google Scholar 

  81. Bhangoo A, Jacobson-Dickman E. The genetics of idiopathic hypogonadotropic hypogonadism:unraveling the biology of human sexual development. Pediatr Endocrinol Rev. 2009;6(3):395–404.

    PubMed  Google Scholar 

  82. Semple RK, Topaloglu AK. The recent genetics of hypogonadotrophic hypogonadism – novel insights and new questions. Clin Endocrinol (Oxf). 2009;72:427–35.

    Article  CAS  Google Scholar 

  83. Avbelij M, Romero C, Tziaferi V, et al. New loci for congenital hypopituitarism: overlap with Kallmann syndrome. Abstract presented at the LWPES/ESPE 8th Joint Meeting Paediatric Endocrinology. Horm Res. 2009. p. 30–1.

    Google Scholar 

  84. Sornson MW, Wu W, Dasen JS, et al. Pituitary lineage determination by the Prophet of Pit-1 homeodomain factor defective in Ames dwarfism. Nature. 1996;384(6607):327–33.

    Article  PubMed  CAS  Google Scholar 

  85. Ward RD, Stone BM, Raetzman LT, Camper SA. Cell proliferation and vascularization in mouse models of pituitary hormone deficiency. Mol Endocrinol. 2006;20(6):1378–90.

    Article  PubMed  CAS  Google Scholar 

  86. Wu W, Cogan JD, Pfaffle RW, et al. Mutations in PROP1 cause familial combined pituitary hormone deficiency. Nat Genet. 1998;18(2):147–9.

    Article  PubMed  CAS  Google Scholar 

  87. Cogan JD, Wu W, Phillips III JA, et al. The PROP1 2-base pair deletion is a common cause of combined pituitary hormone deficiency. J Clin Endocrinol Metab. 1998;83(9):3346–9.

    Article  PubMed  CAS  Google Scholar 

  88. Deladoey J, Fluck C, Buyukgebiz A, et al. “Hot spot” in the PROP1 gene responsible for combined pituitary hormone deficiency. J Clin Endocrinol Metab. 1999;84(5):1645–50.

    Article  PubMed  CAS  Google Scholar 

  89. Vieira TC, Boldarine VT, Abucham J. Molecular analysis of PROP1, PIT1, HESX1, LHX3, and LHX4 shows high frequency of PROP1 mutations in patients with familial forms of combined pituitary hormone deficiency. Arq Bras Endocrinol Metabol. 2007;51(7):1097–103.

    Article  PubMed  Google Scholar 

  90. Turton JP, Mehta A, Raza J, et al. Mutations within the transcription factor PROP1 are rare in a cohort of patients with sporadic combined pituitary hormone deficiency (CPHD). Clin Endocrinol (Oxf). 2005;63(1):10–8.

    Article  CAS  Google Scholar 

  91. Kelberman D, Rizzoti K, Lovell-Badge R, Robinson IC, Dattani MT. Genetic regulation of pituitary gland development in human and mouse. Endocr Rev. 2009;30(7):790–829.

    Article  PubMed  CAS  Google Scholar 

  92. Bottner A, Keller E, Kratzsch J, et al. PROP1 mutations cause progressive deterioration of anterior pituitary function including adrenal insufficiency: a longitudinal analysis. J Clin Endocrinol Metab. 2004;89(10):5256–65.

    Article  PubMed  CAS  Google Scholar 

  93. Fofanova O, Takamura N, Kinoshita E, et al. MR imaging of the pituitary gland in children and young adults with congenital combined pituitary hormone deficiency associated with PROP1 mutations. AJR Am J Roentgenol. 2000;174(2):555–9.

    PubMed  CAS  Google Scholar 

  94. Riepe FG, Partsch CJ, Blankenstein O, Monig H, Pfaffle RW, Sippell WG. Longitudinal imaging reveals pituitary enlargement preceding hypoplasia in two brothers with combined pituitary hormone deficiency attributable to PROP1 mutation. J Clin Endocrinol Metab. 2001;86(9):4353–7.

    Article  PubMed  CAS  Google Scholar 

  95. Osorio MG, Marui S, Jorge AA, et al. Pituitary magnetic resonance imaging and function in patients with growth hormone deficiency with and without mutations in GHRH-R, GH-1, or PROP-1 genes. J Clin Endocrinol Metab. 2002;87(11):5076–84.

    Article  PubMed  CAS  Google Scholar 

  96. Teinturier C, Vallette S, Adamsbaum C, Bendaoud M, Brue T, Bougneres PF. Pseudotumor of the pituitary due to PROP-1 deletion. J Pediatr Endocrinol Metab. 2002;15(1):95–101.

    Article  PubMed  CAS  Google Scholar 

  97. Vallette-Kasic S, Barlier A, Teinturier C, et al. PROP1 gene screening in patients with multiple pituitary hormone deficiency reveals two sites of hypermutability and a high incidence of corticotroph deficiency. J Clin Endocrinol Metab. 2001;86(9):4529–35.

    Article  PubMed  CAS  Google Scholar 

  98. Voutetakis A, Argyropoulou M, Sertedaki A, et al. Pituitary magnetic resonance imaging in 15 patients with Prop1 gene mutations: pituitary enlargement may originate from the intermediate lobe. J Clin Endocrinol Metab. 2004;89(5):2200–6.

    Article  PubMed  CAS  Google Scholar 

  99. Ward RD, Raetzman LT, Suh H, Stone BM, Nasonkin IO, Camper SA. Role of PROP1 in pituitary gland growth. Mol Endocrinol. 2005;19(3):698–710.

    Article  PubMed  CAS  Google Scholar 

  100. Bodner M, Castrillo JL, Theill LE, Deerinck T, Ellisman M, Karin M. The pituitary-specific transcription factor GHF-1 is a homeobox-containing protein. Cell. 1988;55(3):505–18.

    Article  PubMed  CAS  Google Scholar 

  101. Rhodes SJ, DiMattia GE, Rosenfeld MG. Transcriptional mechanisms in anterior pituitary cell differentiation. Curr Opin Genet Dev. 1994;4(5):709–17.

    Article  PubMed  CAS  Google Scholar 

  102. Andersen B, Rosenfeld MG. POU domain factors in the neuroendocrine system: lessons from developmental biology provide insights into human disease. Endocr Rev. 2001;22(1):2–35.

    Article  PubMed  CAS  Google Scholar 

  103. Li S, Crenshaw III EB, Rawson EJ, Simmons DM, Swanson LW, Rosenfeld MG. Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain gene pit-1. Nature. 1990;347(6293):528–33.

    Article  PubMed  CAS  Google Scholar 

  104. Dasen JS, O’Connell SM, Flynn SE, et al. Reciprocal interactions of Pit1 and GATA2 mediate signaling gradient-induced determination of pituitary cell types. Cell. 1999;97(5):587–98.

    Article  PubMed  CAS  Google Scholar 

  105. Tatsumi K, Miyai K, Notomi T, et al. Cretinism with combined hormone deficiency caused by a mutation in the PIT1 gene. Nat Genet. 1992;1(1):56–8.

    Article  PubMed  CAS  Google Scholar 

  106. Miyata I, Vallette-Kasic S, Saveanu A, et al. Identification and functional analysis of the novel S179R POU1F1 mutation associated with combined pituitary hormone deficiency. J Clin Endocrinol Metab. 2006;91(12):4981–7.

    Article  PubMed  CAS  Google Scholar 

  107. Pfaffle RW, DiMattia GE, Parks JS, et al. Mutation of the POU-specific domain of Pit-1 and hypopituitarism without pituitary hypoplasia. Science. 1992;257(5073):1118–21.

    Article  PubMed  CAS  Google Scholar 

  108. Pellegrini-Bouiller I, Belicar P, Barlier A, et al. A new mutation of the gene encoding the transcription factor Pit-1 is responsible for combined pituitary hormone deficiency. J Clin Endocrinol Metab. 1996;81(8):2790–6.

    Article  PubMed  CAS  Google Scholar 

  109. Pfaffle RW, Martinez R, Kim C, et al. GH and TSH deficiency. Exp Clin Endocrinol Diabetes. 1997;105 Suppl 4:1–5.

    PubMed  Google Scholar 

  110. Cohen LE, Radovick S. Molecular basis of combined pituitary hormone deficiencies. Endocr Rev. 2002;23(4):431–42.

    Article  PubMed  CAS  Google Scholar 

  111. Brown MR, Parks JS, Adess ME, et al. Central hypothyroidism reveals compound heterozygous mutations in the Pit-1 gene. Horm Res. 1998;49(2):98–102.

    Article  PubMed  CAS  Google Scholar 

  112. Pernasetti F, Milner RD, al Ashwal AA, et al. Pro239Ser: a novel recessive mutation of the Pit-1 gene in seven Middle Eastern children with growth hormone, prolactin, and thyrotropin deficiency. J Clin Endocrinol Metab. 1998;83(6):2079–83.

    Article  PubMed  CAS  Google Scholar 

  113. Turton JP, Reynaud R, Mehta A, et al. Novel mutations within the POU1F1 gene associated with variable combined pituitary hormone deficiency. J Clin Endocrinol Metab. 2005;90(8):4762–70.

    Article  PubMed  CAS  Google Scholar 

  114. Gat-Yablonski G, Lazar L, Pertzelan A, Phillip M. A novel mutation in PIT-1: phenotypic variability in familial combined pituitary hormone deficiencies. J Pediatr Endocrinol Metab. 2002;15(3):325–30.

    Article  PubMed  CAS  Google Scholar 

  115. Maheshwari HG, Silverman BL, Dupuis J, Baumann G. Phenotype and genetic analysis of a syndrome caused by an inactivating mutation in the growth hormone-releasing hormone receptor: Dwarfism of Sindh. J Clin Endocrinol Metab. 1998;83(11):4065–74.

    Article  PubMed  CAS  Google Scholar 

  116. Netchine I, Talon P, Dastot F, Vitaux F, Goossens M, Amselem S. Extensive phenotypic analysis of a family with growth hormone (GH) deficiency caused by a mutation in the GH-releasing hormone receptor gene. J Clin Endocrinol Metab. 1998;83(2):432–6.

    Article  PubMed  CAS  Google Scholar 

  117. Mullis PE. Genetic control of growth. Eur J Endocrinol. 2005;152(1):11–31.

    Article  PubMed  CAS  Google Scholar 

  118. Ryther RC, McGuinness LM, Phillips III JA, et al. Disruption of exon definition produces a dominant-negative growth hormone isoform that causes somatotroph death and IGHD II. Hum Genet. 2003;113(2):140–8.

    PubMed  CAS  Google Scholar 

  119. Mullis PE, Robinson IC, Salemi S, et al. Isolated autosomal dominant growth hormone deficiency: an evolving pituitary deficit? A multicenter follow-up study. J Clin Endocrinol Metab. 2005;90(4):2089–96.

    Article  PubMed  CAS  Google Scholar 

  120. McGuinness L, Magoulas C, Sesay AK, et al. Autosomal dominant growth hormone deficiency disrupts secretory vesicles in vitro and in vivo in transgenic mice. Endocrinology. 2003;144(2):720–31.

    Article  PubMed  CAS  Google Scholar 

  121. Besson A, Salemi S, Deladoey J, et al. Short stature caused by a biologically inactive mutant growth hormone (GH-C53S). J Clin Endocrinol Metab. 2005;90(5):2493–9.

    Article  PubMed  CAS  Google Scholar 

  122. Salemi S, Yousefi S, Baltensperger K, et al. Variability of isolated autosomal dominant GH deficiency (IGHD II): impact of the P89L GH mutation on clinical follow-up and GH secretion. Eur J Endocrinol. 2005;153(6):791–802.

    Article  PubMed  CAS  Google Scholar 

  123. Lacey KA, Parkin JM. Causes of short stature. A community study of children in Newcastle upon Tyne. Lancet. 1974;1(7846):42–5.

    Article  PubMed  CAS  Google Scholar 

  124. Rona RJ, Tanner JM. Aetiology of idiopathic growth hormone deficiency in England and Wales. Arch Dis Child. 1977;52(3):197–208.

    Article  PubMed  CAS  Google Scholar 

  125. Vimpani GV, Vimpani AF, Lidgard GP, Cameron EH, Farquhar JW. Prevalence of severe growth hormone deficiency. Br Med J. 1977;2(6084):427–30.

    Article  PubMed  CAS  Google Scholar 

  126. Phillips III JA, Cogan JD. Genetic basis of endocrine disease. 6. Molecular basis of familial human growth hormone deficiency. J Clin Endocrinol Metab. 1994;78(1):11–6.

    Article  PubMed  CAS  Google Scholar 

  127. Murray PG, Paterson WF, Donaldson MD. Maternal age in patients with septo-optic dysplasia. J Pediatr Endocrinol Metab. 2005;18(5):471–6.

    Article  PubMed  Google Scholar 

  128. Mullis PE. Genetics of growth hormone deficiency. Endocrinol Metab Clin North Am. 2007;36(1):17–36.

    Article  PubMed  CAS  Google Scholar 

  129. Kjellin IB, Kaiserman KB, Curran JG, Geffner ME. Aplasia of right internal carotid artery and hypopituitarism. Pediatr Radiol. 1999;29(8):586–8; discussion 585.

    Google Scholar 

  130. Kikuchi K, Fujisawa I, Momoi T, et al. Hypothalamic-pituitary function in growth hormone-deficient patients with pituitary stalk transection. J Clin Endocrinol Metab. 1988;67(4):817–23.

    Article  PubMed  CAS  Google Scholar 

  131. Triulzi F, Scotti G, di Natale B, et al. Evidence of a congenital midline brain anomaly in pituitary dwarfs: a magnetic resonance imaging study in 101 patients. Pediatrics. 1994;93(3):409–16.

    PubMed  CAS  Google Scholar 

  132. Maghnie M, Genovese E, Villa A, Spagnolo L, Campan R, Severi F. Dynamic MRI in the congenital agenesis of the neural pituitary stalk syndrome: the role of the vascular pituitary stalk in predicting residual anterior pituitary function. Clin Endocrinol (Oxf). 1996;45(3):281–90.

    Article  CAS  Google Scholar 

  133. Genovese E, Maghnie M, Beluffi G, et al. Hypothalamic-pituitary vascularization in pituitary stalk transection syndrome: is the pituitary stalk really transected? The role of gadolinium-DTPA with spin-echo T1 imaging and turbo-FLASH technique. Pediatr Radiol. 1997;27(1):48–53.

    Article  PubMed  CAS  Google Scholar 

  134. Maghnie M, Triulzi F, Larizza D, et al. Hypothalamic-pituitary dysfunction in growth hormone-deficient patients with pituitary abnormalities. J Clin Endocrinol Metab. 1991;73(1):79–83.

    Article  PubMed  CAS  Google Scholar 

  135. Argyropoulou M, Perignon F, Brauner R, Brunelle F. Magnetic resonance imaging in the diagnosis of growth hormone deficiency. J Pediatr. 1992;120(6):886–91.

    Article  PubMed  CAS  Google Scholar 

  136. Chen S, Leger J, Garel C, Hassan M, Czernichow P. Growth hormone deficiency with ectopic neurohypophysis: anatomical variations and relationship between the visibility of the pituitary stalk asserted by magnetic resonance imaging and anterior pituitary function. J Clin Endocrinol Metab. 1999;84(7):2408–13.

    Article  PubMed  CAS  Google Scholar 

  137. Pinto G, Netchine I, Sobrier ML, Brunelle F, Souberbielle JC, Brauner R. Pituitary stalk interruption syndrome: a clinical-biological-genetic assessment of its pathogenesis. J Clin Endocrinol Metab. 1997;82(10):3450–4.

    Article  PubMed  CAS  Google Scholar 

  138. Maghnie M, Larizza D, Triulzi F, Sampaolo P, Scotti G, Severi F. Hypopituitarism and stalk agenesis: a congenital syndrome worsened by breech delivery? Horm Res. 1991;35(3–4):104–8.

    Article  PubMed  CAS  Google Scholar 

  139. Maghnie M, Larizza D, Zuliani I, Severi F. Congenital central nervous system abnormalities, idiopathic hypopituitarism and breech delivery: what is the connection? Eur J Pediatr. 1993;152(2):175.

    Article  PubMed  CAS  Google Scholar 

  140. Siegel SF, Ahdab-Barmada M, Arslanian S, Foley Jr TP. Ectopic posterior pituitary tissue and paracentric inversion of the short arm of chromosome 1 in twins. Eur J Endocrinol. 1995;133(1):87–92.

    Article  PubMed  CAS  Google Scholar 

  141. Larizza D, Maraschio P, Maghnie M, Sampaolo P. Hypogonadism in a patient with balanced X/18 translocation and pituitary hormone deficiency. Eur J Pediatr. 1993;152(5):424–7.

    Article  PubMed  CAS  Google Scholar 

  142. Hamilton J, Chitayat D, Blaser S, Cohen LE, Phillips III JA, Daneman D. Familial growth hormone deficiency associated with MRI abnormalities. Am J Med Genet. 1998;80(2):128–32.

    Article  PubMed  CAS  Google Scholar 

  143. Arifa N, Leger J, Garel C, Czernichow P, Hassan M. Cerebral anomalies associated with growth hormone insufficiency in children: major markers for diagnosis? Arch Pediatr. 1999;6(1):14–21.

    Article  PubMed  CAS  Google Scholar 

  144. Dupuis-Girod S, Gluckman E, Souberbielle JC, Brauner R. Growth hormone deficiency caused by pituitary stalk interruption in Fanconi’s anemia. J Pediatr. 2001;138(1):129–33.

    Article  PubMed  CAS  Google Scholar 

  145. Larizza D, Maghnie M. Poland’s syndrome associated with growth hormone deficiency. J Med Genet. 1990;27(1):53–5.

    Article  PubMed  CAS  Google Scholar 

  146. Parano E, Trifiletti RR, Barone R, Pavone V, Pavone P. Arthrogryposis multiplex congenita and pituitary ectopia. A case report. Neuropediatrics. 2000;31(6):325–7.

    Article  PubMed  CAS  Google Scholar 

  147. Oguz KK, Ozgen B, Erdem Z. Cranial midline abnormalities in Dubowitz syndrome: MR imaging findings. Eur Radiol. 2003;13(5):1056–7.

    PubMed  Google Scholar 

  148. Bas F, Darendeliler F, Yapici Z, et al. Worster-Drought syndrome (congenital bilateral perisylvian syndrome) with posterior pituitary ectopia, pituitary hypoplasia, empty sella and panhypopituitarism: a patient report. J Pediatr Endocrinol Metab. 2006;19(4):535–40.

    PubMed  Google Scholar 

  149. Halasz Z, Bertalan R, Toke J, et al. Laterality disturbance and hypopituitarism. A case report of co-existing situs inversus totalis and combined pituitary hormone deficiency. J Endocrinol Invest. 2008;31(1):74–8.

    PubMed  CAS  Google Scholar 

  150. de Graaff LC, Baan J, Govaerts LC, Hokken-Koelega AC. Facial and pituitary morphology are related in Dutch patients with GH deficiency. Clin Endocrinol (Oxf). 2008;69(1):112–6.

    Article  Google Scholar 

  151. Cacciari E, Zucchini S, Ambrosetto P, et al. Empty sella in children and adolescents with possible hypothalamic-pituitary disorders. J Clin Endocrinol Metab. 1994;78(3):767–71.

    Google Scholar 

  152. Bressani N, di Natale B, Pellini C, Triulzi F, Scotti G, Chiumello G. Evidence of morphological and functional abnormalities in the hypothalamus of growth-hormone-deficient children: a combined magnetic resonance imaging and endocrine study. Horm Res. 1990;34(5–6):189–92.

    Article  PubMed  CAS  Google Scholar 

  153. Abrahams JJ, Trefelner E, Boulware SD. Idiopathic growth hormone deficiency: MR findings in 35 patients. AJNR Am J Neuroradiol. 1991;12(1):155–60.

    PubMed  CAS  Google Scholar 

  154. Nagel BH, Palmbach M, Petersen D, Ranke MB. Magnetic resonance images of 91 children with different causes of short stature: pituitary size reflects growth hormone secretion. Eur J Pediatr. 1997;156(10):758–63.

    Article  PubMed  CAS  Google Scholar 

  155. Kornreich L, Horev G, Lazar L, Josefsberg Z, Pertzelan A. MR findings in hereditary isolated growth hormone deficiency. AJNR Am J Neuroradiol. 1997;18(9):1743–7.

    PubMed  CAS  Google Scholar 

  156. Bozzola M, Mengarda F, Sartirana P, Tato L, Chaussain JL. Long-term follow-up evaluation of magnetic resonance imaging in the prognosis of permanent GH deficiency. Eur J Endocrinol. 2000;143(4):493–6.

    Article  PubMed  CAS  Google Scholar 

  157. Arends NJ, V d Lip W, Robben SG, Hokken-Koelega AC. MRI findings of the pituitary gland in short children born small for gestational age (SGA) in comparison with growth hormone-deficient (GHD) children and children with normal stature. Clin Endocrinol (Oxf). 2002;57(6):719–24.

    Article  CAS  Google Scholar 

  158. Maghnie M, Loche S, Cappa M. Pituitary magnetic resonance imaging in idiopathic and genetic growth hormone deficiency. J Clin Endocrinol Metab. 2003;88(4):1911; author reply 1911–12.

    Google Scholar 

  159. Melo ME, Marui S, Carvalho LR, et al. Hormonal, pituitary magnetic resonance, LHX4 and HESX1 evaluation in patients with hypopituitarism and ectopic posterior pituitary lobe. Clin Endocrinol (Oxf). 2007;66(1):95–102.

    CAS  Google Scholar 

  160. Zenaty D, Garel C, Limoni C, Czernichow P, Leger J. Presence of magnetic resonance imaging abnormalities of the hypothalamic-pituitary axis is a significant determinant of the first 3 years growth response to human growth hormone treatment in prepubertal children with nonacquired growth hormone deficiency. Clin Endocrinol (Oxf). 2003;58(5):647–52.

    CAS  Google Scholar 

  161. Coutant R, Rouleau S, Despert F, Magontier N, Loisel D, Limal JM. Growth and adult height in GH-treated children with nonacquired GH deficiency and idiopathic short stature: the influence of pituitary magnetic resonance imaging findings. J Clin Endocrinol Metab. 2001;86(10):4649–54.

    Article  PubMed  CAS  Google Scholar 

  162. Maghnie M, Ambrosini L, Cappa M, et al. Adult height in patients with permanent growth hormone deficiency with and without multiple pituitary hormone deficiencies. J Clin Endocrinol Metab. 2006;91(8):2900–5.

    Article  PubMed  CAS  Google Scholar 

  163. Maghnie M, Strigazzi C, Tinelli C, et al. Growth hormone (GH) deficiency (GHD) of childhood onset: reassessment of GH status and evaluation of the predictive criteria for permanent GHD in young adults. J Clin Endocrinol Metab. 1999;84(4):1324–8.

    Article  PubMed  CAS  Google Scholar 

  164. Adan L, Souberbielle JC, Brauner R. Diagnostic markers of permanent idiopathic growth hormone deficiency. J Clin Endocrinol Metab. 1994;78(2):353–8.

    Article  PubMed  CAS  Google Scholar 

  165. Murray PG, Hague C, Fafoula O, et al. Likelihood of persistent GH deficiency into late adolescence: relationship to the presence of an ectopic or normally sited posterior pituitary gland. Clin Endocrinol (Oxf). 2009;71(2):215–9.

    Article  CAS  Google Scholar 

  166. Clayton PE, Cuneo RC, Juul A, Monson JP, Shalet SM, Tauber M. Consensus statement on the management of the GH-treated adolescent in the transition to adult care. Eur J Endocrinol. 2005;152(2):165–70.

    Article  PubMed  CAS  Google Scholar 

  167. Ho KK. Consensus guidelines for the diagnosis and treatment of adults with GH deficiency II: a statement of the GH Research Society in association with the European Society for Pediatric Endocrinology, Lawson Wilkins Society, European Society of Endocrinology, Japan Endocrine Society, and Endocrine Society of Australia. Eur J Endocrinol. 2007;157(6):695–700.

    Article  PubMed  CAS  Google Scholar 

  168. Leger J, Danner S, Simon D, Garel C, Czernichow P. Do all patients with childhood-onset growth hormone deficiency (GHD) and ectopic neurohypophysis have persistent GHD in adulthood? J Clin Endocrinol Metab. 2005;90(2):650–6.

    Article  PubMed  CAS  Google Scholar 

  169. Maghnie M, Aimaretti G, Bellone S, et al. Diagnosis of GH deficiency in the transition period: accuracy of insulin tolerance test and insulin-like growth factor-I measurement. Eur J Endocrinol. 2005;152(4):589–96.

    Article  PubMed  CAS  Google Scholar 

  170. Secco A, di Iorgi N, Napoli F, et al. Reassessment of the growth hormone status in young adults with childhood-onset growth hormone deficiency: reappraisal of insulin tolerance testing. J Clin Endocrinol Metab. 2009;94(11):4195–204.

    Article  PubMed  CAS  Google Scholar 

  171. di Iorgi N, Secco A, Napoli F, et al. Deterioration of growth hormone (GH) response and anterior pituitary function in young adults with childhood-onset GH deficiency and ectopic posterior pituitary: a two-year prospective follow-up study. J Clin Endocrinol Metab. 2007;92(10):3875–84.

    Article  PubMed  CAS  Google Scholar 

  172. Maghnie M, Uga E, Temporini F, et al. Evaluation of adrenal function in patients with growth hormone deficiency and hypothalamic-pituitary disorders: comparison between insulin-­induced hypoglycemia, low-dose ACTH, standard ACTH and CRH stimulation tests. Eur J Endocrinol. 2005;152(5):735–41.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Maghnie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Secco, A., Di Iorgi, N., Maghnie, M. (2011). Structural Abnormalities in Congenital Growth Hormone Deficiency. In: Ho, K. (eds) Growth Hormone Related Diseases and Therapy. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/978-1-60761-317-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-317-6_6

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-316-9

  • Online ISBN: 978-1-60761-317-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics