Skip to main content

Autoantibodies and Autoantigens in Sjögren’s Syndrome

  • Chapter
  • First Online:
Sjögren’s Syndrome

Abstract

Over the past 30 plus years since the identification of the now classic anti-SS-A/Ro and anti-SS-B/La autoantibodies in Sjögren’s syndrome, there have been a few new and interesting autoantibodies including anti-fodrin, anti-M3 muscarinic receptor, anti-NA14, and other autoantibodies that are reported to be closely linked to this disease. This chapter describes the current data available for the specificities of these antibodies, their usefulness in diagnosis and prognosis of the disease, and hypotheses on the nature of autoantibody production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AGAs:

anti-Golgi complex antibodies

APCs:

antigen-presenting cells

ANA:

santi-nuclear antibodies

CHB:

congenital heart block

GC:

germinal center

M3R:

muscarinic type 3 receptor

NA14:

nuclear autoantigen 14 kDa

PM/DM:

polymyositis/dermatomyositis

RA:

rheumatoid arthritis

SLE:

systemic lupus erythematosus

SS:

Sjögren’s syndrome

SSc:

scleroderma

References

  1. Papiris SA, Tsonis IA, Moutsopoulos HM. Sjogren’s syndrome. Semin Respir Crit Care Med. 2007;28:459–71.

    Article  PubMed  Google Scholar 

  2. Fox RI. Sjogren’s syndrome. Lancet. 2005;366:321–31.

    Article  PubMed  CAS  Google Scholar 

  3. Chan EKL, Andrade LEC. Antinuclear antibodies in Sjögren’s syndrome. Rheum Dis Clin North Am. 1992;18:551–70.

    PubMed  CAS  Google Scholar 

  4. Tan EM, Chan EKL, Sullivan KF, et al. Antinuclear antibodies (ANAs): diagnostically specific immune markers and clues toward the understanding of systemic autoimmunity. Clin Immunol Immunopathol. 1988;47:121–41.

    Article  PubMed  CAS  Google Scholar 

  5. Rosen A, Casciola-Rosen L. Altered autoantigen structure in Sjogren’s syndrome: implications for the pathogenesis of autoimmune tissue damage. Crit Rev Oral Biol Med. 2004;15:156–64.

    Article  PubMed  CAS  Google Scholar 

  6. Tan EM. Autoantibodies in pathology and cell biology. Cell. 1991;67:841–2.

    Article  PubMed  CAS  Google Scholar 

  7. von Mühlen CA, Tan EM. Autoantibodies in the diagnosis of systemic rheumatic diseases. Semin Arthritis Rheum. 1995;24:323–58.

    Article  Google Scholar 

  8. Scofield RH. Autoantibodies as predictors of disease. Lancet 2004;363:1544–6.

    Article  PubMed  CAS  Google Scholar 

  9. Bizzaro N, Tozzoli R, Shoenfeld Y. Are we at a stage to predict autoimmune rheumatic diseases? Arthritis Rheum. 2007;56:1736–44.

    Article  PubMed  CAS  Google Scholar 

  10. Shoenfeld Y, Tincani A. Autoantibodies—the smoke and the fire. Autoimmunity 2005;38:1–2.

    Article  PubMed  Google Scholar 

  11. Vitali C, Bombardieri S, Jonsson R, et al. Classification criteria for Sjogren’s syndrome: a revised version of the European criteria proposed by the American–European Consensus Group. Ann Rheum Dis. 2002;61:554–8.

    Article  PubMed  CAS  Google Scholar 

  12. Haneji N, Nakamura T, Takio K, et al. Identification of alpha-fodrin as a candidate autoantigen in primary Sjögren’s syndrome. Science 1997;276:604–7.

    Article  PubMed  CAS  Google Scholar 

  13. Waterman SA, Gordon TP, Rischmueller M. Inhibitory effects of muscarinic receptor autoantibodies on parasympathetic neurotransmission in Sjogren’s syndrome. Arthritis Rheum. 2000;43:1647–54.

    Article  PubMed  CAS  Google Scholar 

  14. Robinson CP, Brayer J, Yamachika S, et al. Transfer of human serum IgG to nonobese diabetic Igμnull mice reveals a role for autoantibodies in the loss of secretory function of exocrine tissues in Sjögren’s syndrome. Proc Natl Acad Sci USA. 1998;95:7538–43.

    Article  PubMed  CAS  Google Scholar 

  15. Andrade LEC, Chan EKL, Peebles CL, et al. Two major autoantigen–antibody systems of the mitotic spindle apparatus. Arthritis Rheum. 1996;39:1643–53.

    Article  PubMed  CAS  Google Scholar 

  16. Price CM, McCarty GA, Pettijohn DE. NuMA protein is a human autoantigen. Arthritis Rheum. 1984;27:774–9.

    Article  PubMed  CAS  Google Scholar 

  17. Chan EKL, Fritzler MJ. Golgins: coiled-coil proteins associated with the Golgi complex. Electronic J Biotechnol. 1998;1:1–10.

    Google Scholar 

  18. Yamanaka H, Willis EH, Penning CA, et al. Human autoantibodies to poly(adenosine diphosphate-ribose) polymerase. J Clin Invest. 1987;80:900–4.

    Article  PubMed  CAS  Google Scholar 

  19. Chan EKL, Imai H, Hamel JC, et al. Human autoantibody to RNA polymerase I transcription factor hUBF. Molecular identity of nucleolus organizer region autoantigen NOR-90 and ribosomal RNA transcription upstream binding factor. J Exp Med. 1991;173:1239–44.

    Article  Google Scholar 

  20. Andrade LEC, Chan EKL, Raska I, et al. Human autoantibody to a novel protein of the nuclear coiled body. Immunological characterization and cDNA cloning of p80-coilin. J Exp Med. 1991;173:1407–19.

    Article  PubMed  CAS  Google Scholar 

  21. Ramos-Morales F, Infante C, Fedriani C, et al. NA14 is a novel nuclear autoantigen with a coiled-coil domain. J Biol Chem. 1998;273:1634–9.

    Article  PubMed  CAS  Google Scholar 

  22. Nozawa K, Ikeda K, Satoh M et al. Autoantibody to NA14 is an independent marker primarily for Sjögren’s syndrome. Front Biosci. 2009;14:3733–9.

    Article  PubMed  CAS  Google Scholar 

  23. Clark G, Reichlin M, Tomasi TB. Characterization of a soluble cytoplasmic antigen reactive with sera from patients with systemic lupus erythematosus. J Immunol. 1969;102:117–22.

    PubMed  CAS  Google Scholar 

  24. Alspaugh MA, Tan EM. Antibodies to cellular antigens in Sjögren’s syndrome. J Clin Invest. 1975;55:1067–73.

    Article  PubMed  CAS  Google Scholar 

  25. Wolin SL, Steitz JA. The Ro small cytoplasmic ribonucleoproteins: identification of the antigenic protein and its binding site on the Ro RNAs. Proc Natl Acad Sci USA. 1984;81:1996–2000.

    Article  PubMed  CAS  Google Scholar 

  26. Chan EKL, Buyon JP. The SS-A/Ro antigen. In: van Venrooij WJ, Maini RN, editors. Manual of biological markers of disease. Dordrecht, Netherlands: Kluwer; 1994. pp. 1–18.

    Google Scholar 

  27. Chen X, Wolin SL. The Ro 60 kDa autoantigen: insights into cellular function and role in autoimmunity. J Mol Med. 2004;82:232–9.

    Article  PubMed  CAS  Google Scholar 

  28. Mattioli M, Reichlin M. Characterization of a soluble nuclear ribonucleoprotein antigen reactive with SLE sera. J Immunol. 1971;107:1281–90.

    PubMed  CAS  Google Scholar 

  29. Pruijn GJM. The La (SS-B) antigen. In: van Venrooij WJ, Maini RN, editors. Manual of biological markers of disease. Netherlands: Kluwer; 1994, pp. 1–14.

    Google Scholar 

  30. Maraia RJ, Bayfield MA. The La protein–RNA complex surfaces. Mol Cell. 2006;21:149–52.

    Article  PubMed  CAS  Google Scholar 

  31. Gottlieb E, Steitz JA. The RNA binding protein La influences both the accuracy and the efficiency of RNA polymerase III transcription in vitro. EMBO J. 1989;8:841–50.

    PubMed  CAS  Google Scholar 

  32. Rinke J, Steitz JA. Precursor molecules of both human 5S ribosomal RNA and transfer RNAs are bound by a cellular protein reactive with anti-La lupus antibodies. Cell 1982;29:149–59.

    Article  PubMed  CAS  Google Scholar 

  33. Meerovitch K, Svitkin YV, Lee HS, et al. La autoantigen enhances and corrects aberrant translation of poliovirus RNA in reticulocyte lysate. J Virol. 1993;67:3798–807.

    PubMed  CAS  Google Scholar 

  34. Ben-Chetrit E, Chan EKL, Sullivan KF, et al. A 52-kD protein is a novel component of the SS-A/Ro antigenic particle. J Exp Med. 1988;167:1560–71.

    Article  PubMed  CAS  Google Scholar 

  35. Chan EKL, Hamel JC, Buyon JP, et al. Molecular definition and sequence motifs of the 52-kD component of human SS-A/Ro autoantigen. J Clin Invest. 1991;87:68–76.

    Article  PubMed  CAS  Google Scholar 

  36. Slobbe RL, Pluk W, van Venrooij WJ, et al. Ro ribonucleoprotein assembly in vitro. Identification of RNA–protein and protein–protein interactions. J Mol Biol. 1992;227:361–6.

    Article  PubMed  CAS  Google Scholar 

  37. Boire G, Gendron M, Monast N, et al. Purification of antigenically intact Ro ribonucleoproteins; biochemical and immunological evidence that the 52-kD protein is not a Ro protein. Clin Exp Immunol. 1995;100:489–98.

    Article  PubMed  CAS  Google Scholar 

  38. Espinosa A, Zhou W, Ek M, et al. The Sjogren’s syndrome-associated autoantigen Ro52 is an E3 ligase that regulates proliferation and cell death. J Immunol. 2006;176:6277–85.

    PubMed  CAS  Google Scholar 

  39. Wada K, Kamitani T. Autoantigen Ro52 is an E3 ubiquitin ligase. Biochem Biophys Res Commun. 2006;339:415–21.

    Article  PubMed  CAS  Google Scholar 

  40. Locht H, Pelck R, Manthorpe R. Diagnostic and prognostic significance of measuring antibodies to alpha-fodrin compared to anti-Ro-52, anti-Ro-60, and anti-La in primary Sjogren’s syndrome. J Rheumatol. 2008;35:845–9.

    PubMed  Google Scholar 

  41. Atkinson JC, Travis WD, Slocum L, et al. Serum anti-SS-B/La and IgA rheumatoid factor are markers of salivary gland disease activity in primary Sjogren’s syndrome. Arthritis Rheum. 1992;35:1368–72.

    PubMed  CAS  Google Scholar 

  42. Gerli R, Muscat C, Giansanti M, et al. Quantitative assessment of salivary gland inflammatory infiltration in primary Sjogren’s syndrome: its relationship to different demographic, clinical and serological features of the disorder. Br J Rheumatol. 1997;36:969–75.

    Article  PubMed  CAS  Google Scholar 

  43. Barcellos KS, Nonogaki S, Enokihara MM, et al. Differential expression of Ro/SSA 60 kDa and La/SSB, but not Ro/SSA 52 kDa, mRNA and protein in minor salivary glands from patients with primary Sjogren’s syndrome. J Rheumatol. 2007;34:1283–92.

    PubMed  CAS  Google Scholar 

  44. de Wilde PC, Kater L, Bodeutsch C, et al. Aberrant expression pattern of the SS-B/La antigen in the labial salivary glands of patients with Sjogren’s syndrome. Arthritis Rheum. 1996;39:783–91.

    Article  PubMed  Google Scholar 

  45. Yannopoulos DI, Roncin S, Lamour A, et al. Conjunctival epithelial cells from patients with Sjogren’s syndrome inappropriately express major histocompatibility complex molecules, La(SSB) antigen, and heat-shock proteins. J Clin Immunol. 1992;12:259–65.

    Article  PubMed  CAS  Google Scholar 

  46. Horsfall AC, Rose LM, Maini RN. Autoantibody synthesis in salivary glands of Sjogren’s syndrome patients. J Autoimmun. 1989;2:559–68.

    Article  PubMed  CAS  Google Scholar 

  47. Halse AK, Marthinussen MC, Wahren-Herlenius M, et al. Isotype distribution of anti-Ro/SS-A and anti-La/SS-B antibodies in plasma and saliva of patients with Sjogren’s syndrome. Scand J Rheumatol. 2000;29:13–9.

    PubMed  CAS  Google Scholar 

  48. Tengner P, Halse AK, Haga HJ, et al. Detection of anti-Ro/SSA and anti-La/SSB autoantibody-producing cells in salivary glands from patients with Sjogren’s syndrome. Arthritis Rheum. 1998;41:2238–48.

    Article  PubMed  CAS  Google Scholar 

  49. Halse A, Tengner P, Wahren-Herlenius M, et al. Increased frequency of cells secreting interleukin-6 and interleukin-10 in peripheral blood of patients with primary Sjogren’s syndrome. Scand J Immunol. 1999;49:533–8.

    Article  PubMed  CAS  Google Scholar 

  50. Reed JH, Jackson MW, Gordon TP. B cell apotopes of the 60-kDa Ro/SSA and La/SSB autoantigens. J Autoimmun. 2008;31:263–7.

    Article  PubMed  CAS  Google Scholar 

  51. Casciola-Rosen LA, Anhalt G, Rosen A. Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J Exp Med. 1994;179:1317–30.

    Article  PubMed  CAS  Google Scholar 

  52. Utz PJ, Anderson P. Posttranslational protein modifications, apoptosis, and the bypass of tolerance to autoantigens. Arthritis Rheum. 1998;41:1152–60.

    Article  PubMed  CAS  Google Scholar 

  53. Pan ZJ, Davis K, Maier S, et al. Neo-epitopes are required for immunogenicity of the La/SS-B nuclear antigen in the context of late apoptotic cells. Clin Exp Immunol. 2006;143:237–48.

    Article  PubMed  CAS  Google Scholar 

  54. Rosen A, Casciola-Rosen L, Ahearn J. Novel packages of viral and self-antigens are generated during apoptosis. J Exp Med. 1995;181:1557–61.

    Article  PubMed  CAS  Google Scholar 

  55. Miranda-Carus ME, Askanase AD, Clancy RM, et al. Anti-SSA/Ro and anti-SSB/La autoantibodies bind the surface of apoptotic fetal cardiocytes and promote secretion of TNF-alpha by macrophages. J Immunol. 2000;165:5345–51.

    PubMed  CAS  Google Scholar 

  56. Lipham WJ, Redmond TM, Takahashi H, et al. Recognition of peptides that are immunopathogenic but cryptic. Mechanisms that allow lymphocytes sensitized against cryptic peptides to initiate pathogenic autoimmune processes. J Immunol. 1991;146:3757–62.

    PubMed  CAS  Google Scholar 

  57. Reed JH, Neufing PJ, Jackson MW, et al. Different temporal expression of immunodominant Ro60/60 kDa-SSA and La/SSB apotopes. Clin Exp Immunol. 2007;148:153–60.

    Article  PubMed  CAS  Google Scholar 

  58. Huang M, Ida H, Kamachi M, et al. Detection of apoptosis-specific autoantibodies directed against granzyme B-induced cleavage fragments of the SS-B (La) autoantigen in sera from patients with primary Sjogren’s syndrome. Clin Exp Immunol. 2005;142:148–54.

    Article  PubMed  CAS  Google Scholar 

  59. Terzoglou AG, Routsias JG, Moutsopoulos HM, et al. Post-translational modifications of the major linear epitope 169–190aa of Ro60 kDa autoantigen alter the autoantibody binding. Clin Exp Immunol. 2006;146:60–5.

    Article  PubMed  CAS  Google Scholar 

  60. Gordon TP, Greer M, Reynolds P, et al. Estimation of amounts of anti-La(SS-B) antibody directed against immunodominant epitopes of the La(SS-B) autoantigen. Clin Exp Immunol. 1991;85:402–6.

    Article  PubMed  CAS  Google Scholar 

  61. Chan EKL, Francoeur AM, Tan EM. Epitopes, structural domains, and asymmetry of amino acid residues in SS-B/La nuclear protein. J Immunol. 1986;136:3744–9.

    PubMed  CAS  Google Scholar 

  62. Chan EKL, Tan EM. The small nuclear ribonucleoprotein SS-B/La binds RNA with a conserved protease-resistant domain of 28 kilodaltons. Mol Cell Biol. 1987;7:2588–91.

    PubMed  CAS  Google Scholar 

  63. Neufing PJ, Clancy RM, Jackson MW, et al. Exposure and binding of selected immunodominant La/SSB epitopes on human apoptotic cells. Arthritis Rheum. 2005;52:3934–42.

    Article  PubMed  CAS  Google Scholar 

  64. Ben-Chetrit E, Fox RI, Tan EM. Dissociation of immune responses to the SS-A (Ro) 52-kd and 60-kd polypeptides in systemic lupus erythematosus and Sjögren’s syndrome. Arthritis Rheum. 1990;33:349–55.

    Article  PubMed  CAS  Google Scholar 

  65. Reed JH, Jackson MW, Gordon TP. A B cell apotope of Ro 60 in systemic lupus erythematosus. Arthritis Rheum. 2008;58:1125–9.

    Article  PubMed  Google Scholar 

  66. Malik S, Bruner GR, Williams-Weese C, et al. Presence of anti-La autoantibody is associated with a lower risk of nephritis and seizures in lupus patients. Lupus. 2007;16:863–6.

    Article  PubMed  CAS  Google Scholar 

  67. Clancy RM, Neufing PJ, Zheng P, et al. Impaired clearance of apoptotic cardiocytes is linked to anti-SSA/Ro and -SSB/La antibodies in the pathogenesis of congenital heart block. J Clin Invest. 2006;116:2413–22.

    PubMed  CAS  Google Scholar 

  68. Saegusa J, Kawano S, Koshiba M, et al. Oxidative stress mediates cell surface expression of SS-A/Ro antigen on keratinocytes. Free Radic Biol Med. 2002;32:1006–16.

    Article  PubMed  CAS  Google Scholar 

  69. Gerl V, Hostmann B, Johnen C, et al. The intracellular 52-kd Ro/SSA autoantigen in keratinocytes is up-regulated by tumor necrosis factor alpha via tumor necrosis factor receptor I. Arthritis Rheum. 2005;52:531–8.

    Article  PubMed  CAS  Google Scholar 

  70. Dorner T, Hucko M, Mayet WJ, et al. Enhanced membrane expression of the 52 kD Ro(SSA) and La(SSB) antigens by human keratinocytes induced by TNF alpha. Ann Rheum Dis. 1996;54:904–9.

    Article  Google Scholar 

  71. Salomonsson S, Sonesson SE, Ottosson L, et al. Ro/SSA autoantibodies directly bind cardiomyocytes, disturb calcium homeostasis, and mediate congenital heart block. J Exp Med. 2005;201:11–7.

    Article  PubMed  CAS  Google Scholar 

  72. Wahren-Herlenius M, Sonesson SE. Specificity and effector mechanisms of autoantibodies in congenital heart block. Curr Opin Immunol. 2006;18:690–6.

    Article  PubMed  CAS  Google Scholar 

  73. Gordon TP, Kinoshita G, Cavill D, et al. Restricted specificity of intermolecular spreading to endogenous La (SS-B) and 60 kDa Ro (SS-A) in experimental autoimmunity. Scand J Immunol. 2002;56:168–73.

    Article  PubMed  CAS  Google Scholar 

  74. Topfer F, Gordon T, McCluskey J. Intra- and intermolecular spreading of autoimmunity involving the nuclear self-antigens La (SS-B) and Ro (SS-A). Proc Natl Acad Sci USA. 1995;92:875–9.

    Article  PubMed  CAS  Google Scholar 

  75. Keech CL, Gordon TP, McCluskey J. The immune response to 52-kDa Ro and 60-kDa Ro is linked in experimental autoimmunity. J Immunol. 1996;157:3694–9.

    PubMed  CAS  Google Scholar 

  76. Tseng CE, Chan EKL, Miranda E, et al. The 52-kd protein as a target of intermolecular spreading of the immune response to components of the SS-A/Ro-SS-B/La complex. Arthritis Rheum. 1997;40:936–44.

    Article  PubMed  CAS  Google Scholar 

  77. Reynolds P, Gordon TP, Purcell AW, et al. Hierarchical self-tolerance to T cell determinants within the ubiquitous nuclear self-antigen La (SS-B) permits induction of systemic autoimmunity in normal mice. J Exp Med. 1996;184:1857–70.

    Article  PubMed  CAS  Google Scholar 

  78. Scofield RH, Kaufman KM, Baber U, et al. Immunization of mice with human 60-kd Ro peptides results in epitope spreading if the peptides are highly homologous between human and mouse. Arthritis Rheum. 1999;42:1017–24.

    Article  PubMed  CAS  Google Scholar 

  79. Scofield RH, Henry WE, Kurien BT, et al. Immunization with short peptides from the sequence of the systemic lupus erythematosus-associated 60-kDa Ro autoantigen results in anti-Ro ribonucleoprotein autoimmunity. J Immunol. 1996;156:4059–66.

    PubMed  CAS  Google Scholar 

  80. Fatenejad S, Craft J. Intrastructural help in diversification of humoral autoimmune responses. Clin Exp Immunol. 1996;106:1–4.

    Article  PubMed  CAS  Google Scholar 

  81. McClain MT, Heinlen LD, Dennis GJ, et al. Early events in lupus humoral autoimmunity suggest initiation through molecular mimicry. Nat Med. 2005;11:85–9.

    Article  PubMed  CAS  Google Scholar 

  82. Kuhn A, Herrmann M, Kleber S, et al. Accumulation of apoptotic cells in the epidermis of patients with cutaneous lupus erythematosus after ultraviolet irradiation. Arthritis Rheum. 2006;54:939–50.

    Article  PubMed  Google Scholar 

  83. Xue D, Shi H, Smith JD, et al. A lupus-like syndrome develops in mice lacking the Ro 60-kDa protein, a major lupus autoantigen. Proc Natl Acad Sci USA. 2003;100:7503–8.

    Article  PubMed  CAS  Google Scholar 

  84. Bacman S, Sterin-Borda L, Camusso JJ, et al. Circulating antibodies against rat parotid gland M3 muscarinic receptors in primary Sjogren’s syndrome. Clin Exp Immunol. 1996;104:454–9.

    Article  PubMed  CAS  Google Scholar 

  85. Yamamoto H, Sims NE, Macauley SP, et al. Alterations in the secretory response of non-obese diabetic (NOD) mice to muscarinic receptor stimulation. Clin Immunol Immunopathol. 1996;78:245–55.

    Article  PubMed  CAS  Google Scholar 

  86. Yamamoto H, Ishibashi K, Nakagawa Y, et al. Detection of alterations in the levels of neuropeptides and salivary gland responses in the non-obese diabetic mouse model for autoimmune sialoadenitis. Scand J Immunol. 1997;45:55–61.

    Article  PubMed  CAS  Google Scholar 

  87. Cavill D, Waterman SA, Gordon TP. Antibodies raised against the second extracellular loop of the human muscarinic M3 receptor mimic functional autoantibodies in Sjogren’s syndrome. Scand J Immunol. 2004;59:261–6.

    Article  PubMed  CAS  Google Scholar 

  88. Wang F, Jackson MW, Maughan V, et al. Passive transfer of Sjogren’s syndrome IgG produces the pathophysiology of overactive bladder. Arthritis Rheum. 2004;50:3637–45.

    Article  PubMed  CAS  Google Scholar 

  89. Gordon TP, Bolstad AI, Rischmueller M, et al. Autoantibodies in primary Sjogren’s syndrome: new insights into mechanisms of autoantibody diversification and disease pathogenesis. Autoimmunity 2001;34:123–32.

    Article  PubMed  CAS  Google Scholar 

  90. Kovacs L, Feher E, Bodnar I, et al. Demonstration of autoantibody binding to muscarinic acetylcholine receptors in the salivary gland in primary Sjogren’s syndrome. Clin Immunol. 2008;128:269–76.

    Article  PubMed  CAS  Google Scholar 

  91. Cha S, Singson E, Cornelius J, et al. Muscarinic acetylcholine type-3 receptor desensitization due to chronic exposure to Sjogren’s syndrome-associated autoantibodies. J Rheumatol. 2006;33:296–306.

    PubMed  CAS  Google Scholar 

  92. Naito Y, Matsumoto I, Wakamatsu E, et al. Muscarinic acetylcholine receptor autoantibodies in patients with Sjogren’s syndrome. Ann Rheum Dis. 2005;64:510–1.

    Article  PubMed  CAS  Google Scholar 

  93. Gao J, Cha S, Jonsson R, et al. Detection of anti-type 3 muscarinic acetylcholine receptor autoantibodies in the sera of Sjogren’s syndrome patients by use of a transfected cell line assay. Arthritis Rheum. 2004;50:2615–21.

    Article  PubMed  CAS  Google Scholar 

  94. Nguyen KH, Brayer J, Cha S, et al. Evidence for antimuscarinic acetylcholine receptor antibody-mediated secretory dysfunction in nod mice. Arthritis Rheum. 2000;43:2297–306.

    Article  PubMed  CAS  Google Scholar 

  95. Ishikawa Y, Eguchi T, Skowronski MT, et al. Acetylcholine acts on M3 muscarinic receptors and induces the translocation of aquaporin5 water channel via cytosolic Ca2+ elevation in rat parotid glands. Biochem Biophys Res Commun. 1998;245:835–40.

    Article  PubMed  CAS  Google Scholar 

  96. Dawson LJ, Fox PC, Smith PM. Sjogrens syndrome—the non-apoptotic model of glandular hypofunction. Rheumatology (Oxford) 2006;45:792–8.

    Article  CAS  Google Scholar 

  97. Abrams P, Andersson KE, Buccafusco JJ, et al. Muscarinic receptors: their distribution and function in body systems, and the implications for treating overactive bladder. Br J Pharmacol. 2006;148:565–78.

    Article  PubMed  CAS  Google Scholar 

  98. Culp DJ, Luo W, Richardson LA, et al. Both M1 and M3 receptors regulate exocrine secretion by mucous acini. Am J Physiol. 1996;271:C1963–72.

    PubMed  CAS  Google Scholar 

  99. Watson EL, Abel PW, DiJulio D, et al. Identification of muscarinic receptor subtypes in mouse parotid gland. Am J Physiol. 1996;271:C905–13.

    PubMed  CAS  Google Scholar 

  100. Beroukas D, Goodfellow R, Hiscock J, et al. Up-regulation of M3-muscarinic receptors in labial salivary gland acini in primary Sjogren’s syndrome. Lab Invest. 2002;82:203–10.

    PubMed  CAS  Google Scholar 

  101. Baum BJ. Principles of saliva secretion. Ann NY Acad Sci. 1993;694:17–23.

    Article  PubMed  CAS  Google Scholar 

  102. Kovacs L, Marczinovits I, Gyorgy A, et al. Clinical associations of autoantibodies to human muscarinic acetylcholine receptor 3(213–228) in primary Sjogren’s syndrome. Rheumatology (Oxford) 2005;44:1021–5.

    Article  CAS  Google Scholar 

  103. Schegg V, Vogel M, Didichenko S, et al. Evidence that anti-muscarinic antibodies in Sjogren’s syndrome recognise both M3R and M1R. Biologicals 2008;36:213–22.

    Article  PubMed  CAS  Google Scholar 

  104. Cavill D, Waterman SA, Gordon TP. Failure to detect antibodies to extracellular loop peptides of the muscarinic M3 receptor in primary Sjogren’s syndrome. J Rheumatol. 2002;29:1342–4.

    PubMed  Google Scholar 

  105. Koo NY, Li J, Hwang SM, et al. Functional epitope of muscarinic type 3 receptor which interacts with autoantibodies from Sjogren’s syndrome patients. Rheumatology (Oxford). 2008;47:828–33.

    Article  CAS  Google Scholar 

  106. Dawson LJ, Stanbury J, Venn N, et al. Antimuscarinic antibodies in primary Sjogren’s syndrome reversibly inhibit the mechanism of fluid secretion by human submandibular salivary acinar cells. Arthritis Rheum. 2006;54:1165–73.

    Article  PubMed  CAS  Google Scholar 

  107. Cavill D, Waterman SA, Gordon TP. Antiidiotypic antibodies neutralize autoantibodies that inhibit cholinergic neurotransmission. Arthritis Rheum. 2003;48:3597–602.

    Article  PubMed  CAS  Google Scholar 

  108. Fox RI, Konttinen Y, Fisher A. Use of muscarinic agonists in the treatment of Sjogren’s syndrome. Clin Immunol. 2001;101:249–63.

    Article  PubMed  CAS  Google Scholar 

  109. Dawson LJ, Christmas SE, Smith PM. An investigation of interactions between the immune system and stimulus-secretion coupling in mouse submandibular acinar cells. A possible mechanism to account for reduced salivary flow rates associated with the onset of Sjogren’s syndrome. Rheumatology (Oxford) 2000;39:1226–33.

    Article  CAS  Google Scholar 

  110. Dawson LJ, Caulfield VL, Stanbury JB, et al. Hydroxychloroquine therapy in patients with primary Sjogren’s syndrome may improve salivary gland hypofunction by inhibition of glandular cholinesterase. Rheumatology (Oxford) 2005;44:449–55.

    Article  CAS  Google Scholar 

  111. Tsubota K, Hirai S, King LS, et al. Defective cellular trafficking of lacrimal gland aquaporin-5 in Sjogren’s syndrome. Lancet 2001;357:688–9.

    Article  PubMed  CAS  Google Scholar 

  112. Beroukas D, Hiscock J, Jonsson R, et al. Subcellular distribution of aquaporin 5 in salivary glands in primary Sjogren’s syndrome. Lancet 2001;358:1875–6.

    Article  PubMed  CAS  Google Scholar 

  113. Kovacs L, Papos M, Takacs R, et al. Autonomic nervous system dysfunction involving the gastrointestinal and the urinary tracts in primary Sjogren’s syndrome. Clin Exp Rheumatol. 2003;21:697–703.

    PubMed  CAS  Google Scholar 

  114. Orman B, Sterin-Borda L, De Couto PA, et al. Anti-brain cholinergic autoantibodies from primary Sjogren syndrome sera modify simultaneously cerebral nitric oxide and prostaglandin biosynthesis. Int Immunopharmacol. 2007;7:1535–43.

    Article  PubMed  CAS  Google Scholar 

  115. van de Merwe JP. Interstitial cystitis and systemic autoimmune diseases. Nat Clin Pract Urol. 2007;4:484–91.

    Article  PubMed  CAS  Google Scholar 

  116. Winkelmann JC, Forget BG. Erythroid and nonerythroid spectrins. Blood 1993;81:3173–85.

    PubMed  CAS  Google Scholar 

  117. Moon RT, McMahon AP. Generation of diversity in nonerythroid spectrins. Multiple polypeptides are predicted by sequence analysis of cDNAs encompassing the coding region of human nonerythroid alpha-spectrin. J Biol Chem. 1990;265:4427–33.

    PubMed  CAS  Google Scholar 

  118. Bennett V. Spectrin-based membrane skeleton: a multipotential adaptor between plasma membrane and cytoplasm. Physiol Rev. 1990;70:1029–65.

    PubMed  CAS  Google Scholar 

  119. Koob R, Zimmermann M, Schoner W, et al. Colocalization and coprecipitation of ankyrin and Na+,K+-ATPase in kidney epithelial cells. Eur J Cell Biol. 1988;45:230–37.

    PubMed  CAS  Google Scholar 

  120. Witte T. Antifodrin antibodies in Sjogren’s syndrome: a review. Ann NY Acad Sci. 2005;1051:235–9.

    Article  PubMed  CAS  Google Scholar 

  121. Bizzaro N, Villalta D, Tonutti E. Low sensitivity of anti-alpha-fodrin antibodies in patients with primary Sjogren’s syndrome. J Rheumatol. 2004;31:2310–11.

    PubMed  Google Scholar 

  122. Maruyama T, Saito I, Hayashi Y, et al. Molecular analysis of the human autoantibody response to alpha-fodrin in Sjogren’s syndrome reveals novel apoptosis-induced specificity. Am J Pathol. 2004;165:53–61.

    Article  PubMed  CAS  Google Scholar 

  123. Yanagi K, Ishimaru N, Haneji N, et al. Anti-120-kDa alpha-fodrin immune response with Th1-cytokine profile in the NOD mouse model of Sjögren’s syndrome. Eur J Immunol. 1998;28:3336–45.

    Article  PubMed  CAS  Google Scholar 

  124. Nakamura H, Kawakami A, Eguchi K. Mechanisms of autoantibody production and the relationship between autoantibodies and the clinical manifestations in Sjogren’s syndrome. Transl Res. 2006;148:281–8.

    Article  PubMed  CAS  Google Scholar 

  125. Miyazaki K, Takeda N, Ishimaru N, et al. Analysis of in vivo role of alpha-fodrin autoantigen in primary Sjogren’s syndrome. Am J Pathol. 2005;167:1051–59.

    Article  PubMed  CAS  Google Scholar 

  126. Watanabe T, Tsuchida T, Kanda N, et al. Anti-alpha-fodrin antibodies in Sjögren’s syndrome and lupus erythematosus. Arch Dermatol. 1999;135:535–9.

    Article  PubMed  CAS  Google Scholar 

  127. Kuwana M, Okano T, Ogawa Y, et al. Autoantibodies to the amino-terminal fragment of beta-fodrin expressed in glandular epithelial cells in patients with Sjogren’s syndrome. J Immunol. 2001;167:5449–56.

    PubMed  CAS  Google Scholar 

  128. Witte T, Matthias T, Arnett FC, et al. IgA and IgG autoantibodies against alpha-fodrin as markers for Sjogren’s syndrome. Systemic lupus erythematosus. J Rheumatol. 2000;27:2617–20.

    PubMed  CAS  Google Scholar 

  129. Witte T, Matthias T, Bierwirth J, et al. Antibodies against alpha-fodrin are associated with sicca syndrome in the general population. Ann NY Acad Sci. 2007;1108:414–7.

    Article  PubMed  CAS  Google Scholar 

  130. Chen Q, Li X, He W, et al. The epitope study of alpha-fodrin autoantibody in primary Sjogren’s syndrome. Clin Exp Immunol. 2007;149:497–503.

    Article  PubMed  CAS  Google Scholar 

  131. Sordet C, Gottenberg JE, Goetz J, et al. Anti-{alpha}-fodrin autoantibodies are not useful diagnostic markers of primary Sjogren’s syndrome. Ann Rheum Dis. 2005;64:1244–5.

    Article  PubMed  CAS  Google Scholar 

  132. Ruiz-Tiscar JL, Lopez-Longo FJ, Sanchez-Ramon S, et al. Prevalence of IgG anti-{alpha}-fodrin antibodies in Sjogren’s syndrome. Ann NY Acad Sci. 2005;1050:210–16.

    Article  PubMed  CAS  Google Scholar 

  133. Nozawa K, Fritzler MJ, Chan EKL. Unique and shared features of Golgi complex autoantigens. Autoimmun Rev. 2005;4:35–41.

    Article  PubMed  CAS  Google Scholar 

  134. Nozawa K, Fritzler MJ, von Mühlen CA, et al. Giantin is the major Golgi autoantigen in human anti-Golgi complex sera. Arthritis Res Ther. 2004;6:R95-R102.

    Article  PubMed  CAS  Google Scholar 

  135. Fritzler MJ, Lung CC, Hamel JC, et al. Molecular characterization of golgin-245: a novel Golgi complex protein containing a granin signature. J Biol Chem. 1995;270:31262–8.

    Article  PubMed  CAS  Google Scholar 

  136. Infante C, Ramos-Morales F, Fedriani C, et al. GMAP-210, A cis-Golgi network-associated protein, is a minus end microtubule-binding protein. J Cell Biol. 1999;145:83–98.

    Article  PubMed  CAS  Google Scholar 

  137. Fritzler MJ, Hamel JC, Ochs RL, et al. Molecular characterization of two human autoantigens: unique cDNAs encoding 95- and 160-kD proteins of a putative family in the Golgi complex. J Exp Med. 1993;178:49–62.

    Article  PubMed  CAS  Google Scholar 

  138. Griffith KJ, Chan EKL, Lung CC, et al. Molecular cloning of a novel 97-kd Golgi complex autoantigen associated with Sjögren’s syndrome. Arthritis Rheum. 1997;40:1693–702.

    Article  PubMed  CAS  Google Scholar 

  139. Selak S, Chan EKL, Schoenroth L, et al. Early endosome antigen. 1: an autoantigen associated with neurological diseases. J Investig Med. 1999;47:311–8.

    PubMed  CAS  Google Scholar 

  140. Griffith KJ, Ryan JP, Senécal JL, et al. The cytoplasmic linker protein CLIP-170 is a human autoantigen. Clin Exp Immunol. 2002;127:533–8.

    Article  PubMed  CAS  Google Scholar 

  141. Doxsey SJ, Stein P, Evans L, et al. Pericentrin, a highly conserved centrosome protein involved in microtubule organization. Cell 1994;76:639–50.

    Article  PubMed  CAS  Google Scholar 

  142. Bouckson-Castaing V, Moudjou M, Ferguson DJ, et al. Molecular characterisation of ninein, a new coiled-coil protein of the centrosome. J Cell Sci. 1996;109:179–90.

    PubMed  CAS  Google Scholar 

  143. Mack GJ, Rees J, Sandblom O, et al. Autoantibodies to a group of centrosomal proteins in human autoimmune sera reactive with the centrosome. Arthritis Rheum. 1998;41:551–8.

    Article  PubMed  CAS  Google Scholar 

  144. Price CM, Pettijohn DE. Redistribution of the nuclear mitotic apparatus protein (NuMA) during mitosis and nuclear assembly. Properties of purified NuMA protein. Exp Cell Res. 1986;166:295–311.

    Article  PubMed  CAS  Google Scholar 

  145. Rattner JB, Rees J, Arnett FC, et al. The centromere kinesin-like protein, CENP-E. An autoantigen in systemic sclerosis. Arthritis Rheum. 1996;39:1355–61.

    Article  PubMed  CAS  Google Scholar 

  146. Yen TJ, Li G, Schaar BT, et al. CENP-E is a putative kinetochore motor that accumulates just before mitosis. Nature 1992;359:536–9.

    Article  PubMed  CAS  Google Scholar 

  147. Rattner JB, Rao A, Fritzler MJ, et al. CENP-F is a ca 400 kDa kinetochore protein that exhibits a cell-cycle dependent localization. Cell Motil Cytoskel. 1993;26:214–26.

    Article  CAS  Google Scholar 

  148. Liao H, Winkfein RJ, Mack G, et al. CENP-F is a protein of the nuclear matrix that assembles onto kinetochores at late G2 and is rapidly degraded after mitosis. J Cell Biol. 1995;130:507–18.

    Article  PubMed  CAS  Google Scholar 

  149. Nozawa K, Casiano CA, Hamel JC, et al. Fragmentation of Golgi complex and Golgi autoantigens during apoptosis and necrosis. Arthritis Res. 2002;4:R3.

    Article  PubMed  Google Scholar 

  150. Errico A, Claudiani P, D'Addio M, et al. Spastin interacts with the centrosomal protein NA14, and is enriched in the spindle pole, the midbody and the distal axon. Hum Mol Genet. 2004;13:2121–32.

    Article  PubMed  CAS  Google Scholar 

  151. Pfannenschmid F, Wimmer VC, Rios RM, et al. Chlamydomonas DIP13 and human NA14: a new class of proteins associated with microtubule structures is involved in cell division. J Cell Sci. 2003;116:1449–62.

    Article  PubMed  CAS  Google Scholar 

  152. Humphreys-Beher MG, Peck AB, Dang H, et al. The role of apoptosis in the initiation of the autoimmune response in Sjogren’s syndrome. Clin Exp Immunol. 1999;116:383–7.

    Article  PubMed  CAS  Google Scholar 

  153. Manganelli P, Quaini F, Andreoli AM, et al. Quantitative analysis of apoptosis and bcl-2 in Sjogren’s syndrome. J Rheumatol. 1997;24:1552–7.

    PubMed  CAS  Google Scholar 

  154. Kong L, Ogawa N, Nakabayashi T, et al. Fas and Fas ligand expression in the salivary glands of patients with primary Sjogren’s syndrome. Arthritis Rheum. 1997;40:87–97.

    Article  PubMed  CAS  Google Scholar 

  155. Gannot G, Bermudez D, Lillibridge D, et al. Fas and Fas-mediated effects on a human salivary cell line in vitro: a model for immune-mediated exocrine damage in Sjogren’s syndrome. Cell Death Differ. 1998;5:743–50.

    Article  PubMed  CAS  Google Scholar 

  156. Kulkarni K, Selesniemi K, Brown TL. Interferon-gamma sensitizes the human salivary gland cell line, HSG, to tumor necrosis factor-alpha induced activation of dual apoptotic pathways. Apoptosis 2006;11:2205–15.

    Article  PubMed  CAS  Google Scholar 

  157. Ju ST, Panka DJ, Cui H, et al. Fas(CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature 1995;373:444–8.

    Article  PubMed  CAS  Google Scholar 

  158. Ohlsson M, Skarstein K, Bolstad AI, et al. Fas-induced apoptosis is a rare event in Sjogren’s syndrome. Lab Invest. 2001;81:95–105.

    PubMed  CAS  Google Scholar 

  159. Nozawa K, Kayagaki N, Tokano Y, et al. Soluble Fas (APO-1, CD95) and soluble Fas ligand in rheumatic diseases. Arthritis Rheum. 1997;40:1126–9.

    Article  PubMed  CAS  Google Scholar 

  160. Scofield RH, Harley JB. Autoantigenicity of Ro/SSA antigen is related to a nucleocapsid protein of vesicular stomatitis virus. Proc Natl Acad Sci USA. 1991;88:3343–7.

    Article  PubMed  CAS  Google Scholar 

  161. Haaheim LR, Halse AK, Kvakestad R, et al. Serum antibodies from patients with primary Sjogren’s syndrome and systemic lupus erythematosus recognize multiple epitopes on the La(SS-B) autoantigen resembling viral protein sequences. Scand J Immunol. 1996;43:115–21.

    Article  PubMed  CAS  Google Scholar 

  162. Salomonsson S, Jonsson MV, Skarstein K, et al. Cellular basis of ectopic germinal center formation and autoantibody production in the target organ of patients with Sjogren’s syndrome. Arthritis Rheum. 2003;48:3187–201.

    Article  PubMed  CAS  Google Scholar 

  163. Szodoray P, Alex P, Jonsson MV, et al. Distinct profiles of Sjogren’s syndrome patients with ectopic salivary gland germinal centers revealed by serum cytokines and BAFF. Clin Immunol. 2005;117:168–76.

    Article  PubMed  CAS  Google Scholar 

  164. Jonsson MV, Skarstein K. Follicular dendritic cells confirm lymphoid organization in the minor salivary glands of primary Sjogren’s syndrome. J Oral Pathol Med. 2008;37:515–21.

    Article  PubMed  Google Scholar 

  165. Jonsson MV, Skarstein K, Jonsson R, et al. Serological implications of germinal center-like structures in primary Sjogren’s syndrome. J Rheumatol. 2007;34:2044–9.

    PubMed  Google Scholar 

  166. Wu CT, Gershwin ME, Davis PA. What makes an autoantigen an autoantigen? Ann NY Acad Sci. 2005;1050:134–45.

    Article  PubMed  CAS  Google Scholar 

  167. Casciola-Rosen L, Andrade F, Ulanet D, et al. Cleavage by granzyme B is strongly predictive of autoantigen status: implications for initiation of autoimmunity. J Exp Med. 1999;190:815–26.

    Article  PubMed  CAS  Google Scholar 

  168. Doyle HA, Mamula MJ. Post-translational protein modifications in antigen recognition and autoimmunity. Trends Immunol. 2001;22:443–9.

    Article  PubMed  CAS  Google Scholar 

  169. Utz PJ, Hottelet M, Schur PH, et al. Proteins phosphorylated during stress-induced apoptosis are common targets for autoantibody production in patients with systemic lupus erythematosus. J Exp Med. 1997;185:843–54.

    Article  PubMed  CAS  Google Scholar 

  170. Casiano CA, Martin SJ, Green DR, et al. Selective cleavage of nuclear autoantigens during CD95 (Fas/APO-1)-mediated T cell apoptosis. J Exp Med. 1996;184:765–70.

    Article  PubMed  CAS  Google Scholar 

  171. Doyle HA, Mamula MJ. Posttranslational modifications of self-antigens. Ann NY Acad Sci. 2005;1050:1–9.

    Article  PubMed  CAS  Google Scholar 

  172. Chang MK, Binder CJ, Miller YI, et al. Apoptotic cells with oxidation-specific epitopes are immunogenic and proinflammatory. J Exp Med. 2004;200:1359–70.

    Article  PubMed  CAS  Google Scholar 

  173. Kassan SS, Moutsopoulos HM. Clinical manifestations and early diagnosis of Sjogren syndrome. Arch Intern Med. 2004;164:1275–84.

    Article  PubMed  Google Scholar 

  174. Hansen A, Lipsky PE, Dorner T. Immunopathogenesis of primary Sjogren’s syndrome: implications for disease management and therapy. Curr Opin Rheumatol. 2005;17:558–65.

    Article  PubMed  CAS  Google Scholar 

  175. Mitsias DI, Tzioufas AG, Veiopoulou C, et al. The Th1/Th2 cytokine balance changes with the progress of the immunopathological lesion of Sjogren’s syndrome. Clin Exp Immunol. 2002;128:562–8.

    Article  PubMed  CAS  Google Scholar 

  176. Hagiwara E, Pando J, Ishigatsubo Y, et al. Altered frequency of type 1 cytokine secreting cells in the peripheral blood of patients with primary Sjogren’s syndrome. J Rheumatol. 1998;25:89–93.

    PubMed  CAS  Google Scholar 

  177. Hansen A, Lipsky PE, Dorner T. B cells in Sjogren’s syndrome: indications for disturbed selection and differentiation in ectopic lymphoid tissue. Arthritis Res Ther. 2007;9:218.

    Article  PubMed  CAS  Google Scholar 

  178. Zintzaras E, Voulgarelis M, Moutsopoulos HM. The risk of lymphoma development in autoimmune diseases: a meta-analysis. Arch Intern Med. 2005;165:2337–44.

    Article  PubMed  Google Scholar 

  179. Schroder AE, Greiner A, Seyfert C, et al. Differentiation of B cells in the nonlymphoid tissue of the synovial membrane of patients with rheumatoid arthritis. Proc Natl Acad Sci USA. 1996;93:221–5.

    Article  PubMed  CAS  Google Scholar 

  180. Hutloff A, Buchner K, Reiter K, et al. Involvement of inducible costimulator in the exaggerated memory B cell and plasma cell generation in systemic lupus erythematosus. Arthritis Rheum. 2004;50:3211–20.

    Article  PubMed  Google Scholar 

  181. Hsi ED, Singleton TP, Svoboda SM, et al. Characterization of the lymphoid infiltrate in Hashimoto thyroiditis by immunohistochemistry and polymerase chain reaction for immunoglobulin heavy chain gene rearrangement. Am J Clin Pathol. 1998;110:327–33.

    PubMed  CAS  Google Scholar 

  182. Ansell SM, Grant CS, Habermann TM. Primary thyroid lymphoma. Semin Oncol. 1999;26:316–23.

    PubMed  CAS  Google Scholar 

  183. Jonsson MV, Delaleu N, Brokstad KA, et al. Impaired salivary gland function in NOD mice: association with changes in cytokine profile but not with histopathologic changes in the salivary gland. Arthritis Rheum. 2006;54:2300–5.

    Article  PubMed  CAS  Google Scholar 

  184. Jonsson MV, Szodoray P, Jellestad S, et al. Association between circulating levels of the novel TNF family members APRIL and BAFF and lymphoid organization in primary Sjogren’s syndrome. J Clin Immunol. 2005;25:189–201.

    Article  PubMed  CAS  Google Scholar 

  185. Daridon C, Pers JO, Devauchelle V, et al. Identification of transitional type II B cells in the salivary glands of patients with Sjogren’s syndrome. Arthritis Rheum. 2006;54:2280–8.

    Article  PubMed  CAS  Google Scholar 

  186. Tan EM. Antinuclear antibodies: diagnostic markers for autoimmune diseases and probes for cell biology. Adv Immunol. 1989;44:93–151.

    Article  PubMed  CAS  Google Scholar 

  187. Hardin JA. The lupus autoantigens and the pathogenesis of systemic lupus erythematosus. Arthritis Rheum. 1986;29:457–60.

    Article  PubMed  CAS  Google Scholar 

  188. Mattioli M, Reichlin M. Heterogeneity of RNA protein antigens reactive with sera of patients with systemic lupus erythematosus. Arthritis Rheum. 1974;17:421–9.

    Article  PubMed  CAS  Google Scholar 

  189. Boulanger C, Chabot B, Menard HA, et al. Autoantibodies in human anti-Ro sera specifically recognize deproteinized hY5 Ro RNA. Clin Exp Immunol. 1995;99:29–36.

    Article  PubMed  CAS  Google Scholar 

  190. Boire G, Craft J. Human Ro ribonucleoprotein particles: characterization of native structure and stable association with the La polypeptide. J Clin Invest. 1990;85:1182–90.

    Article  PubMed  CAS  Google Scholar 

  191. Kogure T, Takasaki Y, Takeuchi K, et al. Autoimmune responses to proliferating cell nuclear antigen multiprotein complexes involved in cell proliferation are strongly associated with their structure and biologic function in patients with systemic lupus erythematosus. Arthritis Rheum. 2002;46:2946–56.

    Article  PubMed  CAS  Google Scholar 

  192. Lake P, Mitchison NA. Associative control of the immune response to cell surface antigens. Immunol Commun. 1976;5:795–805.

    PubMed  CAS  Google Scholar 

  193. Lin RH, Mamula MJ, Hardin JA, et al. Induction of autoreactive B cells allows priming of autoreactive T cells. J Exp Med. 1991;173:1433–9.

    Article  PubMed  CAS  Google Scholar 

  194. Mamula MJ, Janeway CA, Jr. Do B cells drive the diversification of immune responses? Immunol Today. 1993;14:151–2.

    Article  PubMed  CAS  Google Scholar 

  195. McCauliffe DP, Wang L, Satoh M, et al. Recombinant 52 kDa Ro(SSA) ELISA detects autoantibodies in Sjogren’s syndrome sera that go undetected by conventional serologic assays. J Rheumatol. 1997;24:860–6.

    PubMed  CAS  Google Scholar 

  196. Buyon JP, Slade SG, Chan EKL, et al. Effective separation of the 52 kDa SSA/Ro polypeptide from the 48 kDa SSB/La polypeptide by altering conditions of polyacrylamide gel electrophoresis. J Immunol Methods. 1990;129:207–210.

    Article  PubMed  CAS  Google Scholar 

  197. Dawson L, Tobin A, Smith P, et al. Antimuscarinic antibodies in Sjogren’s syndrome: where are we, and where are we going? Arthritis Rheum. 2005;52:2984–95.

    Article  PubMed  CAS  Google Scholar 

  198. Nardi N, Brito-Zeron P, Ramos-Casals M, et al. Circulating auto-antibodies against nuclear and non-nuclear antigens in primary Sjogren’s syndrome: prevalence and clinical significance in 335 patients. Clin Rheumatol. 2006;25:341–6.

    Article  PubMed  Google Scholar 

  199. Jonsson R. Sjögren’s syndrome. In: Koopman WJ, Moreland LW, editors. Arthritis and allied conditions: A textbook of rheumatology. 15th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2005, pp. 1681–706.

    Google Scholar 

  200. Font J, Ramos-Casals M, Cervera R, et al. Antineutrophil cytoplasmic antibodies in primary Sjogren’s syndrome: prevalence and clinical significance. Br J Rheumatol. 1998;37:1287–91.

    Article  PubMed  CAS  Google Scholar 

  201. Hauschild S, Schmitt WH, Csernok E, et al. ANCA in systemic vasculitides, collagen vascular diseases, rheumatic disorders and inflammatory bowel diseases. Adv Exp Med Biol. 1993;336:245–51.

    PubMed  CAS  Google Scholar 

  202. Asherson RA, Fei HM, Staub HL, et al. Antiphospholipid antibodies and HLA associations in primary Sjogren’s syndrome. Ann Rheum Dis. 1992;51:495–8.

    Article  PubMed  CAS  Google Scholar 

  203. Manthorpe R, Permin H, Tage-Jensen U. Auto-antibodies in Sjogren’s syndrome. With special reference to liver-cell membrane antibody (LMA). Scand J Rheumatol. 1979;8:168–72.

    Article  PubMed  CAS  Google Scholar 

  204. D’Arbonneau F, Ansart S, Le BR, et al. Thyroid dysfunction in primary Sjogren’s syndrome: a long-term followup study. Arthritis Rheum. 2003;49:804–9.

    Article  PubMed  Google Scholar 

  205. Goldblatt F, Beroukas D, Gillis D, et al. Antibodies to AB blood group antigens mimic anti-salivary duct autoantibodies in patients with limited sicca symptoms. J Rheumatol. 2000;27:2382–8.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH Grant AI47859.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward K. L. Chan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nozawa, K., Satoh, M., Cha, S., Takasaki, Y., Chan, E.K.L. (2011). Autoantibodies and Autoantigens in Sjögren’s Syndrome. In: Fox, R., Fox, C. (eds) Sjögren’s Syndrome. Springer, New York, NY. https://doi.org/10.1007/978-1-60327-957-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-957-4_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-60327-956-7

  • Online ISBN: 978-1-60327-957-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics