Skip to main content

Update on the Molecular Pathology of Precursor Lymphoid Leukemias

  • Chapter
  • First Online:
Hematopathology

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

  • 1307 Accesses

Abstract

The precursor lymphoid malignancies are a group of neoplasms derived from either hematopoietic stem cells (HSCs) or committed lymphoid progenitor cells, depending upon the underlying genetic lesion. Because the malignant cells in these tumors share many of the genetic (e.g., ongoing rearrangement of antigen receptor genes), and immunophenotypic (e.g., expression of progenitor markers such as CD34 and terminal deoxynucleotidyl transferase) properties of normal lymphoid progenitors, they are categorized under the World Health Organization (WHO) classification as “precursor lymphoid malignancies” [1]. These neoplasms include precursor B-lymphoblastic leukemia (B-ALL), precursor B-lymphoblastic lymphoma (B-LBL), precursor T-lymphoblastic leukemia (T-ALL), and precursor T-lymphoblastic lymphoma (T-LBL). B-ALL is significantly more common than T-lineage disease, with the latter comprising only 10–15% and 25% of ALL in children and adults, respectively. Although they may develop at any age, the precursor lymphoid malignancies arise most frequently in children, in whom ALL is the most common malignancy. The lineage of the malignant lymphoblasts, most commonly determined by flow cytometry-based immunophenotyping, greatly influences the likelihood of lymphomatous versus leukemic presentation [2]. With B-lineage disease, a leukemic presentation is much more common, whereas T-lymphoblastic malignancies manifest more frequently as a lymphoma most often an anterior mediastinal thymic mass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Swerdlow SH, Campo E, Harris NL, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC Press; 2008.

    Google Scholar 

  2. Onciu M. Acute lymphoblastic leukemia. Hematol Oncol Clin North Am. 2009;23:655–674.

    PubMed  Google Scholar 

  3. Pui CH, Relling MV, Downing JR. Acute lymphoblastic leukemia. N Engl J Med. 2004;350:1535–1548.

    PubMed  CAS  Google Scholar 

  4. Van Vlierberghe P, Pieters R, Beverloo HB, Meijerink JP. Molecular-genetic insights in paediatric T-cell acute lymphoblastic leukaemia. Br J Haematol. 2008;143:153–168.

    PubMed  Google Scholar 

  5. Aifantis I, Raetz E, Buonamici S. Molecular pathogenesis of T-cell leukaemia and lymphoma. Nat Rev Immunol. 2008;8:380–390.

    PubMed  CAS  Google Scholar 

  6. Teitell MA, Pandolfi PP. Molecular genetics of acute lymphoblastic leukemia. Annu Rev Pathol. 2009;4:175–198.

    PubMed  CAS  Google Scholar 

  7. Nowell PC, Hungerford DA. A minute chromosome in human chronic granulocytic leukemia. Science. 1960;132:1497.

    Google Scholar 

  8. Rowley JD. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973;243:290–293.

    PubMed  CAS  Google Scholar 

  9. Grosveld G, Verwoerd T, van AT, et al. The chronic myelocytic cell line K562 contains a breakpoint in bcr and produces a chimeric bcr/c-abl transcript. Mol Cell Biol. 1986;6:607–616.

    PubMed  CAS  Google Scholar 

  10. Shtivelman E, Lifshitz B, Gale RP, Canaani E. Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature. 1985;315:550–554.

    PubMed  CAS  Google Scholar 

  11. Mittre H, Leymarie P, Macro M, Leporrier M. A new case of chronic myeloid leukemia with c3/a2 BCR/ABL junction. Is it really a distinct disease? Blood. 1997;89:4239–4241.

    PubMed  CAS  Google Scholar 

  12. Pane F, Frigeri F, Sindona M, et al. Neutrophilic-chronic myeloid leukemia: a distinct disease with a specific molecular marker (BCR/ABL with C3/A2 junction). Blood. 1996;88:2410–2414.

    PubMed  CAS  Google Scholar 

  13. Wilson G, Frost L, Goodeve A, et al. BCR-ABL transcript with an e19a2 (c3a2) junction in classical chronic myeloid leukemia. Blood. 1997;89:3064.

    PubMed  CAS  Google Scholar 

  14. Goldman JM, Melo JV. Chronic myeloid leukemia–advances in biology and new approaches to treatment. N Engl J Med. 2003;349:1451–1464.

    PubMed  CAS  Google Scholar 

  15. Pane F, Intrieri M, Quintarelli C, et al. BCR/ABL genes and leukemic phenotype: from molecular mechanisms to clinical correlations 1. Oncogene. 2002;21:8652–8667.

    PubMed  CAS  Google Scholar 

  16. Gaynon PS, Trigg ME, Heerema NA, et al. Children’s Cancer Group trials in childhood acute lymphoblastic leukemia: 1983–1995. Leukemia. 2000;14:2223–2233.

    PubMed  CAS  Google Scholar 

  17. Maloney KW, Shuster JJ, Murphy S, Pullen J, Camitta BA. Long-term results of treatment studies for childhood acute lymphoblastic leukemia: Pediatric Oncology Group studies from 1986–1994. Leukemia. 2000;14:2276–2285.

    PubMed  CAS  Google Scholar 

  18. Schultz KR, Bowman WP, Aledo A, et al. Improved early event-free survival with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a children’s oncology group study. J Clin Oncol. 2009;27:5175–5181.

    PubMed  CAS  Google Scholar 

  19. Mullighan CG, Goorha S, Radtke I, et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature. 2007;446:758–764.

    PubMed  CAS  Google Scholar 

  20. Iacobucci I, Storlazzi CT, Cilloni D, et al. Identification and molecular characterization of recurrent genomic deletions on 7p12 in the IKZF1 gene in a large cohort of BCR-ABL1-positive acute lymphoblastic leukemia patients: on behalf of Gruppo Italiano Malattie Ematologiche dell’Adulto Acute Leukemia Working Party (GIMEMA AL WP). Blood. 2009;114:2159–2167.

    PubMed  CAS  Google Scholar 

  21. Martinelli G, Iacobucci I, Storlazzi CT, et al. IKZF1 (Ikaros) Deletions in BCR-ABL1-positive acute lymphoblastic leukemia are associated with short disease-free survival and high rate of cumulative incidence of relapse: A GIMEMA AL WP Report. J Clin Oncol. 2009;27:5202–5207.

    Google Scholar 

  22. Georgopoulos K. Haematopoietic cell-fate decisions, chromatin regulation and ikaros. Nat Rev Immunol. 2002;2:162–174.

    PubMed  CAS  Google Scholar 

  23. Mullighan CG, Miller CB, Radtke I, et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature. 2008;453:110–114.

    PubMed  CAS  Google Scholar 

  24. Reynaud D, Demarco IA, Reddy KL, et al. Regulation of B cell fate commitment and immunoglobulin heavy-chain gene rearrangements by Ikaros. Nat Immunol. 2008;9:927–936.

    PubMed  CAS  Google Scholar 

  25. Klug CA, Morrison SJ, Masek M, et al. Hematopoietic stem cells and lymphoid progenitors express different Ikaros isoforms, and Ikaros is localized to heterochromatin in immature lymphocytes. Proc Natl Acad Sci U S A. 1998;95:657–662.

    PubMed  CAS  Google Scholar 

  26. Klein F, Feldhahn N, Herzog S, et al. BCR-ABL1 induces aberrant splicing of IKAROS and lineage infidelity in pre-B lymphoblastic leukemia cells. Oncogene. 2006;25:1118–1124.

    PubMed  CAS  Google Scholar 

  27. Saijo K, Schmedt C, Su IH, et al. Essential role of Src-family protein tyrosine kinases in NF-kappaB activation during B cell development. Nat Immunol. 2003;4:274–279.

    PubMed  CAS  Google Scholar 

  28. Thompson EC, Cobb BS, Sabbattini P, et al. Ikaros DNA-binding proteins as integral components of B cell developmental-stage-specific regulatory circuits. Immunity. 2007;26:335–344.

    PubMed  CAS  Google Scholar 

  29. Ma S, Pathak S, Trinh L, Lu R. Interferon regulatory factors 4 and 8 induce the expression of Ikaros and Aiolos to down-regulate pre-B-cell receptor and promote cell-cycle withdrawal in pre-B-cell development. Blood. 2008;111:1396–1403.

    PubMed  CAS  Google Scholar 

  30. Nakayama J, Yamamoto M, Hayashi K, et al. BLNK suppresses pre-B-cell leukemogenesis through inhibition of JAK3. Blood. 2009;113:1483–1492.

    PubMed  CAS  Google Scholar 

  31. Trageser D, Iacobucci I, Nahar R, et al. Pre-B cell receptor-mediated cell cycle arrest in Philadelphia chromosome-positive acute lymphoblastic leukemia requires IKAROS function. J Exp Med. 2009;206:1739–1753.

    PubMed  CAS  Google Scholar 

  32. Mullighan CG, Su X, Zhang J, et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med. 2009;360:470–480.

    PubMed  CAS  Google Scholar 

  33. den Boer ML, van SM, De Menezes RX, et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol. 2009;10:125–134.

    Google Scholar 

  34. Mullighan CG, Zhang J, Harvey RC, et al. JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proc Natl Acad Sci U S A. 2009;106:9414–9418.

    PubMed  CAS  Google Scholar 

  35. Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–355.

    PubMed  CAS  Google Scholar 

  36. Bueno MJ, Perez dCI, Gomez de CM, et al. Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell. 2008;13:496–506.

    PubMed  CAS  Google Scholar 

  37. Sercan HO, Sercan ZY, Kizildag S, et al. Consistent loss of heterozygosity at 14Q32 in lymphoid blast crisis of chronic myeloid leukemia. Leuk Lymphoma. 2000;39:385–390.

    PubMed  CAS  Google Scholar 

  38. Hasle H, Clemmensen IH, Mikkelsen M. Risks of leukemia and solid tumors in individuals with Down’s syndrome. Lancet 2000;355:165–169.

    PubMed  CAS  Google Scholar 

  39. Malinge S, Izraeli S, Crispino JD. Insights into the manifestations, outcomes, and mechanisms of leukemogenesis in Down syndrome. Blood. 2009;113:2619–2628.

    PubMed  CAS  Google Scholar 

  40. Forestier E, Izraeli S, Beverloo B, et al. Cytogenetic features of acute lymphoblastic and myeloid leukemias in pediatric patients with Down syndrome: an iBFM-SG study. Blood. 2008;111:1575–1583.

    PubMed  CAS  Google Scholar 

  41. Khwaja A. The role of Janus kinases in haemopoiesis and haematological malignancy. Br J Haematol. 2006;134:366–384.

    PubMed  CAS  Google Scholar 

  42. Levine RL, Pardanani A, Tefferi A, Gilliland DG. Role of JAK2 in the pathogenesis and therapy of myeloproliferative disorders. Nat Rev Cancer. 2007;7:673–683.

    PubMed  CAS  Google Scholar 

  43. Bercovich D, Ganmore I, Scott LM, et al. Mutations of JAK2 in acute lymphoblastic leukaemias associated with Down’s syndrome. Lancet. 2008;372:1484–1492.

    PubMed  CAS  Google Scholar 

  44. Kearney L, Gonzalez De CD, Yeung J, et al. Specific JAK2 mutation (JAK2R683) and multiple gene deletions in Down syndrome acute lymphoblastic leukemia. Blood. 2009;113:646–648.

    PubMed  CAS  Google Scholar 

  45. Gaikwad A, Rye CL, Devidas M, et al. Prevalence and clinical correlates of JAK2 mutations in Down syndrome acute lymphoblastic leukaemia. Br J Haematol. 2009;144:930–932.

    PubMed  CAS  Google Scholar 

  46. Russell LJ, Capasso M, Vater I, et al. Deregulated expression of cytokine receptor gene, CRLF2, is involved in lymphoid transformation in B cell precursor acute lymphoblastic leukemia. Blood. 2009;114:2688–2698.

    PubMed  CAS  Google Scholar 

  47. Mullighan CG, Collins-Underwood JR, Phillips LA, et al. Rearrangement of CRLF2 in B-progenitor- and Down syndrome-associated acute lymphoblastic leukemia. Nat Genet. 2009;41:1243–1246.

    PubMed  CAS  Google Scholar 

  48. Wang YH, Liu YJ. Thymic stromal lymphopoietin, OX40-ligand, and interleukin-25 in allergic responses. Clin Exp Allergy. 2009;39:798–806.

    PubMed  CAS  Google Scholar 

  49. Pandey A, Ozaki K, Baumann H, et al. Cloning of a receptor subunit required for signaling by thymic stromal lymphopoietin. Nat Immunol. 2000;1:59–64.

    PubMed  CAS  Google Scholar 

  50. Park LS, Martin U, Garka K, et al. Cloning of the murine thymic stromal lymphopoietin (TSLP) receptor: formation of a functional heteromeric complex requires interleukin 7 receptor. J Exp Med. 2000;192:659–670.

    PubMed  CAS  Google Scholar 

  51. Saenz SA, Taylor BC, Artis D. Welcome to the neighborhood: epithelial cell-derived cytokines license innate and adaptive immune responses at mucosal sites. Immunol Rev. 2008;226:172–190.

    PubMed  CAS  Google Scholar 

  52. Rochman Y, Leonard WJ. Thymic stromal lymphopoietin: a new cytokine in asthma. Curr Opin Pharmacol. 2008;8:249–254.

    PubMed  CAS  Google Scholar 

  53. Soumelis V, Reche PA, Kanzler H, et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat Immunol. 2002;3:673–680.

    PubMed  CAS  Google Scholar 

  54. Carpino N, Thierfelder WE, Chang MS, et al. Absence of an essential role for thymic stromal lymphopoietin receptor in murine B-cell development. Mol Cell Biol. 2004;24:2584–2592.

    PubMed  CAS  Google Scholar 

  55. Ying S, O’Connor B, Ratoff J, et al. Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity. J Immunol. 2005;174:8183–8190.

    PubMed  CAS  Google Scholar 

  56. Yoo J, Omori M, Gyarmati D, et al. Spontaneous atopic dermatitis in mice expressing an inducible thymic stromal lymphopoietin transgene specifically in the skin. J Exp Med. 2005;202:541–549.

    PubMed  CAS  Google Scholar 

  57. Zhang Z, Hener P, Frossard N, et al. Thymic stromal lymphopoietin overproduced by keratinocytes in mouse skin aggravates experimental asthma. Proc Natl Acad Sci U S A. 2009;106:1536–1541.

    PubMed  CAS  Google Scholar 

  58. He R, Oyoshi MK, Garibyan L, et al. TSLP acts on infiltrating effector T cells to drive allergic skin inflammation. Proc Natl Acad Sci U S A. 2008;105:11875–11880.

    PubMed  CAS  Google Scholar 

  59. Helena Mangs A, Morris BJ. The human pseudoautosomal region (PAR): origin, function and future. Curr Genomics. 2007;8:129–136.

    PubMed  CAS  Google Scholar 

  60. Korenberg JR, Kawashima H, Pulst SM, et al. Molecular definition of a region of chromosome 21 that causes features of the Down syndrome phenotype. Am J Hum Genet. 1990;47:236–246.

    PubMed  CAS  Google Scholar 

  61. McCormick MK, Schinzel A, Petersen MB, et al. Molecular genetic approach to the characterization of the “Down syndrome region” of chromosome 21. Genomics. 1989;5:325–331.

    PubMed  CAS  Google Scholar 

  62. Stiller CA, Chessells JM, Fitchett M. Neurofibromatosis and childhood leukaemia/ lymphoma: a population-based UKCCSG study. Br J Cancer. 1994;70:969–972.

    PubMed  CAS  Google Scholar 

  63. Passarge E. Bloom’s syndrome: the German experience. Ann Genet. 1991;34:179–197.

    PubMed  CAS  Google Scholar 

  64. Taylor AM, Metcalfe JA, Thick J, Mak YF. Leukemia and lymphoma in ataxia telangiectasia. Blood. 1996;87:423–438.

    PubMed  CAS  Google Scholar 

  65. Ziino O, Rondelli R, Micalizzi C, et al. Acute lymphoblastic leukemia in children with associated genetic conditions other than Down’s syndrome. The AIEOP experience. Haematologica. 2006;91:139–140.

    PubMed  Google Scholar 

  66. Whitlock JA. Down syndrome and acute lymphoblastic leukaemia. Br J Haematol. 2006;135:595–602.

    PubMed  Google Scholar 

  67. Greaves MF, Wiemels J. Origins of chromosome translocations in childhood leukaemia. Nat Rev Cancer. 2003;3:639–649.

    PubMed  CAS  Google Scholar 

  68. Papaemmanuil E, Hosking FJ, Vijayakrishnan J, et al. Loci on 7p12.2, 10q21.2 and 14q11.2 are associated with risk of childhood acute lymphoblastic leukemia. Nat Genet. 2009;41:1006–1010.

    Google Scholar 

  69. Trevino LR, Yang W, French D, et al. Germline genomic variants associated with childhood acute lymphoblastic leukemia. Nat Genet. 2009;41:1001–1005.

    PubMed  CAS  Google Scholar 

  70. Wiemels JL, Smith RN, Taylor GM, et al. Methylenetetrahydrofolate reductase (MTHFR) polymorphisms and risk of molecularly defined subtypes of childhood acute leukemia. Proc Natl Acad Sci U S A. 2001;98:4004–4009.

    PubMed  CAS  Google Scholar 

  71. Mathonnet G, Krajinovic M, Labuda D, Sinnett D. Role of DNA mismatch repair genetic polymorphisms in the risk of childhood acute lymphoblastic leukaemia. Br J Haematol. 2003;123:45–48.

    PubMed  CAS  Google Scholar 

  72. Urayama KY, Wiencke JK, Buffler PA, et al. MDR1 gene variants, indoor insecticide exposure, and the risk of childhood acute lymphoblastic leukemia. Cancer Epidemiol Biomarkers Prev. 2007;16:1172–1177.

    PubMed  CAS  Google Scholar 

  73. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3:730–737.

    PubMed  CAS  Google Scholar 

  74. Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367:645–648.

    PubMed  CAS  Google Scholar 

  75. Schulenburg A, Ulrich-Pur H, Thurnher D, et al. Neoplastic stem cells: a novel therapeutic target in clinical oncology. Cancer. 2006;107:2512–2520.

    PubMed  CAS  Google Scholar 

  76. Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer. 2005;5:275–284.

    PubMed  CAS  Google Scholar 

  77. Kelly PN, Dakic A, Adams JM, Nutt SL, Strasser A. Tumor growth need not be driven by rare cancer stem cells. Science. 2007;317:337.

    PubMed  CAS  Google Scholar 

  78. Clarke MF, Dick JE, Dirks PB, et al. Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 2006;66:9339–9344.

    PubMed  CAS  Google Scholar 

  79. Sanchez-Garcia I, Vicente-Duenas C, Cobaleda C. The theoretical basis of cancer-stem-cell-based therapeutics of cancer: can it be put into practice? Bioessays. 2007;29:1269–1280.

    PubMed  CAS  Google Scholar 

  80. Bernt KM, Armstrong SA. Leukemia stem cells and human acute lymphoblastic leukemia. Semin Hematol. 2009;46:33–38.

    PubMed  Google Scholar 

  81. Lamkin T, Brooks J, Annett G, Roberts W, Weinberg K. Immunophenotypic differences between putative hematopoietic stem cells and childhood B-cell precursor acute lymphoblastic leukemia cells. Leukemia. 1994;8:1871–1878.

    PubMed  CAS  Google Scholar 

  82. Castor A, Nilsson L, strand-Grundstrom I, et al. Distinct patterns of hematopoietic stem cell involvement in acute lymphoblastic leukemia. Nat Med. 2005;11:630–637.

    PubMed  CAS  Google Scholar 

  83. Hotfilder M, Rottgers S, Rosemann A, et al. Immature CD34+CD19- progenitor/stem cells in TEL/AML1-positive acute lymphoblastic leukemia are genetically and functionally normal. Blood. 2002;100:640–646.

    PubMed  CAS  Google Scholar 

  84. Hotfilder M, Rottgers S, Rosemann A, et al. Leukemic stem cells in childhood high-risk ALL/t(9;22) and t(4;11) are present in primitive lymphoid-restricted CD34+CD19- cells. Cancer Res. 2005;65:1442–1449.

    PubMed  CAS  Google Scholar 

  85. Haferlach T, Winkemann M, Ramm-Petersen L, et al. New insights into the biology of Philadelphia-chromosome-positive acute lymphoblastic leukaemia using a combination of May-Grunwald-Giemsa staining and fluorescence in situ hybridization techniques at the single cell level. Br J Haematol. 1997;99:452–459.

    PubMed  CAS  Google Scholar 

  86. Le Viseur C., Hotfilder M, Bomken S, et al. In childhood acute lymphoblastic leukemia, blasts at different stages of immunophenotypic maturation have stem cell properties. Cancer Cell. 2008;14:47–58.

    PubMed  Google Scholar 

  87. Grabher C, von BH, Look AT. Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia. Nat Rev Cancer. 2006;6:347–359.

    PubMed  CAS  Google Scholar 

  88. Laky K, Fowlkes BJ. Notch signaling in CD4 and CD8 T cell development. Curr Opin Immunol. 2008;20:197–202.

    PubMed  CAS  Google Scholar 

  89. Shih I, Wang TL. Notch signaling, gamma-secretase inhibitors, and cancer therapy. Cancer Res. 2007;67:1879–1882.

    PubMed  CAS  Google Scholar 

  90. Ellisen LW, Bird J, West DC, et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell. 1991;66:649–661.

    PubMed  CAS  Google Scholar 

  91. Asnafi V, Buzyn A, Le NS, et al. NOTCH1/FBXW7 mutation identifies a large subgroup with favorable outcome in adult T-cell acute lymphoblastic leukemia (T-ALL): a Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL) study. Blood. 2009;113:3918–3924.

    PubMed  CAS  Google Scholar 

  92. van Grotel M, Meijerink JP, van Wering ER, et al. Prognostic significance of molecular-cytogenetic abnormalities in pediatric T-ALL is not explained by immunophenotypic differences. Leukemia. 2008;22:124–131.

    PubMed  Google Scholar 

  93. Weng AP, Ferrando AA, Lee W, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004;306:269–271.

    PubMed  CAS  Google Scholar 

  94. Jarriault S, Brou C, Logeat F, et al. Signalling downstream of activated mammalian Notch. Nature. 1995;377:355–358.

    PubMed  CAS  Google Scholar 

  95. Weng AP, Millholland JM, Yashiro-Ohtani Y, et al. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev. 2006;20:2096–2109.

    PubMed  CAS  Google Scholar 

  96. Palomero T, Lim WK, Odom DT, et al. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci U S A. 2006;103:18261–18266.

    PubMed  CAS  Google Scholar 

  97. Palomero T, Ferrando A. Oncogenic NOTCH1 control of MYC and PI3K: challenges and opportunities for anti-NOTCH1 therapy in T-cell acute lymphoblastic leukemias and lymphomas. Clin Cancer Res. 2008;14:5314–5317.

    PubMed  CAS  Google Scholar 

  98. Real PJ, Tosello V, Palomero T, et al. Gamma-secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia. Nat Med. 2009;15:50–58.

    PubMed  CAS  Google Scholar 

  99. Larson GA, Chen Q, Kugel DS, et al. The impact of NOTCH1, FBW7 and PTEN mutations on prognosis and downstream signaling in pediatric T-cell acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Leukemia. 2009;23:1417–1425.

    Google Scholar 

  100. Mansour MR, Sulis ML, Duke V, et al. Prognostic implications of NOTCH1 and FBXW7 mutations in adults with T-cell acute lymphoblastic leukemia treated on the MRC UKALLXII/ECOG E2993 protocol. J Clin Oncol. 2009;27:4352–4356.

    PubMed  CAS  Google Scholar 

  101. Breit S, Stanulla M, Flohr T, et al. Activating NOTCH1 mutations predict favorable early treatment response and long-term outcome in childhood precursor T-cell lymphoblastic leukemia. Blood. 2006;108:1151–1157.

    PubMed  CAS  Google Scholar 

  102. Park MJ, Taki T, Oda M, et al. FBXW7 and NOTCH1 mutations in childhood T cell acute lymphoblastic leukaemia and T cell non-Hodgkin lymphoma. Br J Haematol. 2009;145:198–206.

    PubMed  CAS  Google Scholar 

  103. Zhu YM, Zhao WL, Fu JF, et al. NOTCH1 mutations in T-cell acute lymphoblastic leukemia: prognostic significance and implication in multifactorial leukemogenesis. Clin Cancer Res. 2006;12:3043–3049.

    PubMed  CAS  Google Scholar 

  104. Chalhoub N, Baker SJ. PTEN and the PI3-kinase pathway in cancer. Annu Rev Pathol. 2009;4:127–150.

    PubMed  CAS  Google Scholar 

  105. Palomero T, Sulis ML, Cortina M, et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med. 2007;13:1203–1210.

    PubMed  CAS  Google Scholar 

  106. Gutierrez A, Sanda T, Grebliunaite R, et al. High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. Blood. 2009;114:647–650.

    PubMed  CAS  Google Scholar 

  107. Remke M, Pfister S, Kox C, et al. High-resolution genomic profiling of childhood T-ALL reveals frequent copy-number alterations affecting the TGF-beta and PI3K-AKT pathways and deletions at 6q15–16.1 as a genomic marker for unfavorable early treatment response. Blood. 2009;114:1053–1062.

    PubMed  CAS  Google Scholar 

  108. Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov. 2005;4:988–1004.

    PubMed  CAS  Google Scholar 

  109. Garcia-Echeverria C, Sellers WR. Drug discovery approaches targeting the PI3K/Akt pathway in cancer. Oncogene. 2008;27:5511–5526.

    PubMed  CAS  Google Scholar 

  110. Chan SM, Weng AP, Tibshirani R, Aster JC, Utz PJ. Notch signals positively regulate activity of the mTOR pathway in T-cell acute lymphoblastic leukemia. Blood. 2007;110:278–286.

    PubMed  CAS  Google Scholar 

  111. Chiarini F, Fala F, Tazzari PL, et al. Dual inhibition of class IA phosphatidylinositol 3-kinase and mammalian target of rapamycin as a new therapeutic option for T-cell acute lymphoblastic leukemia. Cancer Res. 2009;69:3520–3528.

    PubMed  CAS  Google Scholar 

  112. Cullion K, Draheim KM, Hermance N, et al. Targeting the Notch1 and mTOR pathways in a mouse T-ALL model. Blood. 2009;113:6172–6181.

    PubMed  CAS  Google Scholar 

  113. Coustan-Smith E, Mullighan CG, Onciu M, et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol. 2009;10:147–156.

    PubMed  CAS  Google Scholar 

  114. Gutierrez A, Look AT. NOTCH and PI3K-AKT pathways intertwined. Cancer Cell. 2007;12:411–413.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert B. Lorsbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Humana Press

About this chapter

Cite this chapter

Lorsbach, R.B. (2011). Update on the Molecular Pathology of Precursor Lymphoid Leukemias. In: Crisan, D. (eds) Hematopathology. Molecular and Translational Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-262-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-262-9_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-261-2

  • Online ISBN: 978-1-60761-262-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics