Skip to main content

Mechanisms and Clinical Recognition and Management of Heart Failure in Infants and Children

  • Chapter
  • First Online:
Heart Failure

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 1411 Accesses

Abstract

Compared to heart failure (HF) in the adult, a paucity of both basic science and clinical research exists for pediatric-related HF. The etiology of HF in this population differs, and presentation and management are affected by developmental changes in physiology and biochemistry. This chapter on Heart Failure in Children will provide focus on specific areas of interest in the field, which differ from HF in adults. Issues in development mechanisms are highlighted, as well as different treatment modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ross RD, Bollinger RO, Pinsky WW (1992) Grading the severity of congestive heart failure in infants. Pediatr Cardiol 13:72–75

    Article  PubMed  CAS  Google Scholar 

  2. Reithmann C, Reber D, Kozlik-Feldmann R et al (1997) A post-receptor defect of adenylyl cyclase in severely failing myocardium from children with congenital heart disease. Eur J Pharmacol 330:79–86

    Article  PubMed  CAS  Google Scholar 

  3. Mir TS, Marohn S, Laer S, Eiselt M, Grollmus O, Weil J (2002) Plasma concentrations of N-terminal pro-brain natriuretic peptide in control children from the neonatal to adolescent period and in children with congestive heart failure. Pediatrics 110:e76

    Article  PubMed  Google Scholar 

  4. Tissieres P, Aggoun Y, Da Cruz E et al (2006) Comparison of classifications for heart failure in children undergoing valvular surgery. J Pediatr 149:210–215

    Article  PubMed  Google Scholar 

  5. Mangat J, Carter C, Riley G, Foo Y, Burch M (2009) The clinical utility of brain natriuretic peptide in paediatric left ventricular failure. Eur J Heart Fail 11:48–52

    Article  PubMed  CAS  Google Scholar 

  6. Farrell AG, Schamberger MS, Olson IL, Leitch CA (2001) Large left-to-right shunts and congestive heart failure increase total energy expenditure in infants with ventricular septal defect. Am J Cardiol 87:1128–1131, A10

    Article  PubMed  CAS  Google Scholar 

  7. Menon G, Poskitt EM (1985) Why does congenital heart disease cause failure to thrive? Arch Dis Child 60:1134–1139

    Article  PubMed  CAS  Google Scholar 

  8. van der Kuip M, Hoos MB, Forget PP, Westerterp KR, Gemke RJ, de Meer K (2003) Energy expenditure in infants with conge­nital heart disease, including a meta-analysis. Acta Paediatr 92:921–927

    Article  PubMed  Google Scholar 

  9. Lundell KH, Sabel KG, Eriksson BO, Mellgren G (1989) Glucose metabolism and insulin secretion in infants with symptomatic ventricular septal defect. Acta Paediatr Scand 78:620–626

    Article  PubMed  CAS  Google Scholar 

  10. Lundell KH, Sabel KG, Eriksson BO (1999) Plasma metabolites after a lipid load in infants with congenital heart disease. Acta Paediatr 88:718–723

    Article  PubMed  CAS  Google Scholar 

  11. Wilkinson JD, Sleeper LA, Alvarez JA, Bublik N, Lipshultz SE (2008) The Pediatric Cardiomyopathy Registry: 1995–2007. Prog Pediatr Cardiol 25:31–36

    Article  PubMed  Google Scholar 

  12. Miller TL, Neri D, Extein J, Somarriba G, Strickman-Stein N (2007) Nutrition in pediatric cardiomyopathy. Prog Pediatr Cardiol 24:59–71

    Article  PubMed  Google Scholar 

  13. Bellini C, Hennekam RC, Fulcheri E et al (2009) Etiology of nonimmune hydrops fetalis: a systematic review. Am J Med Genet A 149A:844–851

    Article  PubMed  Google Scholar 

  14. Rudolph AM (2009) The fetal circulation and congenital heart disease. Arch Dis Child Fetal Neonatal Ed. Published Online: 25 March. [Epub ahead of print]

    Google Scholar 

  15. Glatz JA, Tabbutt S, Gaynor JW et al (2007) Hypoplastic left heart syndrome with atrial level restriction in the era of prenatal diagnosis. Ann Thorac Surg 84:1633–1638

    Article  PubMed  Google Scholar 

  16. Friedman WF (1972) The intrinsic physiologic properties of the developing heart. Prog Cardiovasc Dis 15:87–111

    Article  PubMed  CAS  Google Scholar 

  17. Reiser PJ, Portman MA, Ning XH (2001) C. Human cardiac myosin heavy chain isoforms in fetal and failing adult atria and ventricles. Am J Physiol Heart Circ Physiol 280:H1814–H1820

    PubMed  CAS  Google Scholar 

  18. Anderson PA, Glick KL, Killam AP, Mainwaring RD (1986) The effect of heart rate on in utero left ventricular output in the fetal sheep. J Physiol 372:557–573

    PubMed  CAS  Google Scholar 

  19. Silverman NH, Kleinman CS, Rudolph AM et al (1985) Fetal atrioventricular valve insufficiency associated with nonimmune hydrops: a two-dimensional echocardiographic and pulsed Doppler ultrasound study. Circulation 72:825–832

    Article  PubMed  CAS  Google Scholar 

  20. Hofstaetter C, Hansmann M, Eik-Nes SH, Huhta JC, Luther SL (2006) A cardiovascular profile score in the surveillance of fetal hydrops. J Matern Fetal Neonatal Med 19:407–413

    Article  PubMed  Google Scholar 

  21. Acharya G, Archer N, Huhta JC (2007) Functional assessment of the evolution of congenital heart disease in utero. Curr Opin Pediatr 19:533–537

    Article  PubMed  Google Scholar 

  22. Huhta JC (2005) Fetal congestive heart failure. Semin Fetal Neonatal Med 10:542–552

    Article  PubMed  Google Scholar 

  23. Harada K, Suzuki T, Tamura M et al (1995) Role of age on transmitral flow velocity patterns in assessing left ventricular diastolic function in normal infants and children. Am J Cardiol 76:530–532

    Article  PubMed  CAS  Google Scholar 

  24. Brangenberg R, Burger A, Romer U, Kozlik-Feldmann R, Netz H (2002) Echocardiographic assessment of left ventricular size and function in normal children from infancy to adolescence: acoustic quantification in comparison with traditional echocardiographic techniques. Pediatr Cardiol 23:394–402

    Article  PubMed  CAS  Google Scholar 

  25. Schmitz L, Koch H, Bein G, Brockmeier K (1998) Left ventricular diastolic function in infants, children, and adolescents. Reference values and analysis of morphologic and physiologic determinants of echocardiographic Doppler flow signals during growth and maturation. J Am Coll Cardiol 32:1441–1448

    Article  PubMed  CAS  Google Scholar 

  26. Friedman WF, Kirkpatrick SE (1975) In situ physiological study of the developing heart. Recent Adv Stud Cardiac Struct Metab 5:497–504

    PubMed  CAS  Google Scholar 

  27. Nassar R, Reedy MC, Anderson PA (1987) Developmental changes in the ultrastructure and sarcomere shortening of the isolated rabbit ventricular myocyte. Circ Res 61:465–483

    Article  PubMed  CAS  Google Scholar 

  28. Pinsky MR, Perlini S, Solda PL, Pantaleo P, Calciati A, Bernardi L (1996) Dynamic right and left ventricular interactions in the rabbit: simultaneous measurement of ventricular pressure-volume loops. J Crit Care 11:65–76

    Article  PubMed  CAS  Google Scholar 

  29. Satoh A, Katayama K, Hiro T et al (1996) Effect of right ventricular volume overload on left ventricular diastolic function in patients with atrial septal defect. Jpn Circ J 60:758–766

    Article  PubMed  CAS  Google Scholar 

  30. Walker RE, Moran AM, Gauvreau K, Colan SD (2004) Evidence of adverse ventricular interdependence in patients with atrial septal defects. Am J Cardiol 93:1374–1377, A6

    Article  PubMed  Google Scholar 

  31. Portman MA, Heineman FW, Balaban RS (1989) Developmental changes in the relation between phosphate metabolites and oxygen consumption in the sheep heart in vivo. J Clin Invest 83:456–464

    Article  PubMed  CAS  Google Scholar 

  32. Portman MA, Standaert TA, Ning X-H (1995) The relation of myocardial oxygen consumption and function to high energy phosphate utilization during graded hypoxia and reoxygenation in sheep in vivo. J Clin Invest 95:2134–2142

    Article  PubMed  CAS  Google Scholar 

  33. Portman MA, Xiao Y, Song Y, Ning X-H (1997) Expression of adenine nucleotide translocator parallels maturation of respiratory control in vivo. Am J Physiol Heart Circ Physiol 273: H1977–H1983

    CAS  Google Scholar 

  34. Murakami Y, Zhang Y, Cho YK et al (1999) Myocardial oxygenation during high work states in hearts with postinfarction remodeling. Circulation 99:942–948

    Article  PubMed  CAS  Google Scholar 

  35. Ochiai K, Zhang J, Gong G et al (2001) Effects of augmented delivery of pyruvate on myocardial high-energy phosphate metabolism at high workstate. Am J Physiol Heart Circ Physiol 281:H1823–H1832

    PubMed  CAS  Google Scholar 

  36. Zhang J, Murakami Y, Zhang Y et al (1999) Oxygen delivery does not limit cardiac performance during high work states. Am J Physiol Heart Circ Physiol 277:H50–H57

    CAS  Google Scholar 

  37. Portman MA, Standaert TA, Ning XH (1996) Developmental changes in ATP utilization during graded hypoxia and reoxygenation in the heart in vivo. Am J Physiol Heart Circ Physiol 270:H216–H223

    CAS  Google Scholar 

  38. Bartelds B, Gratama JW, Knoester H et al (1998) Perinatal changes in myocardial supply and flux of fatty acids, carbohydrates, and ketone bodies in lambs. Am J Physiol 274:H1962–H1969

    PubMed  CAS  Google Scholar 

  39. Bartelds B, Knoester H, Smid GB et al (2000) Perinatal changes in myocardial metabolism in lambs. Circulation 102:926–931

    Article  PubMed  CAS  Google Scholar 

  40. Bartelds B, Takens J, Smid GB et al (2004) Myocardial carnitine palmitoyltransferase I expression and long-chain fatty acid oxidation in fetal and newborn lambs. Am J Physiol Heart Circ Physiol 286:H2243–H2248

    Article  PubMed  CAS  Google Scholar 

  41. McGowan FX, Lee FA, CHen V, Downing SE (1992) Oxidative metabolism and mechanical function in reperfused neonatal pig heart. J Mol Cell Cardiol 24:831–840

    Article  PubMed  CAS  Google Scholar 

  42. Lopaschuk GD, Witters LA, Itoi T, Barr R, Barr A (1994) Acetyl-CoA carboxylase involvement in the rapid maturation of fatty acid oxidation in the newborn rabbit heart. J Biol Chem 269: 25871–25878

    PubMed  CAS  Google Scholar 

  43. Onay-Besikci A, Campbell FM, Hopkins TA, Dyck JR, Lopaschuk GD (2003) Relative importance of malonyl CoA and carnitine in maturation of fatty acid oxidation in newborn rabbit heart. Am J Physiol Heart Circ Physiol 284:H283–H289

    PubMed  Google Scholar 

  44. Beaufort-Krol GC, Takens J, Molenkamp MC, Smid GB, Zijlstra WG, Kuipers JR (1998) Determination of organ substrate oxidation in vivo by measurement of 13CO2 concentration in blood. J Mass Spectrom 33:328–333

    Article  PubMed  CAS  Google Scholar 

  45. Kantor PF, Robertson MA, Coe JY, Lopaschuk GD (1999) Volume overload hypertrophy of the newborn heart slows the maturation of enzymes involved in the regulation of fatty acid metabolism. J Am Coll Cardiol 33:1724–1734

    Article  PubMed  CAS  Google Scholar 

  46. Ghuysen A, Lambermont B, Kolh P et al (2008) Alteration of right ventricular-pulmonary vascular coupling in a porcine model of progressive pressure overloading. Shock 29:197–204

    PubMed  Google Scholar 

  47. Cullen S, Shore D, Redington A (1995) Characterization of right ventricular diastolic performance after complete repair of tetralogy of Fallot. Restrictive physiology predicts slow postoperative recovery. Circulation 91:1782–1789

    Article  PubMed  CAS  Google Scholar 

  48. Kilner PJ, Balossino R, Dubini G et al (2009) Pulmonary regurgitation: the effects of varying pulmonary artery compliance, and of increased resistance proximal or distal to the compliance. Int J Cardiol 133:157–166

    Article  PubMed  Google Scholar 

  49. Szabo G, Buhmann V, Graf A et al (2003) Ventricular energetics after the Fontan operation: contractility-afterload mismatch. J Thorac Cardiovasc Surg 125:1061–1069

    Article  PubMed  Google Scholar 

  50. Knirsch W, Dodge-Khatami A, Kadner A et al (2008) Assessment of myocardial function in pediatric patients with operated tetralogy of Fallot: preliminary results with 2D strain echocardiography. Pediatr Cardiol 29:718–725

    Article  PubMed  Google Scholar 

  51. Fontan F, Baudet E (1971) Surgical repair of tricuspid atresia. Thorax 26:240–248

    Article  PubMed  CAS  Google Scholar 

  52. Fogel MA, Weinberg PM, Chin AJ, Fellows KE, Hoffman EA (1996) Late ventricular geometry and performance changes of functional single ventricle throughout staged Fontan reconstruction assessed by magnetic resonance imaging. J Am Coll Cardiol 28:212–221

    Article  PubMed  CAS  Google Scholar 

  53. Castaneda AR, Trusler GA, Paul MH, Blackstone EH, Kirklin JW (1988) The early results of treatment of simple transposition in the current era. J Thorac Cardiovasc Surg 95:14–28

    PubMed  CAS  Google Scholar 

  54. Seliem MA, Baffa JM, Vetter JM, Chen SL, Chin AJ, Norwood WI Jr (1993) Changes in right ventricular geometry and heart rate early after hemi-Fontan procedure. Ann Thorac Surg 55:1508–1512

    Article  PubMed  CAS  Google Scholar 

  55. Buchhorn R, Bartmus D, Buhre W, Bursch J (2001) Pathogenetic mechanisms of venous congestion after the Fontan procedure. Cardiol Young 11:161–168

    Article  PubMed  CAS  Google Scholar 

  56. Akagi T, Benson LN, Green M et al (1992) Ventricular performance before and after Fontan repair for univentricular atrioventricular connection: angiographic and radionuclide assessment. J Am Coll Cardiol 20:920–926

    Article  PubMed  CAS  Google Scholar 

  57. Senzaki H, Masutani S, Kobayashi J et al (2002) Ventricular afterload and ventricular work in Fontan circulation: comparison with normal two-ventricle circulation and single-ventricle circulation with Blalock-Taussig shunts. Circulation 105:2885–2892

    Article  PubMed  Google Scholar 

  58. AboulHosn JA, Shavelle DM, Castellon Y et al (2007) Fontan operation and the single ventricle. Congenit Heart Dis 2:2–11

    Article  PubMed  Google Scholar 

  59. Mertens L, Hagler DJ, Sauer U, Somerville J, Gewillig M (1998) Protein-losing enteropathy after the Fontan operation: an international multicenter study. PLE study group. J Thorac Cardiovasc Surg 115:1063–1073

    Article  PubMed  CAS  Google Scholar 

  60. Feldt RH, Driscoll DJ, Offord KP et al (1996) Protein-losing enteropathy after the Fontan operation. J Thorac Cardiovasc Surg 112:672–680

    Article  PubMed  CAS  Google Scholar 

  61. Hsia TY, Khambadkone S, Deanfield JE, Taylor JF, Migliavacca F, De Leval MR (2001) Subdiaphragmatic venous hemodynamics in the Fontan circulation. J Thorac Cardiovasc Surg 121:436–447

    Article  PubMed  CAS  Google Scholar 

  62. Rychik J, Gui-Yang S (2002) Relation of mesenteric vascular resistance after Fontan operation and protein-losing enteropathy. Am J Cardiol 90:672–674

    Article  PubMed  Google Scholar 

  63. Zellers TM, Brown K (1996) Protein-losing enteropathy after the modified fontan operation: oral prednisone treatment with biopsy and laboratory proved improvement. Pediatr Cardiol 17:115–117

    Article  PubMed  CAS  Google Scholar 

  64. Therrien J, Webb GD, Gatzoulis MA (1999) Reversal of protein losing enteropathy with prednisone in adults with modified fontan operations: long term palliation or bridge to cardiac transplantation? Heart 82:241–243

    PubMed  CAS  Google Scholar 

  65. Kelly AM, Feldt RH, Driscoll DJ, Danielson GK (1998) Use of heparin in the treatment of protein-losing enteropathy after Fontan operation for complex congenital heart disease. Mayo Clin Proc 73:777–779

    Article  PubMed  CAS  Google Scholar 

  66. Kim SJ, Park IS, Song JY, Lee JY, Shim WS (2004) Reversal of protein-losing enteropathy with calcium replacement in a patient after Fontan operation. Ann Thorac Surg 77:1456–1457

    Article  PubMed  Google Scholar 

  67. Kim WH, Lim HG, Lee JR et al (2005) Fontan conversion with arrhythmia surgery. Eur J Cardiothorac Surg 27:250–257

    Article  PubMed  Google Scholar 

  68. Ringel RE, Peddy SB (2003) Effect of high-dose spironolactone on protein-losing enteropathy in patients with Fontan palliation of complex congenital heart disease. Am J Cardiol 91:1031–1032, A9

    Article  PubMed  CAS  Google Scholar 

  69. Uzun O, Wong JK, Bhole V, Stumper O (2006) Resolution of protein-losing enteropathy and normalization of mesenteric Doppler flow with sildenafil after Fontan. Ann Thorac Surg 82:e39–e40

    Article  PubMed  Google Scholar 

  70. Zellers TM, Driscoll DJ, Mottram CD, Puga FJ, Schaff HV, Danielson GK (1989) Exercise tolerance and cardiorespiratory response to exercise before and after the Fontan operation. Mayo Clin Proc 64:1489–1497

    Article  PubMed  CAS  Google Scholar 

  71. Cohen MI, Rhodes LA, Wernovsky G, Gaynor JW, Spray TL, Rychik J (2001) Atrial pacing: an alternative treatment for protein-losing enteropathy after the Fontan operation. J Thorac Cardiovasc Surg 121:582–583

    Article  PubMed  CAS  Google Scholar 

  72. Mertens L, Dumoulin M, Gewillig M (1994) Effect of percutaneous fenestration of the atrial septum on protein-losing enteropathy after the Fontan operation. Br Heart J 72:591–592

    Article  PubMed  CAS  Google Scholar 

  73. Gamba A, Merlo M, Fiocchi R et al (2004) Heart transplantation in patients with previous Fontan operations. J Thorac Cardiovasc Surg 127:555–562

    Article  PubMed  Google Scholar 

  74. Jayakumar KA, Addonizio LJ, Kichuk-Chrisant MR et al (2004) Cardiac transplantation after the Fontan or Glenn procedure. J Am Coll Cardiol 44:2065–2072

    Article  PubMed  Google Scholar 

  75. Pasquali SK, Hall M, Slonim AD et al (2008) Off-label use of cardio­vascular medications in children hospitalized with congenital and acquired heart disease. Circ Cardiovasc Qual Outcomes 1:74–83

    Article  PubMed  Google Scholar 

  76. Engle MA, Lewy JE, Lewy PR, Metcoff J (1978) The use of furosemide in the treatment of edema in infants and children. Pediatrics 62:811–818

    PubMed  CAS  Google Scholar 

  77. Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE (2003) Developmental pharmacology – drug disposition, action, and therapy in infants and children. N Engl J Med 349:1157–1167

    Article  PubMed  CAS  Google Scholar 

  78. Eades SK, Christensen ML (1998) The clinical pharmacology of loop diuretics in the pediatric patient. Pediatr Nephrol 12:603–616

    Article  PubMed  CAS  Google Scholar 

  79. Klinge J (2001) Intermittent administration of furosemide or continuous infusion in critically ill infants and children: does it make a difference? Intensive Care Med 27:623–624

    Article  PubMed  CAS  Google Scholar 

  80. van der Vorst MM, Ruys-Dudok van Heel I, Kist-van Holthe JE et al (2001) Continuous intravenous furosemide in haemodynamically unstable children after cardiac surgery. Intensive Care Med 27:711–715

    Article  PubMed  Google Scholar 

  81. Senzaki H, Kamiyama M, Masutani S et al (2008) Efficacy and safety of torasemide in children with heart failure. Arch Dis Child 93:768–771

    Article  PubMed  CAS  Google Scholar 

  82. Longin E, Gerstner T, Schaible T, Lenz T, Konig S (2006) Maturation of the autonomic nervous system: differences in heart rate variability in premature vs. term infants. J Perinat Med 34:303–308

    Article  PubMed  Google Scholar 

  83. Erath HG Jr, Boerth RC, Graham TP Jr (1982) Functional significance of reduced cardiac sympathetic innervation in the newborn dog. Am J Physiol 243:H20–H26

    PubMed  Google Scholar 

  84. Candito M, Albertini M, Politano S, Deville A, Mariani R, Chambon P (1993) Plasma catecholamine levels in children. J Chromatogr 617:304–307

    Article  PubMed  CAS  Google Scholar 

  85. Teitel DF, SIdi D, CHin T, BRett C, Heymann MA, Rudolph AM (1985) Developmental changes in myocardial contractile reserve in the lamb. Pediatr Res 19:948–955

    Article  PubMed  CAS  Google Scholar 

  86. Bohn D (2006) Inotropic agents in heart failure. In: Chang AC, Towbin JA (eds) Heart failure in children and young adults. Saunders-Elsevier, Philadelphia, PA, pp 468–486

    Google Scholar 

  87. Driscoll DJ, Gillette PC, Ezrailson EG, Schwartz A (1978) Inotropic response of the neonatal canine myocardium to dopamine. Pediatr Res 12:42–45

    Article  PubMed  CAS  Google Scholar 

  88. Driscoll DJ, Gillette PC, Duff DF et al (1979) Hemodynamic effects of dobutamine in children. Am J Cardiol 43:581–585

    Article  PubMed  CAS  Google Scholar 

  89. Girardin E, Berner M, Rouge JC, Rivest RW, Friedli B, Paunier L (1989) Effect of low dose dopamine on hemodynamic and renal function in children. Pediatr Res 26:200–203

    Article  PubMed  CAS  Google Scholar 

  90. Harada K, Tamura M, Ito T, Suzuki T, Takada G (1996) Effects of low-dose dobutamine on left ventricular diastolic filling in children. Pediatr Cardiol 17:220–225

    Article  PubMed  CAS  Google Scholar 

  91. Bohn DJ, Poirier CS, Edmonds JF, Barker GA (1980) Hemodynamic effects of dobutamine after cardiopulmonary bypass in children. Crit Care Med 8:367–371

    Article  PubMed  CAS  Google Scholar 

  92. Berner M, Oberhansli I, Rouge JC, Jaccard C, Friedli B (1989) Chronotropic and inotropic supports are both required to increase cardiac output early after corrective operations for tetralogy of Fallot. J Thorac Cardiovasc Surg 97:297–302

    PubMed  CAS  Google Scholar 

  93. Berner M, Rouge JC, Friedli B (1983) The hemodynamic effect of phentolamine and dobutamine after open-heart operations in children: influence of the underlying heart defect. Ann Thorac Surg 35:643–650

    Article  PubMed  CAS  Google Scholar 

  94. Booker PD, Evans C, Franks R (1995) Comparison of the haemodynamic effects of dopamine and dobutamine in young children undergoing cardiac surgery. Br J Anaesth 74:419–423

    Article  PubMed  CAS  Google Scholar 

  95. Berman W Jr, Yabek SM, Dillon T, Niland C, Corlew S, Christensen D (1983) Effects of digoxin in infants with congested circulatory state due to a ventricular septal defect. N Engl J Med 308:363–366

    Article  PubMed  Google Scholar 

  96. Bennett-Guerrero E, Jimenez JL, White WD EBDA, Baldwin BI, Schwinn DA (1996) Cardiovascular effects of intravenous triiodothyronine in patients undergoing coronary artery bypass graft surgery. A randomized, double-blind, placebo- controlled trial. Duke T3 study group [see comments]. JAMA 275:687–692

    Article  PubMed  CAS  Google Scholar 

  97. Klemperer JD, Klein I, Gomez M et al (1995) Thyroid hormone treatment after coronary-artery bypass surgery. N Engl J Med 333:1522–1527

    Article  PubMed  CAS  Google Scholar 

  98. Bettendorf M, Schmidt KG, Grulich-Henn J, Ulmer HE, Heinrich UE (2000) Tri-iodothyronine treatment in children after cardiac surgery: a double-blind, randomised, placebo-controlled study. Lancet 356:529–534

    Article  PubMed  CAS  Google Scholar 

  99. Portman MA, Fearneyhough C, Ning X, Duncan B, Rosenthal G, Lupinetti F (2000) Triiodothyronine repletion in infants during cardiopulmonary bypass for congenital heart surgery. J Thorac Cardiovasc Surg 120:604–608

    Article  PubMed  CAS  Google Scholar 

  100. Dyke CM, Ding M, Abd-Elfattah AS et al (1993) Effects of triiodothyronine supplementation after myocardial ischemia. Ann Thorac Surg 56:215–222

    Article  PubMed  CAS  Google Scholar 

  101. Mullis-Jansson SL, Argenziano M, Corwin S et al (1999) A randomized double-blind study of the effect of triiodothyronine on cardiac function and morbidity after coronary bypass surgery. J Thorac Cardiovasc Surg 117:1128–1134

    Article  PubMed  CAS  Google Scholar 

  102. Bettendorf M, Schmidt KG, Tiefenbacher U, Grulich-Henn J, Heinrich UE, Schonberg DK (1997) Transient secondary hypothyroidism in children after cardiac surgery. Pediatr Res 41: 375–379

    Article  PubMed  CAS  Google Scholar 

  103. Dagan O, Vidne B, Josefsberg Z, Phillip M, Strich D, Erez E (2006) Relationship between changes in thyroid hormone level and severity of the postoperative course in neonates undergoing open-heart surgery. Paediatr Anaesth 16:538–542

    Article  PubMed  Google Scholar 

  104. Danzi S, Klein I, Portman MA (2005) Effect of triiodothyronine on gene transcription during cardiopulmonary bypass in infants with ventricular septal defect. Am J Cardiol 95:787–789

    Article  PubMed  CAS  Google Scholar 

  105. Chowdhury D, Ojamaa K, Parnell VA, McMahon C, Sison CP, Klein I (2001) A prospective randomized clinical study of thyroid hormone treatment after operations for complex congenital heart disease. J Thorac Cardiovasc Surg 122:1023–1025

    Article  PubMed  CAS  Google Scholar 

  106. Mackie AS, Booth KL, Newburger JW et al (2005) A randomized, double-blind, placebo-controlled pilot trial of triiodothyronine in neonatal heart surgery. J Thorac Cardiovasc Surg 130:810–816

    Article  PubMed  CAS  Google Scholar 

  107. Portman MA, Fearneyhough C, Karl TR et al (2004) The Triiodothyronine for Infants and Children Undergoing Cardio­pulmonary Bypass (TRICC) study: design and rationale. Am Heart J 148:393–398

    Article  PubMed  Google Scholar 

  108. Ascuitto RJ, Ross-Ascuitto NT, Chen V, Downing SE (1989) Ventricular function and fatty acid metabolism in neonatal piglet heart. Am J Physiol 256:H9–H15

    PubMed  CAS  Google Scholar 

  109. Pridjian AK, Frohlich ED, VanMeter CH, McFadden PM, Ochsner JL (1995) Pharmacologic support with high-energy phosphate preservation in the postischemic neonatal heart. Ann Thorac Surg 59:1435–1438

    Article  PubMed  CAS  Google Scholar 

  110. Chang AC, Atz AM, Wernovsky G, Burke RP, Wessel DL (1995) Milrinone: systemic and pulmonary hemodynamic effects in neonates after cardiac surgery. Crit Care Med 23:1907–1914

    Article  PubMed  CAS  Google Scholar 

  111. Bailey JM, Miller BE, Lu W, Tosone SR, Kanter KR, Tam VK (1999) The pharmacokinetics of milrinone in pediatric patients after cardiac surgery. Anesthesiology 90:1012–1018

    Article  PubMed  CAS  Google Scholar 

  112. Ramamoorthy C, Anderson GD, Williams GD, Lynn AM (1998) Pharmacokinetics and side effects of milrinone in infants and children after open heart surgery. Anesth Analg 86:283–289

    PubMed  CAS  Google Scholar 

  113. Berg AM, Snell L, Mahle WT (2007) Home inotropic therapy in children. J Heart Lung Transplant 26:453–457

    Article  PubMed  Google Scholar 

  114. Price JF, Towbin JA, Dreyer WJ et al (2006) Outpatient continuous parenteral inotropic therapy as bridge to transplantation in children with advanced heart failure. J Card Fail 12:139–143

    Article  PubMed  Google Scholar 

  115. Beekman RH, Rocchini AP, Rosenthal A (1981) Hemodynamic effects of nitroprusside in infants with a large ventricular septal defect. Circulation 64:553–558

    Article  PubMed  CAS  Google Scholar 

  116. Artman M, Parrish MD, Boerth RC, Boucek RJ Jr, Graham TP Jr (1984) Short-term hemodynamic effects of hydralazine in infants with complete atrioventricular canal defects. Circulation 69: 949–954

    Article  PubMed  CAS  Google Scholar 

  117. Boucek MM, Chang RL (1988) Effects of captopril on the distribution of left ventricular output with ventricular septal defect. Pediatr Res 24:499–503

    Article  PubMed  CAS  Google Scholar 

  118. Scammell AM, Arnold R, Wilkinson JL (1987) Captopril in treatment of infant heart failure: a preliminary report. Int J Cardiol 16:295–301

    Article  PubMed  CAS  Google Scholar 

  119. Shaw NJ, Wilson N, Dickinson DF (1988) Captopril in heart failure secondary to a left to right shunt. Arch Dis Child 63: 360–363

    Article  PubMed  CAS  Google Scholar 

  120. Shaddy RE, Teitel DF, Brett C (1988) Short-term hemodynamic effects of captopril in infants with congestive heart failure. Am J Dis Child 142:100–105

    PubMed  CAS  Google Scholar 

  121. Montigny M, Davignon A, Fouron JC, Biron P, Fournier A, Elie R (1989) Captopril in infants for congestive heart failure secondary to a large ventricular left-to-right shunt. Am J Cardiol 63:631–633

    Article  PubMed  CAS  Google Scholar 

  122. Webster MW, Neutze JM, Calder AL (1992) Acute hemodynamic effects of converting enzyme inhibition in children with intracardiac shunts. Pediatr Cardiol 13:129–135

    PubMed  CAS  Google Scholar 

  123. Kouatli AA, Garcia JA, Zellers TM, Weinstein EM, Mahony L (1997) Enalapril does not enhance exercise capacity in patients after Fontan procedure. Circulation 96:1507–1512

    Article  PubMed  CAS  Google Scholar 

  124. Bengur AR, Beekman RH, Rocchini AP, Crowley DC, Schork MA, Rosenthal A (1991) Acute hemodynamic effects of captopril in children with a congestive or restrictive cardiomyopathy. Circulation 83:523–527

    Article  PubMed  CAS  Google Scholar 

  125. Lewis AB, Chabot M (1993) The effect of treatment with angiotensin-converting enzyme inhibitors on survival of pediatric patients with dilated cardiomyopathy. Pediatr Cardiol 14:9–12

    PubMed  CAS  Google Scholar 

  126. Ramaciotti C, Heistein LC, Coursey M et al (2006) Left ventricular function and response to enalapril in patients with duchenne muscular dystrophy during the second decade of life. Am J Cardiol 98:825–827

    Article  PubMed  CAS  Google Scholar 

  127. Silber JH, Cnaan A, Clark BJ et al (2004) Enalapril to prevent cardiac function decline in long-term survivors of pediatric cancer exposed to anthracyclines. J Clin Oncol 22:820–828

    Article  PubMed  CAS  Google Scholar 

  128. Williams RV, Tani LY, Shaddy RE (2002) Intermediate effects of treatment with metoprolol or carvedilol in children with left ventricular systolic dysfunction. J Heart Lung Transplant 21:906–909

    Article  PubMed  Google Scholar 

  129. Bruns LA, Chrisant MK, Lamour JM et al (2001) Carvedilol as therapy in pediatric heart failure: an initial multicenter experience. J Pediatr 138:505–511

    Article  PubMed  CAS  Google Scholar 

  130. Shaddy RE, Tani LY, Gidding SS et al (1999) Beta-blocker treatment of dilated cardiomyopathy with congestive heart failure in children: a multi-institutional experience. J Heart Lung Transplant 18:269–274

    Article  PubMed  CAS  Google Scholar 

  131. Shaddy RE (1998) Beta-blocker therapy in young children with congestive heart failure under consideration for heart transplantation. Am Heart J 136:19–21

    Article  PubMed  CAS  Google Scholar 

  132. Poole-Wilson PA, Swedberg K, Cleland JG et al (2003) Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol Or Metoprolol European Trial (COMET): randomised controlled trial. Lancet 362:7–13

    Article  PubMed  CAS  Google Scholar 

  133. Shaddy RE, Boucek MM, Hsu DT et al (2007) Carvedilol for children and adolescents with heart failure: a randomized controlled trial. JAMA 298:1171–1179

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Marín-García MD .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Marín-García, J. (2010). Mechanisms and Clinical Recognition and Management of Heart Failure in Infants and Children. In: Heart Failure. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-147-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-147-9_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-146-2

  • Online ISBN: 978-1-60761-147-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics