Skip to main content

Cutaneous Sarcomas and Soft Tissue Proliferations

  • Chapter
  • First Online:
Molecular Diagnostics in Dermatology and Dermatopathology

Part of the book series: Current Clinical Pathology ((CCPATH))

  • 1286 Accesses

Abstract

Primary cutaneous sarcomas account for 14% of all sarcomas [1]. Partly owing to their relative ­rarity, diagnosis of these tumors is often challenging. All too often a pathologist is faced with a small biopsy, and has to differentiate a common benign mesenchymal tumor from its malignant counterpart, or classify a malignant tumor based on a limited tissue sample. Fortunately, basic ­science discoveries over the last several decades have demonstrated that many benign and malignant mesenchymal tumors of the skin have characteristic genetic changes. This chapter will discuss how adjunct molecular genetic testing can be used in the diagnosis and prognostication of these lesions, and in directing patient therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Toro JR, Travis LB, Wu HJ, et al. Incidence patterns of soft tissue sarcomas, regardless of primary site, in the surveillance, epidemiology and end results program, 1978–2001: an analysis of 26, 758 cases. Int J Cancer. 2006;119:2922–30.

    PubMed  CAS  Google Scholar 

  2. Gulley ML, Kaiser-Rogers KA. A rational approach to genetic testing for sarcoma. Diagn Mol Pathol. 2009;18:1–10.

    PubMed  CAS  Google Scholar 

  3. Pfeifer JD. Molecular genetic testing in surgical pathology. Philadelphia, PA: Lippincott, Williams & Wilkins; 2006.

    Google Scholar 

  4. O’Sullivan MJ, Perlman EJ, Furman J, et al. Visceral primitive peripheral neuroectodermal tumors: a clinicopathologic and molecular study. Hum Pathol. 2001;32:1109–15.

    PubMed  Google Scholar 

  5. Hasegawa SL, Davison JM, Rutten A, et al. Primary cutaneous Ewing’s sarcoma: immunophenotypic and molecular cytogenetic evaluation of five cases. Am J Surg Pathol. 1998;22:310–8.

    PubMed  CAS  Google Scholar 

  6. Lee CS, Southey MC, Slater H, et al. Primary cutaneous Ewing’s sarcoma/peripheral primitive neuroectodermal tumors in childhood. A molecular, cytogenetic, and immunohistochemical study. Diagn Mol Pathol. 1995;4:174–81.

    PubMed  CAS  Google Scholar 

  7. Terrier-Lacombe MJ, Guillou L, Chibon F, et al. Superficial primitive Ewing’s sarcoma: a clinicopathologic and molecular cytogenetic analysis of 14 cases. Mod Pathol. 2009;22:87–94.

    PubMed  CAS  Google Scholar 

  8. Delattre O, Zucman J, Melot T, et al. The Ewing family of tumors–a subgroup of small-round-cell tumors defined by specific chimeric transcripts. N Engl J Med. 1994;331:294–9.

    PubMed  CAS  Google Scholar 

  9. Delattre O, Zucman J, Plougastel B, et al. Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature. 1992;359:162–5.

    PubMed  CAS  Google Scholar 

  10. Zucman J, Melot T, Desmaze C, et al. Combinatorial generation of variable fusion proteins in the Ewing family of tumours. EMBO J. 1993;12:4481–7.

    PubMed  CAS  Google Scholar 

  11. Sorensen PH, Lessnick SL, Lopez-Terrada D, et al. A second Ewing’s sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family transcription factor, ERG. Nat Genet. 1994;6:146–51.

    PubMed  CAS  Google Scholar 

  12. Shing DC, McMullan DJ, Roberts P, et al. FUS/ERG gene fusions in Ewing’s tumors. Cancer Res. 2003;63:4568–76.

    PubMed  CAS  Google Scholar 

  13. Ng TL, O’Sullivan MJ, Pallen CJ, et al. Ewing sarcoma with novel translocation t(2;16) producing an in-frame fusion of FUS and FEV. J Mol Diagn. 2007;9:459–63.

    PubMed  Google Scholar 

  14. Morohoshi F, Arai K, Takahashi EI, et al. Cloning and mapping of a human RBP56 gene encoding a putative RNA binding protein similar to FUS/TLS and EWS proteins. Genomics. 1996;38:51–7.

    PubMed  CAS  Google Scholar 

  15. Bertolotti A, Lutz Y, Heard DJ, et al. hTAF(II)68, a novel RNA/ssDNA-binding protein with homology to the pro-oncoproteins TLS/FUS and EWS is associated with both TFIID and RNA polymerase II. EMBO J. 1996;15:5022–31.

    PubMed  CAS  Google Scholar 

  16. Wang L, Bhargava R, Zheng T, et al. Undifferentiated small round cell sarcomas with rare EWS gene fusions: identification of a novel EWS-SP3 fusion and of additional cases with the EWS-ETV1 and EWS-FEV fusions. J Mol Diagn. 2007;9:498–509.

    PubMed  Google Scholar 

  17. Barr FG, Womer RB. Molecular diagnosis of Ewing family tumors: too many fusions...? J Mol Diagn. 2007;9:437–40.

    PubMed  Google Scholar 

  18. Giovannini M, Biegel JA, Serra M, et al. EWS-erg and EWS-Fli1 fusion transcripts in Ewing’s sarcoma and primitive neuroectodermal tumors with variant translocations. J Clin Invest. 1994;94:489–96.

    PubMed  CAS  Google Scholar 

  19. Ida K, Kobayashi S, Taki T, et al. EWS-FLI-1 and EWS-ERG chimeric mRNAs in Ewing’s sarcoma and primitive neuroectodermal tumor. Int J Cancer. 1995;63:500–4.

    PubMed  CAS  Google Scholar 

  20. Zielenska M, Zhang ZM, Ng K, et al. Acquisition of secondary structural chromosomal changes in pediatric Ewing sarcoma is a probable prognostic factor for tumor response and clinical outcome. Cancer. 2001;91:2156–64.

    PubMed  CAS  Google Scholar 

  21. Hattinger CM, Zoubek A, Ambros PF. Molecular cytogenetics in Ewing tumors: diagnostic and prognostic information. Onkologie. 2000;23:416–22.

    PubMed  Google Scholar 

  22. Lin PP, Brody RI, Hamelin AC, et al. Differential transactivation by alternative EWS-FLI1 fusion proteins correlates with clinical heterogeneity in Ewing’s sarcoma. Cancer Res. 1999;59:1428–32.

    PubMed  CAS  Google Scholar 

  23. de Alava E, Panizo A, Antonescu CR, et al. Association of EWS-FLI1 type 1 fusion with lower proliferative rate in Ewing’s sarcoma. Am J Pathol. 2000;156:849–55.

    PubMed  Google Scholar 

  24. May WA, Lessnick SL, Braun BS, et al. The Ewing’s sarcoma EWS/FLI-1 fusion gene encodes a more potent transcriptional activator and is a more powerful transforming gene than FLI-1. Mol Cell Biol. 1993;13:7393–8.

    PubMed  CAS  Google Scholar 

  25. Katz RL, Quezado M, Senderowicz AM, et al. An intra-abdominal small round cell neoplasm with features of primitive neuroectodermal and desmoplastic round cell tumor and a EWS/FLI-1 fusion transcript. Hum Pathol. 1997;28:502–9.

    PubMed  CAS  Google Scholar 

  26. Sorensen PH, Shimada H, Liu XF, et al. Biphenotypic sarcomas with myogenic and neural differentiation express the Ewing’s sarcoma EWS/FLI1 fusion gene. Cancer Res. 1995;55:1385–92.

    PubMed  CAS  Google Scholar 

  27. Thorner P, Squire J, Chilton-MacNeil S, et al. Is the EWS/FLI-1 fusion transcript specific for Ewing sarcoma and peripheral primitive neuroectodermal tumor? A report of four cases showing this transcript in a wider range of tumor types. Am J Pathol. 1996;148:1125–38.

    PubMed  CAS  Google Scholar 

  28. Thorner P. Intra-abdominal polyphenotypic tumor. Pediatr Pathol Lab Med. 1996;16:161–9.

    PubMed  CAS  Google Scholar 

  29. de Alava E, Lozano MD, Sola I, et al. Molecular features in a biphenotypic small cell sarcoma with neuroectodermal and muscle differentiation. Hum Pathol. 1998;29:181–4.

    PubMed  Google Scholar 

  30. Hattinger CM, Rumpler S, Kovar H, et al. Fine-mapping of cytogenetically undetectable EWS/ERG fusions on DNA fibers of Ewing tumors. Cytogenet Cell Genet. 2001;93:29–35.

    PubMed  CAS  Google Scholar 

  31. Sainati L, Scapinello A, Montaldi A, et al. A mesenchymal chondrosarcoma of a child with the reciprocal translocation (11;22)(q24;q12). Cancer Genet Cytogenet. 1993;71:144–7.

    PubMed  CAS  Google Scholar 

  32. Fritsch MK, Bridge JA, Schuster AE, et al. Performance characteristics of a reverse transcriptase-polymerase chain reaction assay for the detection of tumor-specific fusion transcripts from archival tissue. Pediatr Dev Pathol. 2003;6:43–53.

    PubMed  CAS  Google Scholar 

  33. Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature. 1998;396:643–9.

    PubMed  CAS  Google Scholar 

  34. Michor F, Iwasa Y, Nowak MA. Dynamics of cancer progression. Nat Rev Cancer. 2004;4:197–205.

    PubMed  CAS  Google Scholar 

  35. Ladanyi M, Bridge JA. Contribution of molecular genetic data to the classification of sarcomas. Hum Pathol. 2000;31:532–8.

    PubMed  CAS  Google Scholar 

  36. Hill DA, O’Sullivan MJ, Zhu X, et al. Practical application of molecular genetic testing as an aid to the surgical pathologic diagnosis of sarcomas: a prospective study. Am J Surg Pathol. 2002;26:965–77.

    PubMed  Google Scholar 

  37. Pfeifer JD, Hill DA, O’Sullivan MJ, et al. Diagnostic gold standard for soft tissue tumours: morphology or molecular genetics? Histopathology. 2000;37:485–500.

    PubMed  CAS  Google Scholar 

  38. Peter M, Gilbert E, Delattre O. A multiplex real-time pcr assay for the detection of gene fusions observed in solid tumors. Lab Invest. 2001;81:905–12.

    PubMed  CAS  Google Scholar 

  39. Greer CE, Peterson SL, Kiviat NB, et al. PCR amplification from paraffin-embedded tissues. Effects of fixative and fixation time. Am J Clin Pathol. 1991;95:117–24.

    PubMed  CAS  Google Scholar 

  40. Jin L, Majerus J, Oliveira A, et al. Detection of fusion gene transcripts in fresh-frozen and formalin-fixed ­paraffin-embedded tissue sections of soft-tissue sarcomas after laser capture microdissection and rt-PCR. Diagn Mol Pathol. 2003;12:224–30.

    PubMed  CAS  Google Scholar 

  41. Yoshida H, Nagao K, Ito H, et al. Chromosomal translocations in human soft tissue sarcomas by interphase fluorescence in situ hybridization. Pathol Int. 1997;47:222–9.

    PubMed  CAS  Google Scholar 

  42. Kumar S, Pack S, Kumar D, et al. Detection of EWS-FLI-1 fusion in Ewing’s sarcoma/peripheral primitive neuroectodermal tumor by fluorescence in situ hybridization using formalin-fixed paraffin-embedded tissue. Hum Pathol. 1999;30:324–30.

    PubMed  CAS  Google Scholar 

  43. Gardner LJ, Ayala AG, Monforte HL, et al. Ewing sarcoma/peripheral primitive neuroectodermal tumor: adult abdominal tumors with an Ewing sarcoma gene rearrangement demonstrated by fluorescence in situ hybridization in paraffin sections. Appl Immunohistochem Mol Morphol. 2004;12:160–5.

    PubMed  Google Scholar 

  44. Qian X, Jin L, Shearer BM, Ketterling RP, et al. Molecular diagnosis of Ewing’s sarcoma/primitive neuroectodermal tumor in formalin-fixed paraffin-embedded tissues by RT-PCR and fluorescence in situ hybridization. Diagn Mol Pathol. 2005;14:23–8.

    PubMed  CAS  Google Scholar 

  45. Bridge RS, Rajaram V, Dehner LP, et al. Molecular diagnosis of Ewing sarcoma/primitive neuroectodermal tumor in routinely processed tissue: a comparison of two FISH strategies and RT-PCR in malignant round cell tumors. Mod Pathol. 2006;19:1–8.

    PubMed  CAS  Google Scholar 

  46. Zoubek A, Dockhorn-Dworniczak B, Delattre O, et al. Does expression of different EWS chimeric transcripts define clinically distinct risk groups of Ewing tumor patients? J Clin Oncol. 1996;14:1245–51.

    PubMed  CAS  Google Scholar 

  47. de Alava E, Kawai A, Healey JH, et al. EWS-FLI1 fusion transcript structure is an independent determinant of prognosis in Ewing’s sarcoma. J Clin Oncol. 1998;16:1248–55.

    PubMed  Google Scholar 

  48. West DC, Grier HE, Swallow MM, et al. Detection of circulating tumor cells in patients with Ewing’s sarcoma and peripheral primitive neuroectodermal tumor. J Clin Oncol. 1997;15:583–8.

    PubMed  CAS  Google Scholar 

  49. Zoubek A, Ladenstein R, Windhager R, et al. Predictive potential of testing for bone marrow involvement in Ewing tumor patients by RT-PCR: a preliminary evaluation. Int J Cancer. 1998;79:56–60.

    PubMed  CAS  Google Scholar 

  50. Fagnou C, Michon J, Peter M, et al. Presence of tumor cells in bone marrow but not in blood is associated with adverse prognosis in patients with Ewing’s tumor. Societe Francaise d’Oncologie Pediatrique. J Clin Oncol. 1998;16:1707–11.

    PubMed  CAS  Google Scholar 

  51. de Alava E, Ladanyi M, Rosai J, et al. Detection of chimeric transcripts in desmoplastic small round cell tumor and related developmental tumors by reverse transcriptase polymerase chain reaction. A specific diagnostic assay. Am J Pathol. 1995;147:1584–91.

    PubMed  Google Scholar 

  52. Zoubek A, Kovar H, Kronberger M, et al. Mobilization of tumour cells during biopsy in an infant with Ewing sarcoma. Eur J Pediatr. 1996;155:373–6.

    PubMed  CAS  Google Scholar 

  53. Mhawech-Fauceglia P, Herrmann F, Penetrante R, et al. Diagnostic utility of FLI-1 monoclonal antibody and dual-colour, break-apart probe fluorescence in situ (FISH) analysis in Ewing’s sarcoma/primitive neuroectodermal tumour (EWS/PNET). A comparative study with CD99 and FLI-1 polyclonal antibodies. Histopathology. 2006;49:569–75.

    PubMed  CAS  Google Scholar 

  54. Llombart B, Monteagudo C, Lopez-Guerrero JA, et al. Clinicopathological and immunohistochemical analysis of 20 cases of Merkel cell carcinoma in search of prognostic markers. Histopathology. 2005;46:622–34.

    PubMed  CAS  Google Scholar 

  55. Folpe AL, Chand EM, Goldblum JR, et al. Expression of Fli-1, a nuclear transcription factor, distinguishes vascular neoplasms from potential mimics. Am J Surg Pathol. 2001;25:1061–6.

    PubMed  CAS  Google Scholar 

  56. Rossi S, Orvieto E, Furlanetto A, et al. Utility of the immunohistochemical detection of FLI-1 expression in round cell and vascular neoplasm using a monoclonal antibody. Mod Pathol. 2004;17:547–52.

    PubMed  CAS  Google Scholar 

  57. Ragsdale BD, Lee JP, Mines J. Alveolar rhabdomyosarcoma on the external ear: a case report. J Cutan Pathol. 2009;36:267–9.

    PubMed  Google Scholar 

  58. Nakagawa N, Tsuda T, Yamamoto M, et al. Adult cutaneous alveolar rhabdomyosarcoma on the face diagnosed by the expression of PAX3-FKHR gene fusion transcripts. J Dermatol. 2008;35:462–7.

    PubMed  CAS  Google Scholar 

  59. Brecher AR, Reyes-Mugica M, Kamino H, et al. Congenital primary cutaneous rhabdomyosarcoma in a neonate. Pediatr Dermatol. 2003;20:335–8.

    PubMed  Google Scholar 

  60. Gong Y, Chao J, Bauer B, et al. Primary cutaneous alveolar rhabdomyosarcoma of the perineum. Arch Pathol Lab Med. 2002;126:982–4.

    PubMed  Google Scholar 

  61. Setterfield J, Sciot R, Debiec-Rychter M, et al. Primary cutaneous epidermotropic alveolar rhabdomyosarcoma with t(2;13) in an elderly woman: case report and review of the literature. Am J Surg Pathol. 2002;26:938–44.

    PubMed  CAS  Google Scholar 

  62. Kuroiwa M, Sakamoto J, Shimada A, et al. Manifestation of alveolar rhabdomyosarcoma as primary cutaneous lesions in a neonate with Beckwith-Wiedemann syndrome. J Pediatr Surg. 2009;44:e31–5.

    PubMed  Google Scholar 

  63. Godambe SV, Rawal J. Blueberry muffin rash as a presentation of alveolar cell rhabdomyosarcoma in a neonate. Acta Paediatr. 2000;89:115–7.

    PubMed  CAS  Google Scholar 

  64. Shapiro DN, Sublett JE, Li B, et al. Fusion of PAX3 to a member of the forkhead family of transcription factors in human alveolar rhabdomyosarcoma. Cancer Res. 1993;53:5108–12.

    PubMed  CAS  Google Scholar 

  65. Galili N, Davis RJ, Fredericks WJ, et al. Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nat Genet. 1993;5:230–5.

    PubMed  CAS  Google Scholar 

  66. Davis RJ, D’Cruz CM, Lovell MA, et al. Fusion of PAX7 to FKHR by the variant t(1;13)(p36;q14) translocation in alveolar rhabdomyosarcoma. Cancer Res. 1994;54:2869–72.

    PubMed  CAS  Google Scholar 

  67. Davis RJ, Bennicelli JL, Macina RA, et al. Structural characterization of the FKHR gene and its rearrangement in alveolar rhabdomyosarcoma. Hum Mol Genet. 1995;4:2355–62.

    PubMed  CAS  Google Scholar 

  68. Barr FG, Qualman SJ, Macris MH, et al. Genetic heterogeneity in the alveolar rhabdomyosarcoma subset without typical gene fusions. Cancer Res. 2002;62:4704–10.

    PubMed  CAS  Google Scholar 

  69. Wachtel M, Dettling M, Koscielniak E, et al. Gene expression signatures identify rhabdomyosarcoma subtypes and detect a novel t(2;2)(q35;p23) translocation fusing PAX3 to NCOA1. Cancer Res. 2004;64:5539–45.

    PubMed  CAS  Google Scholar 

  70. Bennicelli JL, Edwards RH, Barr FG. Mechanism for transcriptional gain of function resulting from chromosomal translocation in alveolar rhabdomyosarcoma. Proc Natl Acad Sci USA. 1996;93:5455–9.

    PubMed  CAS  Google Scholar 

  71. Downing JR, Khandekar A, Shurtleff SA, et al. Multiplex RT-PCR assay for the differential diagnosis of alveolar rhabdomyosarcoma and Ewing’s sarcoma. Am J Pathol. 1995;146:626–34.

    PubMed  CAS  Google Scholar 

  72. Dockhorn-Dworniczak B, Schafer KL, Blasius S, et al. Assessment of molecular genetic detection of chromosome translocations in the differential diagnosis of pediatric sarcomas. Klin Padiatr. 1997;209:156–64.

    PubMed  CAS  Google Scholar 

  73. Barr FG, Xiong QB, Kelly K. A consensus polymerase chain reaction-oligonucleotide hybridization approach for the detection of chromosomal translocations in pediatric bone and soft tissue sarcomas. Am J Clin Pathol. 1995;104:627–33.

    PubMed  CAS  Google Scholar 

  74. Biegel JA, Nycum LM, Valentine V, et al. Detection of the t(2;13)(q35;q14) and PAX3-FKHR fusion in alveolar rhabdomyosarcoma by fluorescence in situ hybridization. Genes Chromosomes Cancer. 1995;12:186–92.

    PubMed  CAS  Google Scholar 

  75. McManus AP, O’Reilly MA, Jones KP, et al. Interphase fluorescence in situ hybridization detection of t(2;13)(q35;q14) in alveolar rhabdomyosarcoma–a diagnostic tool in minimally invasive biopsies. J Pathol. 1996;178:410–4.

    PubMed  CAS  Google Scholar 

  76. Mehra S, de la Roza G, Tull J, et al. Detection of FOXO1 (FKHR) gene break-apart by fluorescence in situ hybridization in formalin-fixed, paraffin-embedded alveolar rhabdomyosarcomas and its clinicopathologic correlation. Diagn Mol Pathol. 2008;17:14–20.

    PubMed  CAS  Google Scholar 

  77. Barr FG, Chatten J, D’Cruz CM, et al. Molecular assays for chromosomal translocations in the diagnosis of pediatric soft tissue sarcomas. JAMA. 1995;273:553–7.

    PubMed  CAS  Google Scholar 

  78. Anderson J, Gordon T, McManus A, et al. Detection of the PAX3-FKHR fusion gene in paediatric rhabdomyosarcoma: a reproducible predictor of outcome? Br J Cancer. 2001;85:831–5.

    PubMed  CAS  Google Scholar 

  79. Sorensen PH, Lynch JC, Qualman SJ, et al. PAX3-FKHR and PAX7-FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the children’s oncology group. J Clin Oncol. 2002;20:2672–9.

    PubMed  CAS  Google Scholar 

  80. Kelly KM, Womer RB, Sorensen PH, et al. Common and variant gene fusions predict distinct clinical phenotypes in rhabdomyosarcoma. J Clin Oncol. 1997;15:1831–6.

    PubMed  CAS  Google Scholar 

  81. Kelly KM, Womer RB, Barr FG. Minimal disease detection in patients with alveolar rhabdomyosarcoma using a reverse transcriptase-polymerase chain reaction method. Cancer. 1996;78:1320–7.

    PubMed  CAS  Google Scholar 

  82. Fukuda T, Kakihara T, Baba K, et al. Clear cell sarcoma arising in the transverse colon. Pathol Int. 2000;50:412–6.

    PubMed  CAS  Google Scholar 

  83. Kindblom LG, Lodding P, Angervall L. Clear-cell sarcoma of tendons and aponeuroses. An immunohistochemical and electron microscopic analysis indicating neural crest origin. Virchows Arch A Pathol Anat Histopathol. 1983;401:109–28.

    PubMed  CAS  Google Scholar 

  84. Pauwels P, Debiec-Rychter M, Sciot R, et al. Clear cell sarcoma of the stomach. Histopathology. 2002;41:526–30.

    PubMed  CAS  Google Scholar 

  85. Rubin BP, Fletcher JA, Renshaw AA. Clear cell sarcoma of soft parts: report of a case primary in the kidney with cytogenetic confirmation. Am J Surg Pathol. 1999;23:589–94.

    PubMed  CAS  Google Scholar 

  86. Saw D, Tse CH, Chan J, et al. Clear cell sarcoma of the penis. Hum Pathol. 1986;17:423–5.

    PubMed  CAS  Google Scholar 

  87. Ansai S, Takeda H, Koseki S, et al. A patient with rhabdomyosarcoma and clear cell sarcoma of the skin. J Am Acad Dermatol. 1994;31:871–6.

    PubMed  CAS  Google Scholar 

  88. Bridge JA, Borek DA, Neff JR, et al. Chromosomal abnormalities in clear cell sarcoma. Implications for histogenesis. Am J Clin Pathol. 1990;93:26–31.

    PubMed  CAS  Google Scholar 

  89. Reeves BR, Fletcher CD, Gusterson BA. Translocation t(12;22)(q13;q13) is a nonrandom rearrangement in clear cell sarcoma. Cancer Genet Cytogenet. 1992;64:101–3.

    PubMed  CAS  Google Scholar 

  90. Rodriguez E, Sreekantaiah C, Reuter VE, et al. t(12;22)(q13;q13) and trisomy 8 are nonrandom aberrations in clear-cell sarcoma. Cancer Genet Cytogenet. 1992;64:107–10.

    PubMed  CAS  Google Scholar 

  91. Sandberg AA, Bridge JA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors. Dermatofibrosarcoma protuberans and giant cell fibroblastoma. Cancer Genet Cytogenet. 2003;140:1–12.

    PubMed  CAS  Google Scholar 

  92. Hisaoka M, Ishida T, Kuo TT, et al. Clear cell sarcoma of soft tissue: a clinicopathologic, immunohistochemical, and molecular analysis of 33 cases. Am J Surg Pathol. 2008;32:452–60.

    PubMed  Google Scholar 

  93. Wang WL, Mayordomo E, Zhang W, et al. Detection and characterization of EWSR1/ATF1 and EWSR1/CREB1 chimeric transcripts in clear cell sarcoma (melanoma of soft parts). Mod Pathol. 2009;22:1201–9.

    PubMed  CAS  Google Scholar 

  94. Antonescu CR, Nafa K, Segal NH, et al. EWS-CREB1: a recurrent variant fusion in clear cell sarcoma–association with gastrointestinal location and absence of melanocytic differentiation. Clin Cancer Res. 2006;12:5356–62.

    PubMed  CAS  Google Scholar 

  95. Limon J, Debiec-Rychter M, Nedoszytko B, et al. Aberrations of chromosome 22 and polysomy of chromosome 8 as non-random changes in clear cell sarcoma. Cancer Genet Cytogenet. 1994;72:141–5.

    PubMed  CAS  Google Scholar 

  96. Travis JA, Bridge JA. Significance of both numerical and structural chromosomal abnormalities in clear cell sarcoma. Cancer Genet Cytogenet. 1992;64:104–6.

    PubMed  CAS  Google Scholar 

  97. Brown AD, Lopez-Terrada D, Denny C, et al. Promoters containing ATF-binding sites are de-regulated in cells that express the EWS/ATF1 oncogene. Oncogene. 1995;10:1749–56.

    PubMed  CAS  Google Scholar 

  98. Fujimura Y, Ohno T, Siddique H, et al. The EWS-ATF-1 gene involved in malignant melanoma of soft parts with t(12;22) chromosome translocation, encodes a constitutive transcriptional activator. Oncogene. 1996;12:159–67.

    PubMed  CAS  Google Scholar 

  99. Li KK, Lee KA. MMSP tumor cells expressing the EWS/ATF1 oncogene do not support cAMP-inducible transcription. Oncogene. 1998;16:1325–31.

    PubMed  CAS  Google Scholar 

  100. Antonescu CR, Dal Cin P, Nafa K, et al. EWSR1-CREB1 is the predominant gene fusion in angiomatoid fibrous histiocytoma. Genes Chromosomes Cancer. 2007;46:1051–60.

    PubMed  CAS  Google Scholar 

  101. Antonescu CR, Tschernyavsky SJ, Woodruff JM, et al. Molecular diagnosis of clear cell sarcoma: detection of EWS-ATF1 and MITF-M transcripts and histopathological and ultrastructural analysis of 12 cases. J Mol Diagn. 2002;4:44–52.

    PubMed  CAS  Google Scholar 

  102. Covinsky M, Gong S, Rajaram V, et al. EWS-ATF1 fusion transcripts in gastrointestinal tumors previously diagnosed as malignant melanoma. Hum Pathol. 2005;36:74–81.

    PubMed  CAS  Google Scholar 

  103. Zambrano E, Reyes-Mugica M, Franchi A, et al. An osteoclast-rich tumor of the gastrointestinal tract with features resembling clear cell sarcoma of soft parts: reports of 6 cases of a GIST simulator. Int J Surg Pathol. 2003;11:75–81.

    PubMed  Google Scholar 

  104. Panagopoulos I, Mertens F, Debiec-Rychter M, et al. Molecular genetic characterization of the EWS/ATF1 fusion gene in clear cell sarcoma of tendons and aponeuroses. Int J Cancer. 2002;99:560–7.

    PubMed  CAS  Google Scholar 

  105. Pellin A, Monteagudo C, Lopez-Gines C, et al. New type of chimeric fusion product between the EWS and ATFI genes in clear cell sarcoma (malignant melanoma of soft parts). Genes Chromosomes Cancer. 1998;23:358–60.

    PubMed  CAS  Google Scholar 

  106. Speleman F, Delattre O, Peter M, et al. Malignant melanoma of the soft parts (clear-cell sarcoma): confirmation of EWS and ATF-1 gene fusion caused by a t(12;22) translocation. Mod Pathol. 1997;10:496–9.

    PubMed  CAS  Google Scholar 

  107. Zucman J, Delattre O, Desmaze C, et al. EWS and ATF-1 gene fusion induced by t(12;22) translocation in malignant melanoma of soft parts. Nat Genet. 1993;4:341–5.

    PubMed  CAS  Google Scholar 

  108. Parham DM, Weeks DA, Beckwith JB. The clinicopathologic spectrum of putative extrarenal rhabdoid tumors. An analysis of 42 cases studied with immunohistochemistry or electron microscopy. Am J Surg Pathol. 1994;18:1010–29.

    PubMed  CAS  Google Scholar 

  109. Wick MR, Ritter JH, Dehner LP. Malignant rhabdoid tumors: a clinicopathologic review and conceptual discussion. Semin Diagn Pathol. 1995;12:233–48.

    PubMed  CAS  Google Scholar 

  110. Sert MB, Onsrud M, Perrone T, et al. Malignant rhabdoid tumor of the vulva. Case report. Eur J Gynaecol Oncol. 1999;20:258–61.

    PubMed  CAS  Google Scholar 

  111. Dabbs DJ, Park HK. Malignant rhabdoid skin tumor: an uncommon primary skin neoplasm. Ultrastructural and immunohistochemical analysis. J Cutan Pathol. 1988;15:109–15.

    PubMed  CAS  Google Scholar 

  112. Petitt M, Doeden K, Harris A, et al. Cutaneous extrarenal rhabdoid tumor with myogenic differentiation. J Cutan Pathol. 2005;32:690–5.

    PubMed  Google Scholar 

  113. Boscaino A, Donofrio V, Tornillo L, et al. Primary rhabdoid tumour of the skin in a 14-month-old child. Dermatology. 1994;188:322–5.

    PubMed  CAS  Google Scholar 

  114. Perlman EJ, Ali SZ, Robinson R, et al. Infantile extrarenal rhabdoid tumor. Pediatr Dev Pathol. 1998;1:149–52.

    PubMed  CAS  Google Scholar 

  115. Versteege I, Sevenet N, Lange J, et al. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature. 1998;394:203–6.

    PubMed  CAS  Google Scholar 

  116. Biegel JA, Tan L, Zhang F, et al. Alterations of the hSNF5/INI1 gene in central nervous system atypical teratoid/rhabdoid tumors and renal and extrarenal rhabdoid tumors. Clin Cancer Res. 2002;8:3461–7.

    PubMed  CAS  Google Scholar 

  117. Roberts CW, Orkin SH. The SWI/SNF complex–chromatin and cancer. Nat Rev Cancer. 2004;4:133–42.

    PubMed  CAS  Google Scholar 

  118. Roberts CW, Biegel JA. The role of SMARCB1/INI1 in development of rhabdoid tumor. Cancer Biol Ther. 2009;8:412–6.

    PubMed  CAS  Google Scholar 

  119. Lee HY, Yoon CS, Sevenet N, et al. Rhabdoid tumor of the kidney is a component of the rhabdoid predisposition syndrome. Pediatr Dev Pathol. 2002;5:395–9.

    PubMed  Google Scholar 

  120. Sevenet N, Sheridan E, Amram D, et al. Constitutional mutations of the hSNF5/INI1 gene predispose to a variety of cancers. Am J Hum Genet. 1999;65:1342–8.

    PubMed  CAS  Google Scholar 

  121. Rosty C, Peter M, Zucman J, et al. Cytogenetic and molecular analysis of a t(1;22)(p36;q11.2) in a rhabdoid tumor with a putative homozygous deletion of chromosome 22. Genes Chromosomes Cancer. 1998;21:82–9.

    PubMed  CAS  Google Scholar 

  122. Rousseau-Merck MF, Versteege I, Legrand I, et al. hSNF5/INI1 inactivation is mainly associated with ­homozygous deletions and mitotic recombinations in rhabdoid tumors. Cancer Res. 1999;59:3152–6.

    PubMed  CAS  Google Scholar 

  123. Kusafuka T, Miao J, Yoneda A, et al. Novel germ-line deletion of SNF5/INI1/SMARCB1 gene in neonate presenting with congenital malignant rhabdoid tumor of kidney and brain primitive neuroectodermal tumor. Genes Chromosomes Cancer. 2004;40:133–9.

    PubMed  CAS  Google Scholar 

  124. Hoot AC, Russo P, Judkins AR, et al. Immunohistochemical analysis of hSNF5/INI1 distinguishes renal and extra-renal malignant rhabdoid tumors from other pediatric soft tissue tumors. Am J Surg Pathol. 2004;28:1485–91.

    PubMed  Google Scholar 

  125. Kohashi K, Oda Y, Yamamoto H, et al. SMARCB1/INI1 protein expression in round cell soft tissue sarcomas associated with chromosomal translocations involving EWS: a special reference to SMARCB1/INI1 negative variant extraskeletal myxoid chondrosarcoma. Am J Surg Pathol. 2008;32:1168–74.

    PubMed  Google Scholar 

  126. Pai KK, Pai SB, Sripathi H, et al. Epithelioid sarcoma: a diagnostic challenge. Indian J Dermatol Venereol Leprol. 2006;72:446–8.

    PubMed  Google Scholar 

  127. Hasegawa T, Matsuno Y, Shimoda T, et al. Proximal-type epithelioid sarcoma: a clinicopathologic study of 20 cases. Mod Pathol. 2001;14:655–63.

    PubMed  CAS  Google Scholar 

  128. Guillou L, Wadden C, Coindre JM, et al. “Proximal-type” epithelioid sarcoma, a distinctive aggressive ­neoplasm showing rhabdoid features. Clinicopathologic, immunohistochemical, and ultrastructural study of a series. Am J Surg Pathol. 1997;21:130–46.

    PubMed  CAS  Google Scholar 

  129. Argenta PA, Thomas S, Chura JC. Proximal-type epithelioid sarcoma vs malignant rhabdoid tumor of the vulva: a case report, review of the literature, and an argument for consolidation. Gynecol Oncol. 2007;107:130–5.

    PubMed  Google Scholar 

  130. Lualdi E, Modena P, Debiec-Rychter M, et al. Molecular cytogenetic characterization of proximal-type epithelioid sarcoma. Genes Chromosomes Cancer. 2004;41:283–90.

    PubMed  CAS  Google Scholar 

  131. Modena P, Lualdi E, Facchinetti F, et al. SMARCB1/INI1 tumor suppressor gene is frequently inactivated in epithelioid sarcomas. Cancer Res. 2005;65:4012–9.

    PubMed  CAS  Google Scholar 

  132. Kohashi K, Izumi T, Oda Y, et al. Infrequent SMARCB1/INI1 gene alteration in epithelioid sarcoma: a useful tool in distinguishing epithelioid sarcoma from malignant rhabdoid tumor. Hum Pathol. 2009;40:349–55.

    PubMed  CAS  Google Scholar 

  133. Flucke U, Slootweg PJ, Mentzel T, et al. Direct evidence of mutational inactivation of SMARCB1/INI1 in epithelioid sarcoma. Hum Pathol. 2009;40:1361–2. Correspondence – author reply 2–4.

    PubMed  Google Scholar 

  134. Kohashi K, Oda Y, Tsunoda T. Direct evidence of mutational inactivation of SMARCB1/INI1 in epithelioid sarcoma-Reply. Hum Pathol. 2009;40:1362–4.

    Google Scholar 

  135. Orrock JM, Abbott JJ, Gibson LE, et al. INI1 and GLUT-1 expression in epithelioid sarcoma and its cutaneous neoplastic and nonneoplastic mimics. Am J Dermatopathol. 2009;31:152–6.

    PubMed  Google Scholar 

  136. Hornick JL, Dal Cin P, Fletcher CD. Loss of INI1 expression is characteristic of both conventional and proximal-type epithelioid sarcoma. Am J Surg Pathol. 2009;33:542–50.

    PubMed  Google Scholar 

  137. Kacerovska D, Michal M, Nemcova J, et al. Crystal-deficient alveolar soft-part sarcoma with cutaneous involvement: a case report. Am J Dermatopathol. 2009;31:272–7.

    PubMed  Google Scholar 

  138. Moyano S, Aguilera P, Petit A, et al. Alveolar soft part sarcoma presenting with cutaneous metastases: report of a case with immunohistochemical and molecular characterization. J Am Acad Dermatol. 2009;61:117–20.

    PubMed  Google Scholar 

  139. Ladanyi M, Lui MY, Antonescu CR, et al. The der(17)t(X;17)(p11;q25) of human alveolar soft part sarcoma fuses the TFE3 transcription factor gene to ASPL, a novel gene at 17q25. Oncogene. 2001;20:48–57.

    PubMed  CAS  Google Scholar 

  140. Heimann P, El Housni H, Ogur G, et al. Fusion of a novel gene, RCC17, to the TFE3 gene in t(X;17)(p11.2;q25.3)-bearing papillary renal cell carcinomas. Cancer Res. 2001;61:4130–5.

    PubMed  CAS  Google Scholar 

  141. Sandberg AA, Bridge JA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: alveolar soft part sarcoma. Cancer Genet Cytogenet. 2002;136:1–9.

    PubMed  CAS  Google Scholar 

  142. Weterman MA, van Groningen JJ, Jansen A, et al. Nuclear localization and transactivating capacities of the papillary renal cell carcinoma-associated TFE3 and PRCC (fusion) proteins. Oncogene. 2000;19:69–74.

    PubMed  CAS  Google Scholar 

  143. Argani P, Antonescu CR, Illei PB, et al. Primary renal neoplasms with the ASPL-TFE3 gene fusion of alveolar soft part sarcoma: a distinctive tumor entity previously included among renal cell carcinomas of children and adolescents. Am J Pathol. 2001;159:179–92.

    PubMed  CAS  Google Scholar 

  144. Argani P, Lal P, Hutchinson B, et al. Aberrant nuclear immunoreactivity for TFE3 in neoplasms with TFE3 gene fusions: a sensitive and specific immunohistochemical assay. Am J Surg Pathol. 2003;27:750–61.

    PubMed  Google Scholar 

  145. Pawel BR, Hamoudi AB, Asmar L, et al. Undifferentiated sarcomas of children: pathology and clinical behavior–an Intergroup Rhabdomyosarcoma study. Med Pediatr Oncol. 1997;29:170–80.

    PubMed  CAS  Google Scholar 

  146. Alaggio R, Bisogno G, Rosato A, et al. Undifferentiated sarcoma: does it exist? A clinicopathologic study of 7 pediatric cases and review of literature. Hum Pathol. 2009;40:1600–10.

    PubMed  Google Scholar 

  147. Kempson RL, Hendrickson MR. An approach to the diagnosis of soft tissue tumors. Monogr Pathol. 1996;38:1–36.

    PubMed  CAS  Google Scholar 

  148. Tang CK, Toker C. Trabecular carcinoma of the skin: an ultrastructural study. Cancer. 1978;42:2311–21.

    PubMed  CAS  Google Scholar 

  149. Plaza JA, Suster S. The Toker tumor: spectrum of morphologic features in primary neuroendocrine carcinomas of the skin (Merkel cell carcinoma). Ann Diagn Pathol. 2006;10:376–85.

    PubMed  Google Scholar 

  150. Sibley RK, Dahl D. Primary neuroendocrine (Merkel cell?) carcinoma of the skin. II. An immunocytochemical study of 21 cases. Am J Surg Pathol. 1985;9:109–16.

    PubMed  CAS  Google Scholar 

  151. LeBoit PE, Burg G, Weedon D, Sarasin A. Pathology and genetics of skin tumors: World Health Organization. Lyon: IARC Press; 2006.

    Google Scholar 

  152. Feng H, Shuda M, Chang Y, et al. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science. 2008;319:1096–100.

    PubMed  CAS  Google Scholar 

  153. Bhatia K, Goedert JJ, Modali R, et al. Immunological detection of viral large T antigen identifies a subset of merkel cell carcinoma tumors with higher viral abundance and better clinical outcome. Int J Cancer. 2010;127:1493–6.

    PubMed  CAS  Google Scholar 

  154. zur Hausen H. A specific signature of Merkel cell polyomavirus persistence in human cancer cells. Proc Natl Acad Sci USA. 2008;105:16063–4.

    PubMed  CAS  Google Scholar 

  155. Giraud G, Ramqvist T, Ragnarsson-Olding B, et al. DNA from BK virus and JC virus and from KI, WU, and MC polyomaviruses as well as from simian virus 40 is not detected in non-UV-light-associated primary malignant melanomas of mucous membranes. J Clin Microbiol. 2008;46:3595–8.

    PubMed  CAS  Google Scholar 

  156. Andres C, Belloni B, Puchta U, et al. Is Merkel cell polyomavirus also prevalent in non-Merkel cell carcinoma (MCC) tumors of sun exposed skin? A study of 66 patinets. J Cutan Pathol. 2010;37:28–34.

    Google Scholar 

  157. Katano H, Ito H, Suzuki Y, et al. Detection of Merkel cell polyomavirus in Merkel cell carcinoma and Kaposi’s sarcoma. J Med Virol. 2009;81:1951–8.

    PubMed  CAS  Google Scholar 

  158. Bluemn EG, Paulson KG, Higgins EE, et al. Merkel cell polyomavirus is not detected in prostate cancers, surrounding stroma, or benign prostate controls. J Clin Virol. 2009;44:164–6.

    PubMed  CAS  Google Scholar 

  159. Sastre-Garau X, Peter M, Avril MF, et al. Merkel cell carcinoma of the skin: pathological and molecular evidence for a causative role of MCV in oncogenesis. J Pathol. 2009;218:48–56.

    PubMed  CAS  Google Scholar 

  160. Duncavage EJ, Le BM, Wang D, et al. Merkel cell polyomavirus: a specific marker for Merkel cell carcinoma in histologically similar tumors. Am J Surg Pathol. 2009;33:1771–7.

    PubMed  Google Scholar 

  161. Andres C, Ihrler S, Puchta U, et al. Merkel cell polymavirus is prevalent in a subset of small cell lung cancer: a study of 31 patients. Thorax. 2009;64:1007–8.

    PubMed  CAS  Google Scholar 

  162. Duncavage EJ, Zehnbauer BA, Pfeifer JD. Prevalence of Merkel cell polyomavirus in Merkel cell carcinoma. Mod Pathol. 2009;22:516–21.

    PubMed  CAS  Google Scholar 

  163. Mentzel T, Beham A, Katenkamp D, et al. Fibrosarcomatous (“high-grade”) dermatofibrosarcoma protuberans: clinicopathologic and immunohistochemical study of a series of 41 cases with emphasis on prognostic significance. Am J Surg Pathol. 1998;22:576–87.

    PubMed  CAS  Google Scholar 

  164. Pedeutour F, Simon MP, Minoletti F, et al. Translocation, t(17;22)(q22;q13), in dermatofibrosarcoma protuberans: a new tumor-associated chromosome rearrangement. Cytogenet Cell Genet. 1996;72:171–4.

    PubMed  CAS  Google Scholar 

  165. Pedeutour F, Simon MP, Minoletti F, et al. Ring 22 chromosomes in dermatofibrosarcoma protuberans are low-level amplifiers of chromosome 17 and 22 sequences. Cancer Res. 1995;55:2400–3.

    PubMed  CAS  Google Scholar 

  166. Simon MP, Pedeutour F, Sirvent N, et al. Deregulation of the platelet-derived growth factor B-chain gene via fusion with collagen gene COL1A1 in dermatofibrosarcoma protuberans and giant-cell fibroblastoma. Nat Genet. 1997;15:95–8.

    PubMed  CAS  Google Scholar 

  167. O’Brien KP, Seroussi E, Dal Cin P, et al. Various regions within the alpha-helical domain of the COL1A1 gene are fused to the second exon of the PDGFB gene in dermatofibrosarcomas and giant-cell fibroblastomas. Genes Chromosomes Cancer. 1998;23:187–93.

    PubMed  Google Scholar 

  168. Abbott JJ, Erickson-Johnson M, Wang X, et al. Gains of COL1A1-PDGFB genomic copies occur in fibrosarcomatous transformation of dermatofibrosarcoma protuberans. Mod Pathol. 2006;19:1512–8.

    PubMed  CAS  Google Scholar 

  169. Sirvent N, Maire G, Pedeutour F. Genetics of dermatofibrosarcoma protuberans family of tumors: from ring chromosomes to tyrosine kinase inhibitor treatment. Genes Chromosomes Cancer. 2003;37:1–19.

    PubMed  CAS  Google Scholar 

  170. Dirks RP, Jansen HJ, Onnekink C, et al. DNase-I-hypersensitive sites located far upstream of the human c-sis/PDGF-B gene comap with transcriptional enhancers and a silencer and are preceded by (part of) a new transcription unit. Eur J Biochem. 1993;216:487–95.

    PubMed  CAS  Google Scholar 

  171. Rao CD, Pech M, Robbins KC, et al. The 5′ untranslated sequence of the c-sis/platelet-derived growth factor 2 transcript is a potent translational inhibitor. Mol Cell Biol. 1988;8:284–92.

    PubMed  CAS  Google Scholar 

  172. Greco A, Fusetti L, Villa R, et al. Transforming activity of the chimeric sequence formed by the fusion of collagen gene COL1A1 and the platelet derived growth factor b-chain gene in dermatofibrosarcoma protuberans. Oncogene. 1998;17:1313–9.

    PubMed  CAS  Google Scholar 

  173. Wang J, Hisaoka M, Shimajiri S, et al. Detection of COL1A1-PDGFB fusion transcripts in dermatofibrosarcoma protuberans by reverse transcription-polymerase chain reaction using archival formalin-fixed, paraffin-embedded tissues. Diagn Mol Pathol. 1999;8:113–9.

    PubMed  CAS  Google Scholar 

  174. Maire G, Pedeutour F, Coindre JM. COL1A1-PDGFB gene fusion demonstrates a common histogenetic origin for dermatofibrosarcoma protuberans and its granular cell variant. Am J Surg Pathol. 2002;26:932–7.

    PubMed  Google Scholar 

  175. Wang J, Morimitsu Y, Okamoto S, et al. COL1A1-PDGFB fusion transcripts in fibrosarcomatous areas of six dermatofibrosarcomas protuberans. J Mol Diagn. 2000;2:47–52.

    PubMed  CAS  Google Scholar 

  176. Dal Cin P, Sciot R, de Wever I, et al. Cytogenetic and immunohistochemical evidence that giant cell fibroblastoma is related to dermatofibrosarcoma protuberans. Genes Chromosomes Cancer. 1996;15:73–5.

    Google Scholar 

  177. Maire G, Martin L, Michalak-Provost S, et al. Fusion of COL1A1 exon 29 with PDGFB exon 2 in a der(22)t(17;22) in a pediatric giant cell fibroblastoma with a pigmented Bednar tumor component. Evidence for age-related chromosomal pattern in dermatofibrosarcoma protuberans and related tumors. Cancer Genet Cytogenet. 2002;134:156–61.

    PubMed  CAS  Google Scholar 

  178. Sheng WQ, Hashimoto H, Okamoto S, et al. Expression of COL1A1-PDGFB fusion transcripts in superficial adult fibrosarcoma suggests a close relationship to dermatofibrosarcoma protuberans. J Pathol. 2001;194:88–94.

    PubMed  CAS  Google Scholar 

  179. Vanni R, Faa G, Dettori T, et al. A case of dermatofibrosarcoma protuberans of the vulva with a COL1A1/PDGFB fusion identical to a case of giant cell fibroblastoma. Virchows Arch. 2000;437:95–100.

    PubMed  CAS  Google Scholar 

  180. Patel KU, Szabo SS, Hernandez VS, et al. Dermatofibrosarcoma protuberans COL1A1-PDGFB fusion is identified in virtually all dermatofibrosarcoma protuberans cases when investigated by newly developed multiplex reverse transcription polymerase chain reaction and fluorescence in situ hybridization assays. Hum Pathol. 2008;39:184–93.

    PubMed  CAS  Google Scholar 

  181. McArthur GA, Demetri GD, van Oosterom A, et al. Molecular and clinical analysis of locally advanced ­dermatofibrosarcoma protuberans treated with imatinib: Imatinib Target Exploration Consortium Study B2225. J Clin Oncol. 2005;23:866–73.

    PubMed  CAS  Google Scholar 

  182. Gokden N, Dehner LP, Zhu X, et al. Dermatofibrosarcoma protuberans of the vulva and groin: detection of COL1A1-PDGFB fusion transcripts by RT-PCR. J Cutan Pathol. 2003;30:190–5.

    PubMed  Google Scholar 

  183. Maki RG, Awan RA, Dixon RH, et al. Differential sensitivity to imatinib of 2 patients with metastatic sarcoma arising from dermatofibrosarcoma protuberans. Int J Cancer. 2002;100:623–6.

    PubMed  CAS  Google Scholar 

  184. Rubin BP, Schuetze SM, Eary JF, et al. Molecular targeting of platelet-derived growth factor B by imatinib mesylate in a patient with metastatic dermatofibrosarcoma protuberans. J Clin Oncol. 2002;20:3586–91.

    PubMed  CAS  Google Scholar 

  185. McArthur G. Dermatofibrosarcoma protuberans: recent clinical progress. Ann Surg Oncol. 2007;14:2876–86.

    PubMed  Google Scholar 

  186. Coffin CM, Watterson J, Priest JR, et al. Extrapulmonary inflammatory myofibroblastic tumor (inflammatory pseudotumor). A clinicopathologic and immunohistochemical study of 84 cases. Am J Surg Pathol. 1995;19:859–72.

    PubMed  CAS  Google Scholar 

  187. Vadmal MS, Pellegrini AE. Inflammatory myofibroblastic tumor of the skin. Am J Dermatopathol. 1999;21:449–53.

    PubMed  CAS  Google Scholar 

  188. Frey J, Huerter C, Shehan J. Inflammatory pseudotumor of the skin: a case report and review of the literature. Internet J Dermatol. 2007;6(1).

    Google Scholar 

  189. Griffin CA, Hawkins AL, Dvorak C, et al. Recurrent involvement of 2p23 in inflammatory myofibroblastic tumors. Cancer Res. 1999;59:2776–80.

    PubMed  CAS  Google Scholar 

  190. Lamant L, Gascoyne RD, Duplantier MM, et al. Non-muscle myosin heavy chain (MYH9): a new partner fused to ALK in anaplastic large cell lymphoma. Genes Chromosomes Cancer. 2003;37:427–32.

    PubMed  CAS  Google Scholar 

  191. Debiec-Rychter M, Marynen P, Hagemeijer A, et al. ALK-ATIC fusion in urinary bladder inflammatory myofibroblastic tumor. Genes Chromosomes Cancer. 2003;38:187–90.

    PubMed  Google Scholar 

  192. Lawrence B, Perez-Atayde A, Hibbard MK, et al. TPM3-ALK and TPM4-ALK oncogenes in inflammatory myofibroblastic tumors. Am J Pathol. 2000;157:377–84.

    PubMed  CAS  Google Scholar 

  193. Bridge JA, Kanamori M, Ma Z, et al. Fusion of the ALK gene to the clathrin heavy chain gene, CLTC, in inflammatory myofibroblastic tumor. Am J Pathol. 2001;159:411–5.

    PubMed  CAS  Google Scholar 

  194. Reading NS, Jenson SD, Smith JK, et al. 5′-(RACE) identification of rare ALK fusion partner in anaplastic large cell lymphoma. J Mol Diagn. 2003;5:136–40.

    PubMed  CAS  Google Scholar 

  195. Coffin CM, Patel A, Perkins S, et al. ALK1 and p80 expression and chromosomal rearrangements involving 2p23 in inflammatory myofibroblastic tumor. Mod Pathol. 2001;14:569–76.

    PubMed  CAS  Google Scholar 

  196. Chan JK, Cheuk W, Shimizu M. Anaplastic lymphoma kinase expression in inflammatory pseudotumors. Am J Surg Pathol. 2001;25:761–8.

    PubMed  CAS  Google Scholar 

  197. Cook JR, Dehner LP, Collins MH, et al. Anaplastic lymphoma kinase (ALK) expression in the inflammatory myofibroblastic tumor: a comparative immunohistochemical study. Am J Surg Pathol. 2001;25:1364–71.

    PubMed  CAS  Google Scholar 

  198. Kazmierczak B, Dal Cin P, Sciot R, et al. Inflammatory myofibroblastic tumor with HMGIC rearrangement. Cancer Genet Cytogenet. 1999;112:156–60.

    PubMed  CAS  Google Scholar 

  199. Chan JK, Buchanan R, Fletcher CD. Sarcomatoid variant of anaplastic large-cell Ki-1 lymphoma. Am J Surg Pathol. 1990;14:983–8.

    PubMed  CAS  Google Scholar 

  200. Stein H, Foss HD, Durkop H, et al. CD30(+) anaplastic large cell lymphoma: a review of its histopathologic, genetic, and clinical features. Blood. 2000;96:3681–95.

    PubMed  CAS  Google Scholar 

  201. Suzuki R, Seto M, Nakamura S, et al. Sarcomatoid variant of anaplastic large cell lymphoma with cytoplasmic ALK and alpha-smooth muscle actin expression: a mimic of inflammatory myofibroblastic tumor. Am J Pathol. 2001;159:383–4.

    PubMed  CAS  Google Scholar 

  202. Cools J, Wlodarska I, Somers R, et al. Identification of novel fusion partners of ALK, the anaplastic lymphoma kinase, in anaplastic large-cell lymphoma and inflammatory myofibroblastic tumor. Genes Chromosomes Cancer. 2002;34:354–62.

    PubMed  CAS  Google Scholar 

  203. Ma Z, Hill DA, Collins MH, et al. Fusion of ALK to the Ran-binding protein 2 (RANBP2) gene in inflammatory myofibroblastic tumor. Genes Chromosomes Cancer. 2003;37:98–105.

    PubMed  CAS  Google Scholar 

  204. Kapusta LR, Weiss MA, Ramsay J, et al. Inflammatory myofibroblastic tumors of the kidney: a clinicopathologic and immunohistochemical study of 12 cases. Am J Surg Pathol. 2003;27:658–66.

    PubMed  Google Scholar 

  205. Cessna MH, Zhou H, Sanger WG, et al. Expression of ALK1 and p80 in inflammatory myofibroblastic tumor and its mesenchymal mimics: a study of 135 cases. Mod Pathol. 2002;15:931–8.

    PubMed  Google Scholar 

  206. Koletsa T, Hytiroglou P, Semoglou C, et al. Angiomatoid fibrous histiocytoma with cystic structures of sweat duct origin. Pathol Int. 2007;57:513–6.

    PubMed  Google Scholar 

  207. Rossi S, Szuhai K, Ijszenga M, et al. EWSR1-CREB1 and EWSR1-ATF1 fusion genes in angiomatoid fibrous histiocytoma. Clin Cancer Res. 2007;13:7322–8.

    PubMed  CAS  Google Scholar 

  208. Waters BL, Panagopoulos I, Allen EF. Genetic characterization of angiomatoid fibrous histiocytoma identifies fusion of the FUS and ATF-1 genes induced by a chromosomal translocation involving bands 12q13 and 16p11. Cancer Genet Cytogenet. 2000;121:109–16.

    PubMed  CAS  Google Scholar 

  209. Raddaoui E, Donner LR, Panagopoulos I. Fusion of the FUS and ATF1 genes in a large, deep-seated angiomatoid fibrous histiocytoma. Diagn Mol Pathol. 2002;11:157–62.

    PubMed  Google Scholar 

  210. Dunham C, Hussong J, Seiff M, et al. Primary intracerebral angiomatoid fibrous histiocytoma: report of a case with a t(12;22)(q13;q12) causing type 1 fusion of the EWS and ATF-1 genes. Am J Surg Pathol. 2008;32:478–84.

    PubMed  Google Scholar 

  211. de Leeuw B, Balemans M, Geurts van Kessel A. A novel Kruppel-associated box containing the SSX gene (SSX3) on the human X chromosome is not implicated in t(X;18)-positive synovial sarcomas. Cytogenet Cell Genet. 1996;73:179–83.

    PubMed  Google Scholar 

  212. Crew AJ, Clark J, Fisher C, et al. Fusion of SYT to two genes, SSX1 and SSX2, encoding proteins with homology to the Kruppel-associated box in human synovial sarcoma. EMBO J. 1995;14:2333–40.

    PubMed  CAS  Google Scholar 

  213. de Leeuw B, Balemans M, Olde Weghuis D, et al. Identification of two alternative fusion genes, SYT-SSX1 and SYT-SSX2, in t(X;18)(p11.2;q11.2)-positive synovial sarcomas. Hum Mol Genet. 1995;4:1097–9.

    PubMed  Google Scholar 

  214. Chand A, Clark J, Cooper CS, et al. Long-range organization of reiterated sequences, including the SSX1 cDNA at the OATL1 cluster in Xp11.23. Genomics. 1995;30:545–52.

    PubMed  CAS  Google Scholar 

  215. Antonescu CR, Kawai A, Leung DH, et al. Strong association of SYT-SSX fusion type and morphologic epithelial differentiation in synovial sarcoma. Diagn Mol Pathol. 2000;9:1–8.

    PubMed  CAS  Google Scholar 

  216. de Leeuw B, Suijkerbuijk RF, Olde Weghuis D, et al. Distinct Xp11.2 breakpoint regions in synovial sarcoma revealed by metaphase and interphase FISH: relationship to histologic subtypes. Cancer Genet Cytogenet. 1994;73:89–94.

    PubMed  Google Scholar 

  217. Fligman I, Lonardo F, Jhanwar SC, et al. Molecular diagnosis of synovial sarcoma and characterization of a variant SYT-SSX2 fusion transcript. Am J Pathol. 1995;147:1592–9.

    PubMed  CAS  Google Scholar 

  218. Safar A, Wickert R, Nelson M, et al. Characterization of a variant SYT-SSX1 synovial sarcoma fusion transcript. Diagn Mol Pathol. 1998;7:283–7.

    PubMed  CAS  Google Scholar 

  219. O’Sullivan MJ, Humphrey PA, Dehner LP, et al. t(X;18) reverse transcriptase-polymerase chain reaction demonstrating a variant transcript. J Mol Diagn. 2002;4:178–80.

    PubMed  Google Scholar 

  220. Lim FL, Soulez M, Koczan D, et al. A KRAB-related domain and a novel transcription repression domain in proteins encoded by SSX genes that are disrupted in human sarcomas. Oncogene. 1998;17:2013–8.

    PubMed  CAS  Google Scholar 

  221. Yang P, Hirose T, Hasegawa T, et al. Dual-colour fluorescence in situ hybridization analysis of synovial sarcoma. J Pathol. 1998;184:7–13.

    PubMed  CAS  Google Scholar 

  222. Poteat HT, Corson JM, Fletcher JA. Detection of chromosome 18 rearrangement in synovial sarcoma by fluorescence in situ hybridization. Cancer Genet Cytogenet. 1995;84:76–81.

    PubMed  CAS  Google Scholar 

  223. Hill DA, Riedley SE, Patel AR, et al. Real-time polymerase chain reaction as an aid for the detection of SYT-SSX1 and SYT-SSX2 transcripts in fresh and archival pediatric synovial sarcoma specimens: report of 25 cases from St. Jude Children’s Research Hospital. Pediatr Dev Pathol. 2003;6:24–34.

    PubMed  CAS  Google Scholar 

  224. Argani P, Zakowski MF, Klimstra DS, et al. Detection of the SYT-SSX chimeric RNA of synovial sarcoma in paraffin-embedded tissue and its application in problematic cases. Mod Pathol. 1998;11:65–71.

    PubMed  CAS  Google Scholar 

  225. Shipley J, Crew J, Birdsall S, et al. Interphase fluorescence in situ hybridization and reverse transcription polymerase chain reaction as a diagnostic aid for synovial sarcoma. Am J Pathol. 1996;148:559–67.

    PubMed  CAS  Google Scholar 

  226. Lee W, Han K, Harris CP, et al. Use of FISH to detect chromosomal translocations and deletions. Analysis of chromosome rearrangement in synovial sarcoma cells from paraffin-embedded specimens. Am J Pathol. 1993;143:15–9.

    PubMed  CAS  Google Scholar 

  227. O’Sullivan MJ, Kyriakos M, Zhu X, et al. Malignant peripheral nerve sheath tumors with t(X;18). A pathologic and molecular genetic study. Mod Pathol. 2000;13:1336–46.

    PubMed  Google Scholar 

  228. Vang R, Biddle DA, Harrison WR, et al. Malignant peripheral nerve sheath tumor with a t(X;18). Arch Pathol Lab Med. 2000;124:864–7.

    PubMed  CAS  Google Scholar 

  229. Yang K, Lui WO, Xie Y, et al. Co-existence of SYT-SSX1 and SYT-SSX2 fusions in synovial sarcomas. Oncogene. 2002;21:4181–90.

    PubMed  CAS  Google Scholar 

  230. Geurts van Kessel A, de Bruijn D, Hermsen L, et al. Masked t(X;18)(p11;q11) in a biphasic synovial sarcoma revealed by FISH and RT-PCR. Genes Chromosomes Cancer. 1998;23:198–201.

    Google Scholar 

  231. Bijwaard KE, Fetsch JF, Przygodzki R, et al. Detection of SYT-SSX fusion transcripts in archival synovial ­sarcomas by real-time reverse transcriptase-polymerase chain reaction. J Mol Diagn. 2002;4:59–64.

    PubMed  CAS  Google Scholar 

  232. Surace C, Panagopoulos I, Palsson E, et al. A novel FISH assay for SS18-SSX fusion type in synovial sarcoma. Lab Invest. 2004;84:1185–92.

    PubMed  CAS  Google Scholar 

  233. Inagaki H, Nagasaka T, Otsuka T, et al. Association of SYT-SSX fusion types with proliferative activity and prognosis in synovial sarcoma. Mod Pathol. 2000;13:482–8.

    PubMed  CAS  Google Scholar 

  234. Panagopoulos I, Mertens F, Isaksson M, et al. Clinical impact of molecular and cytogenetic findings in synovial sarcoma. Genes Chromosomes Cancer. 2001;31:362–72.

    PubMed  CAS  Google Scholar 

  235. Kawai A, Woodruff J, Healey JH, et al. SYT-SSX gene fusion as a determinant of morphology and prognosis in synovial sarcoma. N Engl J Med. 1998;338:153–60.

    PubMed  CAS  Google Scholar 

  236. Ladanyi M, Antonescu CR, Leung DH, et al. Impact of SYT-SSX fusion type on the clinical behavior of synovial sarcoma: a multi-institutional retrospective study of 243 patients. Cancer Res. 2002;62:135–40.

    PubMed  CAS  Google Scholar 

  237. Skytting BT, Szymanska J, Aalto Y, et al. Clinical importance of genomic imbalances in synovial sarcoma evaluated by comparative genomic hybridization. Cancer Genet Cytogenet. 1999;115:39–46.

    PubMed  CAS  Google Scholar 

  238. Willeke F, Mechtersheimer G, Schwarzbach M, et al. Detection of SYT-SSX1/2 fusion transcripts by reverse transcriptase-polymerase chain reaction (RT-PCR) is a valuable diagnostic tool in synovial sarcoma. Eur J Cancer. 1998;34:2087–93.

    PubMed  CAS  Google Scholar 

  239. Hashimoto N, Myoui A, Araki N, et al. Detection of SYT-SSX fusion gene in peripheral blood from a patient with synovial sarcoma. Am J Surg Pathol. 2001;25:406–10.

    PubMed  CAS  Google Scholar 

  240. Nakasone J, Shimizu T, Gomyo H, et al. Assessment of microinvasion with reverse transcriptase polymerase chain reaction in a case of synovial sarcoma. J Orthop Sci. 2004;9:162–5.

    PubMed  Google Scholar 

  241. He R, Patel RM, Alkan S, et al. Immunostaining for SYT protein discriminates synovial sarcoma from other soft tissue tumors: analysis of 146 cases. Mod Pathol. 2007;20:522–8.

    PubMed  CAS  Google Scholar 

  242. Morgan MB, Stevens L, Patterson J, et al. Cutaneous epithelioid malignant nerve sheath tumor with rhabdoid features: a histologic, immunohistochemical, and ultrastructural study of three cases. J Cutan Pathol. 2000;27:529–34.

    PubMed  CAS  Google Scholar 

  243. de Alava E. Transcripts, transcripts, everywhere. Adv Anat Pathol. 2001;8:264–72.

    PubMed  Google Scholar 

  244. van de Rijn M, Barr FG, Xiong QB, et al. Poorly differentiated synovial sarcoma: an analysis of clinical, pathologic, and molecular genetic features. Am J Surg Pathol. 1999;23:106–12.

    PubMed  Google Scholar 

  245. Folpe AL, Schmidt RA, Chapman D, et al. Poorly differentiated synovial sarcoma: immunohistochemical distinction from primitive neuroectodermal tumors and high-grade malignant peripheral nerve sheath tumors. Am J Surg Pathol. 1998;22:673–82.

    PubMed  CAS  Google Scholar 

  246. Guillou L, Wadden CF, Kraus MD, et al. S-100 protein reactivity in synovial sarcomas-a potentially frequent diagnostic pitfall: immunohistochemical analysis of 100 cases. Appl Immunohistochem. 1996;4:167–75.

    CAS  Google Scholar 

  247. Nagayama S, Katagiri T, Tsunoda T, et al. Genome-wide analysis of gene expression in synovial sarcomas using a cDNA microarray. Cancer Res. 2002;62:5859–66.

    PubMed  CAS  Google Scholar 

  248. Yang J, Du X, Chen K, et al. Genetic aberrations in soft tissue leiomyosarcoma. Cancer Lett. 2009;275:1–8.

    PubMed  CAS  Google Scholar 

  249. Badeloe S, van Geest AJ, van Marion AM, et al. Absence of fumarate hydratase mutation in a family with cutaneous leiomyosarcoma and renal cancer. Int J Dermatol. 2008;47 Suppl 1:18–20.

    PubMed  Google Scholar 

  250. Holst VA, Junkins-Hopkins JM, Elenitsas R. Cutaneous smooth muscle neoplasms: clinical features, histologic findings, and treatment options. J Am Acad Dermatol. 2002;46:477–90. quiz, 91-4.

    PubMed  Google Scholar 

  251. Sandberg AA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: leiomyosarcoma. Cancer Genet Cytogenet. 2005;161:1–19.

    PubMed  Google Scholar 

  252. Wang R, Lu YJ, Fisher C, et al. Characterization of chromosome aberrations associated with soft-tissue leiomyosarcomas by twenty-four-color karyotyping and comparative genomic hybridization analysis. Genes Chromosomes Cancer. 2001;31:54–64.

    PubMed  Google Scholar 

  253. Mandahl N, Fletcher CD, Dal Cin P, et al. Comparative cytogenetic study of spindle cell and pleomorphic leiomyosarcomas of soft tissues: a report from the CHAMP Study Group. Cancer Genet Cytogenet. 2000;116:66–73.

    PubMed  CAS  Google Scholar 

  254. Tomlinson IP, Alam NA, Rowan AJ, et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet. 2002;30:406–10.

    PubMed  CAS  Google Scholar 

  255. Velagaleti GV, Tapper JK, Panova NE, et al. Cytogenetic findings in a case of nodular fasciitis of subclavicular region. Cancer Genet Cytogenet. 2003;141:160–3.

    PubMed  CAS  Google Scholar 

  256. Donner LR, Silva T, Dobin SM. Clonal rearrangement of 15p11.2, 16p11.2, and 16p13.3 in a case of nodular fasciitis: additional evidence favoring nodular fasciitis as a benign neoplasm and not a reactive tumefaction. Cancer Genet Cytogenet. 2002;139:138–40.

    PubMed  CAS  Google Scholar 

  257. Weibolt VM, Buresh CJ, Roberts CA, et al. Involvement of 3q21 in nodular fasciitis. Cancer Genet Cytogenet. 1998;106:177–9.

    PubMed  CAS  Google Scholar 

  258. Meng GZ, Zhang HY, Zhang Z, et al. Myofibroblastic sarcoma vs nodular fasciitis: a comparative study of chromosomal imbalances. Am J Clin Pathol. 2009;131:701–9.

    PubMed  Google Scholar 

  259. Michie BA, Reid RP, Fallowfield ME. Aneuploidy in atypical fibroxanthoma: DNA content quantification of 10 cases by image analysis. J Cutan Pathol. 1994;21:404–7.

    PubMed  CAS  Google Scholar 

  260. Worrell JT, Ansari MQ, Ansari SJ, et al. Atypical fibroxanthoma: DNA ploidy analysis of 14 cases with possible histogenetic implications. J Cutan Pathol. 1993;20:211–5.

    PubMed  CAS  Google Scholar 

  261. Oshiro Y, Fukuda T, Tsuneyoshi M. Atypical fibroxanthoma versus benign and malignant fibrous histiocytoma. A comparative study of their proliferative activity using MIB-1, DNA flow cytometry, and p53 immunostaining. Cancer. 1995;75:1128–34.

    PubMed  CAS  Google Scholar 

  262. Mihic-Probst D, Zhao J, Saremaslani P, et al. CGH analysis shows genetic similarities and differences in atypical fibroxanthoma and undifferentiated high grade pleomorphic sarcoma. Anticancer Res. 2004;24:19–26.

    PubMed  CAS  Google Scholar 

  263. Hui P, Glusac EJ, Sinard JH, et al. Clonal analysis of cutaneous fibrous histiocytoma (dermatofibroma). J Cutan Pathol. 2002;29:385–9.

    PubMed  Google Scholar 

  264. Chen TC, Kuo T, Chan HL. Dermatofibroma is a clonal proliferative disease. J Cutan Pathol. 2000;27:36–9.

    PubMed  CAS  Google Scholar 

  265. Laskin WB, Miettinen M, Fetsch JF. Infantile digital fibroma/fibromatosis: a clinicopathologic and immunohistochemical study of 69 tumors from 57 patients with long-term follow-up. Am J Surg Pathol. 2009;33:1–13.

    PubMed  Google Scholar 

  266. Stenman G, Nadal N, Persson S, et al. del(6)(q12q15) as the sole cytogenetic anomaly in a case of solitary infantile myofibromatosis. Oncol Rep. 1999;6:1101–4.

    PubMed  CAS  Google Scholar 

  267. Sirvent N, Perrin C, Lacour JP, et al. Monosomy 9q and trisomy 16q in a case of congenital solitary infantile myofibromatosis. Virchows Arch. 2004;445:537–40.

    PubMed  Google Scholar 

  268. Sheng WQ, Hisaoka M, Okamoto S, et al. Congenital-infantile fibrosarcoma. A clinicopathologic study of 10 cases and molecular detection of the ETV6-NTRK3 fusion transcripts using paraffin-embedded tissues. Am J Clin Pathol. 2001;115:348–55.

    PubMed  CAS  Google Scholar 

  269. Alaggio R, Barisani D, Ninfo V, et al. Morphologic overlap between infantile myofibromatosis and infantile fibrosarcoma: a pitfall in diagnosis. Pediatr Dev Pathol. 2008;11:355–62.

    PubMed  Google Scholar 

  270. Dei Tos AP, Mentzel T, Fletcher CD. Primary liposarcoma of the skin: a rare neoplasm with unusual high grade features. Am J Dermatopathol. 1998;20:332–8.

    Google Scholar 

  271. Hibbard MK, Kozakewich HP, Dal Cin P, et al. PLAG1 fusion oncogenes in lipoblastoma. Cancer Res. 2000;60:4869–72.

    PubMed  CAS  Google Scholar 

  272. Astrom A, D’Amore ES, Sainati L, et al. Evidence of involvement of the PLAG1 gene in lipoblastomas. Int J Oncol. 2000;16:1107–10.

    PubMed  CAS  Google Scholar 

  273. Gisselsson D, Hibbard MK, Dal Cin P, et al. PLAG1 alterations in lipoblastoma: involvement in varied mesenchymal cell types and evidence for alternative oncogenic mechanisms. Am J Pathol. 2001;159:955–62.

    PubMed  CAS  Google Scholar 

  274. Sciot R, De Wever I, Debiec-Rychter M. Lipoblastoma in a 23-year-old male: distinction from atypical lipomatous tumor using cytogenetic and fluorescence in-situ hybridization analysis. Virchows Arch. 2003;442:468–71.

    PubMed  Google Scholar 

  275. Ropke A, Kalinski T, Kluba U, et al. PLAG1 activation in lipoblastoma coinciding with low-level amplification of a derivative chromosome 8 with a deletion del(8)(q13q21.2). Cytogenet Genome Res. 2007;119:33–8.

    PubMed  CAS  Google Scholar 

  276. Van Dyck F, Declercq J, Braem CV, et al. PLAG1, the prototype of the PLAG gene family: versatility in tumour development (review). Int J Oncol. 2007;30:765–74.

    PubMed  Google Scholar 

  277. Kas K, Voz ML, Roijer E, et al. Promoter swapping between the genes for a novel zinc finger protein and beta-catenin in pleiomorphic adenomas with t(3;8)(p21;q12) translocations. Nat Genet. 1997;15:170–4.

    PubMed  CAS  Google Scholar 

  278. Voz ML, Astrom AK, Kas K, et al. The recurrent translocation t(5;8)(p13;q12) in pleomorphic adenomas results in upregulation of PLAG1 gene expression under control of the LIFR promoter. Oncogene. 1998;16:1409–16.

    PubMed  CAS  Google Scholar 

  279. Astrom AK, Voz ML, Kas K, et al. Conserved mechanism of PLAG1 activation in salivary gland tumors with and without chromosome 8q12 abnormalities: identification of SII as a new fusion partner gene. Cancer Res. 1999;59:918–23.

    PubMed  CAS  Google Scholar 

  280. Dal Cin P, Kools P, Sciot R, et al. Cytogenetic and fluorescence in situ hybridization investigation of ring chromosomes characterizing a specific pathologic subgroup of adipose tissue tumors. Cancer Genet Cytogenet. 1993;68:85–90.

    Google Scholar 

  281. Forus A, Bjerkehagen B, Sirvent N, et al. A well-differentiated liposarcoma with a new type of chromosome 12-derived markers. Cancer Genet Cytogenet. 2001;131:13–8.

    PubMed  CAS  Google Scholar 

  282. Pedeutour F, Forus A, Coindre JM, et al. Structure of the supernumerary ring and giant rod chromosomes in adipose tissue tumors. Genes Chromosomes Cancer. 1999;24:30–41.

    PubMed  CAS  Google Scholar 

  283. Rubin BP, Dal Cin P. The genetics of lipomatous tumors. Semin Diagn Pathol. 2001;18:286–93.

    PubMed  CAS  Google Scholar 

  284. Mandahl N, Hoglund M, Mertens F, et al. Cytogenetic aberrations in 188 benign and borderline adipose tissue tumors. Genes Chromosomes Cancer. 1994;9:207–15.

    PubMed  CAS  Google Scholar 

  285. Nilsson M, Meza-Zepeda LA, Mertens F, et al. Amplification of chromosome 1 sequences in lipomatous tumors and other sarcomas. Int J Cancer. 2004;109:363–9.

    PubMed  CAS  Google Scholar 

  286. Sandberg AA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: lipoma. Cancer Genet Cytogenet. 2004;150:93–115.

    PubMed  CAS  Google Scholar 

  287. Nakayama T, Toguchida J, Wadayama B, et al. MDM2 gene amplification in bone and soft-tissue tumors: association with tumor progression in differentiated adipose-tissue tumors. Int J Cancer. 1995;64:342–6.

    PubMed  CAS  Google Scholar 

  288. Nilbert M, Rydholm A, Mitelman F, et al. Characterization of the 12q13-15 amplicon in soft tissue tumors. Cancer Genet Cytogenet. 1995;83:32–6.

    PubMed  CAS  Google Scholar 

  289. Storlazzi CT, Mertens F, Domanski H, et al. Ring chromosomes and low-grade gene amplification in an atypical lipomatous tumor with minimal nuclear atypia. Int J Oncol. 2003;23:67–71.

    PubMed  CAS  Google Scholar 

  290. Weaver J, Downs-Kelly E, Goldblum JR, et al. Fluorescence in situ hybridization for MDM2 gene amplification as a diagnostic tool in lipomatous neoplasms. Mod Pathol. 2008;21:943–9.

    PubMed  CAS  Google Scholar 

  291. Sirvent N, Coindre JM, Maire G, et al. Detection of MDM2-CDK4 amplification by fluorescence in situ hybridization in 200 paraffin-embedded tumor samples: utility in diagnosing adipocytic lesions and comparison with immunohistochemistry and real-time PCR. Am J Surg Pathol. 2007;31:1476–89.

    PubMed  Google Scholar 

  292. Shimada S, Ishizawa T, Ishizawa K, et al. The value of MDM2 and CDK4 amplification levels using real-time polymerase chain reaction for the differential diagnosis of liposarcomas and their histologic mimickers. Hum Pathol. 2006;37:1123–9.

    PubMed  CAS  Google Scholar 

  293. Hostein I, Pelmus M, Aurias A, et al. Evaluation of MDM2 and CDK4 amplification by real-time PCR on paraffin wax-embedded material: a potential tool for the diagnosis of atypical lipomatous tumours/well-differentiated liposarcomas. J Pathol. 2004;202:95–102.

    PubMed  CAS  Google Scholar 

  294. Miyajima K, Tamiya S, Oda Y, et al. Relative quantitation of p53 and MDM2 gene expression in leiomyosarcoma; real-time semi-quantitative reverse transcription-polymerase chain reaction. Cancer Lett. 2001;164:177–88.

    PubMed  CAS  Google Scholar 

  295. Boltze C, Schneider-Stock R, Jager V, et al. Distinction between lipoma and liposarcoma by MDM2 alterations: a case report of simultaneously occurring tumors and review of the literature. Pathol Res Pract. 2001;197:563–8.

    PubMed  CAS  Google Scholar 

  296. Pilotti S, Della GT, Mezzelani A, et al. The expression of MDM2/CDK4 gene product in the differential diagnosis of well differentiated liposarcoma and large deep-seated lipoma. Br J Cancer. 2000;82:1271–5.

    PubMed  CAS  Google Scholar 

  297. Binh MB, Sastre-Garau X, Guillou L, et al. MDM2 and CDK4 immunostainings are useful adjuncts in diagnosing well-differentiated and dedifferentiated liposarcoma subtypes: a comparative analysis of 559 soft tissue neoplasms with genetic data. Am J Surg Pathol. 2005;29:1340–7.

    PubMed  Google Scholar 

  298. Cordon-Cardo C, Latres E, Drobnjak M, et al. Molecular abnormalities of mdm2 and p53 genes in adult soft tissue sarcomas. Cancer Res. 1994;54:794–9.

    PubMed  CAS  Google Scholar 

  299. Nilbert M, Rydholm A, Willen H, et al. MDM2 gene amplification correlates with ring chromosome in soft tissue tumors. Genes Chromosomes Cancer. 1994;9:261–5.

    PubMed  CAS  Google Scholar 

  300. Reid AH, Tsai MM, Venzon DJ, et al. MDM2 amplification, P53 mutation, and accumulation of the P53 gene product in malignant fibrous histiocytoma. Diagn Mol Pathol. 1996;5:65–73.

    PubMed  CAS  Google Scholar 

  301. Meis-Kindblom JM, Sjogren H, Kindblom LG, et al. Cytogenetic and molecular genetic analyses of liposarcoma and its soft tissue simulators: recognition of new variants and differential diagnosis. Virchows Arch. 2001;439:141–51.

    PubMed  CAS  Google Scholar 

  302. Pilotti S, Della GT, Lavarino C, et al. Distinct mdm2/p53 expression patterns in liposarcoma subgroups: implications for different pathogenetic mechanisms. J Pathol. 1997;181:14–24.

    PubMed  CAS  Google Scholar 

  303. Sirvent N, Forus A, Lescaut W, et al. Characterization of centromere alterations in liposarcomas. Genes Chromosomes Cancer. 2000;29:117–29.

    PubMed  CAS  Google Scholar 

  304. Horvai AE, Schaefer JT, Nakakura EK, et al. Immunostaining for peroxisome proliferator gamma distinguishes dedifferentiated liposarcoma from other retroperitoneal sarcomas. Mod Pathol. 2008;21:517–24.

    PubMed  CAS  Google Scholar 

  305. Dei Tos AP, Doglioni C, Piccinin S, et al. Molecular abnormalities of the p53 pathway in dedifferentiated liposarcoma. J Pathol. 1997;181:8–13.

    CAS  Google Scholar 

  306. Schneider-Stock R, Walter H, Radig K, et al. MDM2 amplification and loss of heterozygosity at Rb and p53 genes: no simultaneous alterations in the oncogenesis of liposarcomas. J Cancer Res Clin Oncol. 1998;124:532–40.

    PubMed  CAS  Google Scholar 

  307. Takahira T, Oda Y, Tamiya S, et al. Alterations of the RB1 gene in dedifferentiated liposarcoma. Mod Pathol. 2005;18:1461–70.

    PubMed  CAS  Google Scholar 

  308. Crozat A, Aman P, Mandahl N, et al. Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature. 1993;363:640–4.

    PubMed  CAS  Google Scholar 

  309. Rabbitts TH, Forster A, Larson R, et al. Fusion of the dominant negative transcription regulator CHOP with a novel gene FUS by translocation t(12;16) in malignant liposarcoma. Nat Genet. 1993;4:175–80.

    PubMed  CAS  Google Scholar 

  310. Tallini G, Akerman M, Dal Cin P, et al. Combined morphologic and karyotypic study of 28 myxoid liposarcomas. Implications for a revised morphologic typing (a report from the CHAMP Group). Am J Surg Pathol. 1996;20:1047–55.

    PubMed  CAS  Google Scholar 

  311. Kuroda M, Ishida T, Horiuchi H, et al. Chimeric TLS/FUS-CHOP gene expression and the heterogeneity of its junction in human myxoid and round cell liposarcoma. Am J Pathol. 1995;147:1221–7.

    PubMed  CAS  Google Scholar 

  312. Panagopoulos I, Mandahl N, Mitelman F, et al. Two distinct FUS breakpoint clusters in myxoid liposarcoma and acute myeloid leukemia with the translocations t(12;16) and t(16;21). Oncogene. 1995;11:1133–7.

    PubMed  CAS  Google Scholar 

  313. Panagopoulos I, Mandahl N, Ron D, et al. Characterization of the CHOP breakpoints and fusion transcripts in myxoid liposarcomas with the 12;16 translocation. Cancer Res. 1994;54:6500–3.

    PubMed  CAS  Google Scholar 

  314. Antonescu CR, Tschernyavsky SJ, Decuseara R, et al. Prognostic impact of P53 status, TLS-CHOP fusion transcript structure, and histological grade in myxoid liposarcoma: a molecular and clinicopathologic study of 82 cases. Clin Cancer Res. 2001;7:3977–87.

    PubMed  CAS  Google Scholar 

  315. Xiang H, Wang J, Hisaoka M, et al. Characteristic sequence motifs located at the genomic breakpoints of the translocation t(12;16) and t(12;22) in myxoid liposarcoma. Pathology. 2008;40:547–52.

    PubMed  CAS  Google Scholar 

  316. Bode-Lesniewska B, Frigerio S, Exner U, et al. Relevance of translocation type in myxoid liposarcoma and identification of a novel EWSR1-DDIT3 fusion. Genes Chromosomes Cancer. 2007;46:961–71.

    PubMed  CAS  Google Scholar 

  317. Dal Cin P, Sciot R, Panagopoulos I, et al. Additional evidence of a variant translocation t(12;22) with EWS/CHOP fusion in myxoid liposarcoma: clinicopathological features. J Pathol. 1997;182:437–41.

    Google Scholar 

  318. Hosaka T, Nakashima Y, Kusuzaki K, et al. A novel type of EWS-CHOP fusion gene in two cases of myxoid liposarcoma. J Mol Diagn. 2002;4:164–71.

    PubMed  CAS  Google Scholar 

  319. Panagopoulos I, Hoglund M, Mertens F, et al. Fusion of the EWS and CHOP genes in myxoid liposarcoma. Oncogene. 1996;12:489–94.

    PubMed  CAS  Google Scholar 

  320. Adelmant G, Gilbert JD, Freytag SO. Human translocation liposarcoma-CCAAT/enhancer binding protein (C/EBP) homologous protein (TLS-CHOP) oncoprotein prevents adipocyte differentiation by directly interfering with C/EBPbeta function. J Biol Chem. 1998;273:15574–81.

    PubMed  CAS  Google Scholar 

  321. Kuroda M, Ishida T, Takanashi M, et al. Oncogenic transformation and inhibition of adipocytic conversion of preadipocytes by TLS/FUS-CHOP type II chimeric protein. Am J Pathol. 1997;151:735–44.

    PubMed  CAS  Google Scholar 

  322. Ron D, Habener JF. CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes Dev. 1992;6:439–53.

    PubMed  CAS  Google Scholar 

  323. Aoki T, Hisaoka M, Kouho H, et al. Interphase cytogenetic analysis of myxoid soft tissue tumors by fluorescence in situ hybridization and DNA flow cytometry using paraffin-embedded tissue. Cancer. 1997;79:284–93.

    PubMed  CAS  Google Scholar 

  324. Mezzelani A, Sozzi G, Pierotti MA, et al. Rapid differential diagnosis of myxoid liposarcoma by fluorescence in situ hybridisation on cytological preparations. Clin Mol Pathol. 1996;49:M308–9.

    PubMed  CAS  Google Scholar 

  325. Downs-Kelly E, Goldblum JR, Patel RM, et al. The utility of fluorescence in situ hybridization (FISH) in the diagnosis of myxoid soft tissue neoplasms. Am J Surg Pathol. 2008;32:8–13.

    PubMed  Google Scholar 

  326. Birch NC, Antonescu CR, Nelson M, et al. Inconspicuous insertion 22;12 in myxoid/round cell liposarcoma accompanied by the secondary structural abnormality der(16)t(1;16). J Mol Diagn. 2003;5:191–4.

    PubMed  Google Scholar 

  327. Antonescu CR, Elahi A, Humphrey M, et al. Specificity of TLS-CHOP rearrangement for classic myxoid/round cell liposarcoma: absence in predominantly myxoid well-differentiated liposarcomas. J Mol Diagn. 2000;2:132–8.

    PubMed  CAS  Google Scholar 

  328. Fletcher CD, Akerman M, Dal Cin P, et al. Correlation between clinicopathological features and karyotype in lipomatous tumors. A report of 178 cases from the Chromosomes and Morphology (CHAMP) Collaborative Study Group. Am J Pathol. 1996;148:623–30.

    PubMed  CAS  Google Scholar 

  329. Rosai J, Akerman M, Dal Cin P, et al. Combined morphologic and karyotypic study of 59 atypical lipomatous tumors. Evaluation of their relationship and differential diagnosis with other adipose tissue tumors (a report of the CHAMP Study Group). Am J Surg Pathol. 1996;20:1182–9.

    PubMed  CAS  Google Scholar 

  330. Willeke F, Ridder R, Mechtersheimer G, et al. Analysis of FUS-CHOP fusion transcripts in different types of soft tissue liposarcoma and their diagnostic implications. Clin Cancer Res. 1998;4:1779–84.

    PubMed  CAS  Google Scholar 

  331. Panagopoulos I, Aman P, Mertens F, et al. Genomic PCR detects tumor cells in peripheral blood from patients with myxoid liposarcoma. Genes Chromosomes Cancer. 1996;17:102–7.

    PubMed  CAS  Google Scholar 

  332. Hengge UR, Ruzicka T, Tyring SK, et al. Update on Kaposi’s sarcoma and other HHV8 associated diseases. Part 1: epidemiology, environmental predispositions, clinical manifestations, and therapy. Lancet Infect Dis. 2002;2:281–92.

    PubMed  Google Scholar 

  333. Chang Y, Cesarman E, Pessin MS, et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science. 1994;266:1865–9.

    PubMed  CAS  Google Scholar 

  334. Verma SC, Robertson ES. Molecular biology and pathogenesis of Kaposi sarcoma-associated herpesvirus. FEMS Microbiol Lett. 2003;222:155–63.

    PubMed  CAS  Google Scholar 

  335. Schulz TF. The pleiotropic effects of Kaposi’s sarcoma herpesvirus. J Pathol. 2006;208:187–98.

    PubMed  CAS  Google Scholar 

  336. Dictor M, Rambech E, Way D, et al. Human herpesvirus 8 (Kaposi’s sarcoma-associated herpesvirus) DNA in Kaposi’s sarcoma lesions, AIDS Kaposi’s sarcoma cell lines, endothelial Kaposi’s sarcoma simulators, and the skin of immunosuppressed patients. Am J Pathol. 1996;148:2009–16.

    PubMed  CAS  Google Scholar 

  337. Kazakov DV, Prinz BM, Michaelis S, et al. Study of HHV-8 DNA sequences in archival biopsies from lesional skin of Kaposi’s sarcoma, various mesenchymal tumors and related reactive conditions. J Cutan Pathol. 2002;29:279–81.

    PubMed  Google Scholar 

  338. Moore PS, Chang Y. Detection of herpesvirus-like DNA sequences in Kaposi’s sarcoma in patients with and without HIV infection. N Engl J Med. 1995;332:1181–5.

    PubMed  CAS  Google Scholar 

  339. Hammock L, Reisenauer A, Wang W, et al. Latency-associated nuclear antigen expression and human herpesvirus-8 polymerase chain reaction in the evaluation of Kaposi sarcoma and other vascular tumors in HIV-positive patients. Mod Pathol. 2005;18:463–8.

    PubMed  CAS  Google Scholar 

  340. Nuovo M, Nuovo G. Utility of HHV8 RNA detection for differentiating Kaposi’s sarcoma from its mimics. J Cutan Pathol. 2001;28:248–55.

    PubMed  CAS  Google Scholar 

  341. Cesarman E, Chang Y, Moore PS, et al. Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med. 1995;332:1186–91.

    PubMed  CAS  Google Scholar 

  342. Dupin N, Fisher C, Kellam P, et al. Distribution of human herpesvirus-8 latently infected cells in Kaposi’s sarcoma, multicentric Castleman’s disease, and primary effusion lymphoma. Proc Natl Acad Sci USA. 1999;96:4546–51.

    PubMed  CAS  Google Scholar 

  343. Adiguzel C, Bozkurt SU, Kaygusuz I, et al. Human herpes virus 8-unrelated primary effusion lymphoma-like lymphoma: report of a rare case and review of the literature. APMIS. 2009;117:222–9.

    PubMed  Google Scholar 

  344. Du MQ, Bacon CM, Isaacson PG. Kaposi sarcoma-associated herpesvirus/human herpesvirus 8 and lymphoproliferative disorders. J Clin Pathol. 2007;60:1350–7.

    PubMed  Google Scholar 

  345. Cool CD, Rai PR, Yeager ME, et al. Expression of human herpesvirus 8 in primary pulmonary hypertension. N Engl J Med. 2003;349:1113–22.

    PubMed  CAS  Google Scholar 

  346. Gomez-Roman JJ, Ocejo-Vinyals G, Sanchez-Velasco P, et al. Presence of human herpesvirus-8 DNA sequences and overexpression of human IL-6 and cyclin D1 in inflammatory myofibroblastic tumor (inflammatory pseudotumor). Lab Invest. 2000;80:1121–6.

    PubMed  CAS  Google Scholar 

  347. Bryant-Greenwood P, Sorbara L, Filie AC, et al. Infection of mesothelial cells with human herpes virus 8 in human immunodeficiency virus-infected patients with Kaposi’s sarcoma, Castleman’s disease, and recurrent pleural effusions. Mod Pathol. 2003;16:145–53.

    PubMed  Google Scholar 

  348. Insabato L, Di Vizio D, Terracciano LM, et al. Primary Kaposi sarcoma of the bowel in a HIV-negative patient. J Surg Oncol. 2001;76:197–200.

    PubMed  CAS  Google Scholar 

  349. Gyulai R, Kemeny L, Kiss M, et al. Herpesvirus-like DNA sequence in angiosarcoma in a patient without HIV infection. N Engl J Med. 1996;334:540–1.

    PubMed  CAS  Google Scholar 

  350. McDonagh DP, Liu J, Gaffey MJ, et al. Detection of Kaposi’s sarcoma-associated herpesvirus-like DNA sequence in angiosarcoma. Am J Pathol. 1996;149:1363–8.

    PubMed  CAS  Google Scholar 

  351. Hisaoka M, Hashimoto H, Iwamasa T. Diagnostic implication of Kaposi’s sarcoma-associated herpesvirus with special reference to the distinction between spindle cell hemangioendothelioma and Kaposi’s sarcoma. Arch Pathol Lab Med. 1998;122:72–6.

    PubMed  CAS  Google Scholar 

  352. Schommer M, Herbst RA, Brodersen JP, et al. Retiform hemangioendothelioma: another tumor associated with human herpesvirus type 8? J Am Acad Dermatol. 2000;42:290–2.

    PubMed  CAS  Google Scholar 

  353. Gyulai R, Kemeny L, Adam E, et al. HHV8 DNA in angiolymphoid hyperplasia of the skin. Lancet. 1996;347:1837.

    PubMed  CAS  Google Scholar 

  354. Kazakov DV, Schmid M, Adams V, et al. HHV-8 DNA sequences in the peripheral blood and skin lesions of an HIV-negative patient with multiple eruptive dermatofibromas: implications for the detection of HHV-8 as a diagnostic marker for Kaposi’s sarcoma. Dermatology. 2003;206:217–21.

    PubMed  CAS  Google Scholar 

  355. Cheuk W, Wong KO, Wong CS, et al. Immunostaining for human herpesvirus 8 latent nuclear antigen-1 helps distinguish Kaposi sarcoma from its mimickers. Am J Clin Pathol. 2004;121:335–42.

    PubMed  Google Scholar 

  356. Patel RM, Goldblum JR, Hsi ED. Immunohistochemical detection of human herpes virus-8 latent nuclear ­antigen-1 is useful in the diagnosis of Kaposi sarcoma. Mod Pathol. 2004;17:456–60.

    PubMed  Google Scholar 

  357. Robin YM, Guillou L, Michels JJ, et al. Human herpesvirus 8 immunostaining: a sensitive and specific method for diagnosing Kaposi sarcoma in paraffin-embedded sections. Am J Clin Pathol. 2004;121:330–4.

    PubMed  Google Scholar 

  358. Tomasini C, Grassi M, Pippione M. Cutaneous angiosarcoma arising in an irradiated breast. Case report and review of the literature. Dermatology. 2004;209:208–14.

    PubMed  Google Scholar 

  359. Brenn T, Fletcher CD. Postradiation vascular proliferations: an increasing problem. Histopathology. 2006;48:106–14.

    PubMed  CAS  Google Scholar 

  360. Mermershtain W, Cohen AD, Koretz M, et al. Cutaneous angiosarcoma of breast after lumpectomy, axillary lymph node dissection, and radiotherapy for primary breast carcinoma: case report and review of the literature. Am J Clin Oncol. 2002;25:597–8.

    PubMed  Google Scholar 

  361. Schmid H, Zietz C. Human herpesvirus 8 and angiosarcoma: analysis of 40 cases and review of the literature. Pathology. 2005;37:284–7.

    PubMed  Google Scholar 

  362. Naka N, Tomita Y, Nakanishi H, et al. Mutations of p53 tumor-suppressor gene in angiosarcoma. Int J Cancer. 1997;71:952–5.

    PubMed  CAS  Google Scholar 

  363. Zietz C, Rossle M, Haas C, et al. MDM-2 oncoprotein overexpression, p53 gene mutation, and VEGF upregulation in angiosarcomas. Am J Pathol. 1998;153:1425–33.

    PubMed  CAS  Google Scholar 

  364. Momand J, Zambetti GP. Mdm-2: “Big brother” of p53. J Cell Biochem. 1997;64:343–52.

    PubMed  CAS  Google Scholar 

  365. Gospodarowicz D, Abraham JA, Schilling J. Isolation and characterization of a vascular endothelial cell mitogen produced by pituitary-derived folliculo stellate cells. Proc Natl Acad Sci USA. 1989;86:7311–5.

    PubMed  CAS  Google Scholar 

  366. Patel NK, McKee PH, Smith NP, et al. Primary metaplastic carcinoma (carcinosarcoma) of the skin. A clinicopathologic study of four cases and review of the literature. Am J Dermatopathol. 1997;19:363–72.

    PubMed  CAS  Google Scholar 

  367. Weedon D. Skin pathology. 2nd ed. Edinburgh: Churchill Livingstone; 2002.

    Google Scholar 

  368. Syme-Grant J, Syme-Grant NJ, Motta L, et al. Are primary cutaneous carcinisarcomas underdiagnosed? Five cases and a review of the literature. J Plast Reconstr Aesthet Surg. 2006;59:1402–8.

    PubMed  Google Scholar 

  369. Brownstein MH, Helwig EB. Patterns of cutaneous metastasis. Arch Dermatol. 1972;105:862–8.

    PubMed  CAS  Google Scholar 

  370. Wesche WA, Khare VK, Chesney TM, et al. Non-hematopoietic cutaneous metastases in children and adolescents: thirty years experience at St. Jude Children’s Research Hospital. J Cutan Pathol. 2000;27:485–92.

    PubMed  CAS  Google Scholar 

  371. Liaw D, Marsh DJ, Li J, et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet. 1997;16:64–7.

    PubMed  CAS  Google Scholar 

  372. Requena L, Gutierrez J, Sanchez EY. Multiple sclerotic fibromas of the skin. A cutaneous marker of Cowden’s disease. J Cutan Pathol. 1992;19:346–51.

    PubMed  CAS  Google Scholar 

  373. Eng C. PTEN: one gene, many syndromes. Hum Mutat. 2003;22:183–98.

    PubMed  CAS  Google Scholar 

  374. Verhoef S, Bakker L, Tempelaars AM, et al. High rate of mosaicism in tuberous sclerosis complex. Am J Hum Genet. 1999;64:1632–7.

    PubMed  CAS  Google Scholar 

  375. Hall MR, Kovach BT, Miller JL. Unilateral facial angiofibromas without other evidence of tuberous sclerosis: case report and review of the literature. Cutis. 2007;80:284–8.

    PubMed  Google Scholar 

  376. Trauner MA, Ruben BS, Lynch PJ. Segmental tuberous sclerosis presenting as unilateral facial angiofibromas. J Am Acad Dermatol. 2003;49:S164–6.

    PubMed  Google Scholar 

  377. Anliker MD, Dummer R, Burg G. Unilateral agminated angiofibromas: a segmental expression of tuberous sclerosis? Dermatology. 1997;195:176–8.

    PubMed  CAS  Google Scholar 

  378. McGrae Jr JD, Hashimoto K. Unilateral facial angiofibromas–a segmental form of tuberous sclerosis. Br J Dermatol. 1996;134:727–30.

    PubMed  Google Scholar 

  379. Alam NA, Barclay E, Rowan AJ, et al. Clinical features of multiple cutaneous and uterine leiomyomatosis: an underdiagnosed tumor syndrome. Arch Dermatol. 2005;141:199–206.

    PubMed  Google Scholar 

  380. Barker KT, Bevan S, Wang R, et al. Low frequency of somatic mutations in the FH/multiple cutaneous leiomyomatosis gene in sporadic leiomyosarcomas and uterine leiomyomas. Br J Cancer. 2002;87:446–8.

    PubMed  CAS  Google Scholar 

  381. Konig A, Happle R. Two cases of type 2 segmental manifestation in a family with cutaneous leiomyomatosis. Eur J Dermatol. 2000;10:590–2.

    PubMed  CAS  Google Scholar 

  382. Lang K, Reifenberger J, Ruzicka T, et al. Type 1 segmental cutaneous leiomyomatosis. Clin Exp Dermatol. 2002;27:649–50.

    PubMed  CAS  Google Scholar 

  383. Badeloe S, van Geel M, van Steensel MA, et al. Diffuse and segmental variants of cutaneous leiomyomatosis: novel mutations in the fumarate hydratase gene and review of the literature. Exp Dermatol. 2006;15:735–41.

    PubMed  CAS  Google Scholar 

  384. Suwattee P, Dakin C. Bilateral segmental leiomyomas: a case report and review of the literature. Cutis. 2008;82:33–6.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Pfeifer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jassim, O., Pfeifer, J.D. (2011). Cutaneous Sarcomas and Soft Tissue Proliferations. In: Murphy, M. (eds) Molecular Diagnostics in Dermatology and Dermatopathology. Current Clinical Pathology. Humana Press. https://doi.org/10.1007/978-1-60761-171-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-171-4_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-170-7

  • Online ISBN: 978-1-60761-171-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics