Skip to main content

Alterations in Cell Cycle Regulatory Genes in Breast Cancer

  • Chapter
  • First Online:
Breast Cancer in the Post-Genomic Era

Part of the book series: Current Clinical Oncology ((CCO))

Summary

Breast cancer is one of the most commonly diagnosed cancers worldwide. The underlying mechanisms accountable for aberrant cell proliferation and tumor growth involve multiple pathways, which include components of the cell cycle machinery. Proto-oncogene activation, loss of tumor suppressor genes, and growth sustained by growth factors and steroids may affect breast cancer initiation and progression. The regulation of cell cycle checkpoints is critical for the proper and orchestrated transition from one phase of the cell cycle to the next. The deregulation of these checkpoints plays a key role in the transformation process, allowing the cells to continuously cycle under conditions inadequate for normal cell proliferation. A key regulatory pathway determining cell cycle proliferation rate is the cyclin/cyclin-dependent kinase (CDK)/p16Ink4A/retinoblastoma protein (pRb) axis. Alterations affecting components of this pathway through overexpression, mutation, and epigenetic gene silencing are almost universal in human cancer. In breast cancer, these include the overexpression of cyclins D1 and cyclin E, decreased expression of the p27Kip1 CDK inhibitor, and silencing of the p16 Ink4A gene through promoter methylation. Understanding the biology of breast cancer may improve the possibility to overcome this pathology. The chance to have strong prognostic and/or predictive markers will be an immensely useful tool to identify patients at higher risk of relapse and to select the most appropriate systemic treatment for individual breast cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Hall PA, Watt FM. Stem cells: the generation and maintenance of cellular diversity. Development 1989;106:619–633.

    CAS  PubMed  Google Scholar 

  2. 2. Morgan DO. Principles of CDK regulation. Nature 1995;374:131–134.

    Article  CAS  PubMed  Google Scholar 

  3. 3. Sutherland RL, Musgrove EA. Cyclins and breast cancer. J Mammary Gland Biol Neoplasia 2004;9:95–104.

    Article  PubMed  Google Scholar 

  4. 4. Miele L. The biology of cyclins and cyclin-dependent protein kinases: an introduction. Methods Mol Biol 2004;285:3–21.

    CAS  PubMed  Google Scholar 

  5. 5.Coqueret O. Linking cyclins to transcriptional control. Gene 2002;299:35–55.

    Article  CAS  PubMed  Google Scholar 

  6. 6.Diehl JA, Cheng M, Roussel MF, Sherr CJ. Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 1998;12:3499–3511.

    Article  CAS  PubMed  Google Scholar 

  7. 7. Diehl JA, Zindy F, Sherr CJ. Inhibition of cyclin D1 phosphorylation on threonine-286 prevents its rapid degradation via the ubiquitin-proteasome pathway. Genes Dev 1997;11:957–972.

    Article  CAS  PubMed  Google Scholar 

  8. 8. Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999;13:1501–1512.

    Article  CAS  PubMed  Google Scholar 

  9. 9. Russo AA, Tong L, Lee J, Jeffrey PD, Pavletich NP. Structural basis for inhibition of the cyclin-dependent kinase Cdk6 by the tumour suppressor p16INK4a. Nature 1998;395:237–243.

    Article  CAS  PubMed  Google Scholar 

  10. 10. Sherr CJ. The INK4a/ARF network in tumour suppression. Nat Rev Mol Cell Biol 2001;2:731–737.

    Article  CAS  PubMed  Google Scholar 

  11. 11. Reynisdottir I, Polyak K, Iavarone A, Massague J. Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-ββ. Genes Dev 1995;9:1831–1845.

    Article  CAS  PubMed  Google Scholar 

  12. 12. Zindy F, Quelle DE, Roussel MF, Sherr CJ. Expression of the p16INK4a tumor suppressor versus other INK4 family members during mouse development and aging. Oncogene 1997;15:203–211.

    Article  CAS  PubMed  Google Scholar 

  13. 13. Weinberg R. pRb and control of cell cycle. In: Weinberg RA, ed. The Biology of Cancer. Garland Science, Taylor and Francis Group, Abingdon, UK, 2007:255–306.

    Google Scholar 

  14. 14. Li R, Waga S, Hannon GJ, Beach D, Stillman B. Differential effects by the p21 CDK inhibitor on PCNA-dependent DNA replication and repair. Nature 1994;371:534–537.

    Article  CAS  PubMed  Google Scholar 

  15. 15. El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B. WAF1, a potential mediator of p53 tumor suppression. Cell 1993;75:817–825.

    Article  CAS  PubMed  Google Scholar 

  16. 16.Polyak K, Kato J, Solomon MJ, Sherr CJ, Massague J, Roberts JK, Koff A. p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Genes Dev 1994;8:9–22.

    Article  CAS  PubMed  Google Scholar 

  17. 17.Zafonte BT, Hulit J, Amanatullah DF, Albanese C, Wang C, Rosen E, Reutens A, Sparano JA, Lisanti MP, Pestell RG. Cell-cycle dysregulation in breast cancer: breast cancer therapies targeting the cell cycle. Front Biosci 2000;5:938–961.

    Article  Google Scholar 

  18. 18.Colozza M, Azambuja E, Cardoso F, Sotiriou C, Larsimont D, Piccart MJ. Proliferative markers as prognostic and predictive tools in early breast cancer: where are we now? Ann Oncol 2005;16:1723–1739.

    Article  CAS  PubMed  Google Scholar 

  19. 19.Caldon CE, Daly RJ, Sutherland RL, Musgrove EA. Cell cycle control in breast cancer cells. J Cell Biochem 2006;97:261–274.

    Article  CAS  PubMed  Google Scholar 

  20. 20.Matsuoka S, Edwards MC, Bai C, Parker S, Zhang P, Baldini A, Harper JW, Elledge SJ. p57KIP2, a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene. Genes Dev 1995;9:650–662.

    Article  CAS  PubMed  Google Scholar 

  21. 21. Tamrakar S, Rubin E, Ludlow JW. Role of pRB dephosphorylation in cell cycle regulation. Front Biosci 2000;5:121–137.

    Article  Google Scholar 

  22. 22. Claudio PP, Tonini T, Giordano A. The retinoblastoma family: twins or distant cousins? Genome Biol 2002;3:3012.1–3012.1.

    Article  Google Scholar 

  23. 23. Polager S, Kalma Y, Berkovich E, Ginsberg D. E2Fs up-regulate expression of genes involved in DNA replication, DNA repair and mitosis. Oncogene 2002;21:437–446.

    Article  CAS  PubMed  Google Scholar 

  24. 24. Harbour JW, Dean DC. The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev 2000;14:2393–2409.

    Article  CAS  PubMed  Google Scholar 

  25. 25. Harbour JW, Dean DC. Rb function in cell-cycle regulation and apoptosis. Nat Cell Biol 2000;2:65–67.

    Article  Google Scholar 

  26. 26. Harbour JW, Dean DC. Chromatin remodeling and Rb activity. Curr Opin Cell Biol 2000;12:685–689.

    Article  CAS  PubMed  Google Scholar 

  27. 27. Pardee AB. G1 events and regulation of cell proliferation. Science 1989;246:603–608.

    Article  CAS  PubMed  Google Scholar 

  28. 28. Malumbres M, Barbacid M. To cycle or not to cycle: a critical decision in cancer. Nat Rev Cancer 2001;1:222–231.

    Article  CAS  PubMed  Google Scholar 

  29. 29. Ormandy CJ, Musgrove EA, Hui R, Daly RJ, Sutherland RL. Cyclin D1, EMS1 and 11q13 amplification in breast cancer. Breast Cancer Res Treat 2003;78:323–335.

    Article  CAS  PubMed  Google Scholar 

  30. 30. Alle KM, Henshall SM, Field AS, Sutherland RL. Cyclin D1 protein is overexpressed in hyperplasia and intraductal carcinoma of the breast. Clin Cancer Res 1998;4:847–854.

    CAS  PubMed  Google Scholar 

  31. 31. Muller WJ, Sinn E, Pattengale PK, Wallace R, Leder P. Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 1988;54:105–115.

    Article  CAS  PubMed  Google Scholar 

  32. 32. Sinn E, Muller WJ, Pattengale PK, Tepler I, Wallace R, Leder P. Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: synergistic action of oncogenes in vivo. Cell 1987;49:465–475.

    Article  CAS  PubMed  Google Scholar 

  33. 33. Fu M, Wang C, Li Z, Sakamaki T, Pestell RG. Cyclin D1: normal and abnormal functions. Endocrinology 2004;145:5439–5447.

    Article  CAS  PubMed  Google Scholar 

  34. 34. Musgrove EA, Lee CS, Buckley MF, Sutherland RL. Cyclin D1 induction in breast cancer cells shortens G1 and is sufficient for cells arrested in G1 to complete the cell cycle. Proc Natl Acad Sci USA 1994;91:8022–8026.

    Article  CAS  PubMed  Google Scholar 

  35. 35. Dubik D, Dembinski TC, Shiu RP. Stimulation of c-myc oncogene expression associated with estrogen-induced proliferation of human breast cancer cells. Cancer Res 1987;47:6517–6521.

    CAS  PubMed  Google Scholar 

  36. 36. Said TK, Conneely OM, Medina D, O’Malley BW, Lydon JP. Progesterone, in addition to estrogen, induces cyclin D1 expression in the murine mammary epithelial cell, in vivo. Endocrinology 1997;138:3933–3939.

    Article  CAS  PubMed  Google Scholar 

  37. 37. Butt AJ, McNeil CM, Musgrove EA, Sutherland RL. Downstream targets of growth factor and oestrogen signalling and endocrine resistance: the potential roles of c-Myc, cyclin D1 and cyclin E. Endocr Relat Cancer 2005;12:S47–S59.

    Article  CAS  PubMed  Google Scholar 

  38. 38. Zwijsen RML, Wientjens E, Klompmaker R, van der Sman J, Bernards R, Michalides RJ. CDK-independent activation of estrogen receptor by cyclin D1. Cell 1997;88:405–415.

    Article  CAS  PubMed  Google Scholar 

  39. 39. Roy PG, Thompson AM. Cyclin D1 and breast cancer. Breast 2006;15:718–727.

    Article  PubMed  Google Scholar 

  40. 40. Hwang HC, Clurman BE. Cyclin E in normal and neoplastic cell cycles. Oncogene 2005;24:2776–2786.

    Article  CAS  PubMed  Google Scholar 

  41. 41. Geng Y, Yu Q, Sicinska E, Das M, Schneider JE, Bhattacharya S, Rideout WM, Bronson RT, Gardner H, Sicinski P. Cyclin E ablation in the mouse. Cell 2003;114:431–443.

    Article  CAS  PubMed  Google Scholar 

  42. 42. Ohtsubo M, Theodoras AM, Schumacher J, Roberts JM, Pagano M. Human cyclin E, a nuclear protein essential for the G1-to-S phase transition. Mol Cell Biol 1995;15:2612–2624.

    CAS  PubMed  Google Scholar 

  43. 43. Berglund P, Landberg G. Cyclin E overexpression reduces infiltrative growth in breast cancer: yet another link between proliferation control and tumor invasion. Cell Cycle 2006;5:606–609.

    Article  CAS  PubMed  Google Scholar 

  44. 44. Keyomarsi K, Conte D Jr, Toyofuku W, Fox MP. Deregulation of cyclin E in breast cancer. Oncogene 1995;11:941–950.

    CAS  PubMed  Google Scholar 

  45. 45. Bortner DM, Rosenberg MP. Induction of mammary gland hyperplasia and carcinomas in transgenic mice expressing human cyclin E. Mol Cell Biol 1997;17:453–459.

    CAS  PubMed  Google Scholar 

  46. 46. Spruck CH, Won KA, Reed SI. Deregulated cyclin E induces chromosome instability. Nature 1999;401:297–300.

    Article  CAS  PubMed  Google Scholar 

  47. 47. Strohmaier H, Spruck CH, Kaiser P, Won K, Sangfelt O, Reed SI. Human F-box protein hCdc4 targets cyclin E for proteolysis and is mutated in a breast cancer cell line. Nature 2001;413:316–322.

    Article  CAS  PubMed  Google Scholar 

  48. 48. Herrera RE, Sah VP, Williams BO, Mäkelä TP, Weinberg RA, Jacks T. Altered cell cycle kinetics, gene expression, and G1 restriction point regulation in Rb-deficient fibroblasts. Mol Cell Biol 1996;16:2402–2407.

    CAS  PubMed  Google Scholar 

  49. 49. Akli S, Keyomarsi K. Cyclin E and its low molecular weight forms in human cancer and as targets for cancer therapy. Cancer Biol Ther 2003;2:S38–S47.

    CAS  PubMed  Google Scholar 

  50. 50. Porter DC, Zhang N, Danes C, McGahren MJ, Harwell RM, Faruki S, Keyomarsi K. Tumor-specific proteolytic processing of cyclin E generates hyper-active lower-molecular-weight forms. Mol Cell Biol 2001;21:6254–6269.

    Article  CAS  PubMed  Google Scholar 

  51. 51. Barton MC, Akli S, Keyomarsi K. Deregulation of Cyclin E meets dysfunction in p53: closing the escape hatch on breast cancer. J Cell Physiol 2006;209:686–694.

    Article  CAS  PubMed  Google Scholar 

  52. 52. Yamahista JI, Ogawa M, Ikel S, Omachi H, Yamshita SI, Saishoji T, Nomura K, Sato H. Production of immunoreactive polymorphonuclear leucocyte elastase in the progression of human breast cancer. Br J Cancer 1994;69:72–76.

    Article  Google Scholar 

  53. 53. Pietiläinen T, Lipponen P, Aaltomaa S, Eskelinen M, Kosma VM, Syrjänen K. Expression of retinoblastoma gene protein (Rb) in breast cancer as related to established prognostic factors and survival. Eur J Cancer 1995;31:329–333.

    Article  Google Scholar 

  54. 54. Bosco E, Knudsen ES. RB in breast cancer: at the crossroads of tumorigenesis and treatment. Cell Cycle 2007;6:667–671.

    Article  CAS  PubMed  Google Scholar 

  55. 55. Simin K, Wu H, Lu L, Pinkel D, Albertson D, Cardiff RD, Van Dyke T. pRb inactivation in mammary cells reveals common mechanisms for tumor initiation and progression in divergent epithelia. PLoS Biol 2004;2(2):E22.

    Article  PubMed  Google Scholar 

  56. 56. Bosco EE, Wang Y, Xu H, Zilfou JT, Knudsen KE, Aronow BJ, Lowe SW, Knudsen ES. The retinoblastoma tumor suppressor modifies the therapeutic response of breast cancer. J Clin Invest 2007;117:218–228.

    Article  CAS  PubMed  Google Scholar 

  57. 57. Almasan A, Yin Y, Kelly RE, Lee EY, Bradley A, Li W, Bertino JR, Wahl GM. Deficiency of retinoblastoma protein leads to inappropriate S-phase entry, activation of E2F-responsive genes, and apoptosis. Proc Natl Acad Sci USA 1995;92:5436–5440.

    Article  CAS  PubMed  Google Scholar 

  58. 58. Besson A, Dowdy SF, Roberts JM. CDK inhibitors: cell cycle regulators and beyond. Dev Cell 2008;14:159–169.

    Article  CAS  PubMed  Google Scholar 

  59. 59. Chiarle R, Pagano M, Inghirami G.The cyclin dependent kinase inhibitor p27 and its prognostic role in breast cancer. Breast Cancer Res 2001;3:91–94.

    Article  CAS  PubMed  Google Scholar 

  60. 60. Fero ML, Rivkin M, Tasch M, Porter P, Carow CE, Firpo E, Polyak K, Tsai LH, Broudy V, Perlmutter RM, Kaushansky K, Roberts JM. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice. Cell 1996;85:733–744.

    Article  CAS  PubMed  Google Scholar 

  61. 61. Musgrove EA, Davison EA, Ormandy CJ. Role of the CDK inhibitor p27 (Kip1) in mammary development and carcinogenesis: insights from knockout mice. J Mammary Gland Biol Neoplasia 2004;9:55–66.

    Article  PubMed  Google Scholar 

  62. 62. Alkarain A, Jordan R, Slingerland J. p27 deregulation in breast cancer: prognostic significance and implications for therapy. J Mammary Gland Biol Neoplasia 2004;9:67–80.

    Article  CAS  PubMed  Google Scholar 

  63. 63. Liang J, Zubovitz J, Petrocelli T, Kotchetkov R, Connor MK, Han K, Lee JH, Ciarallo S, Catzavelos C, Beniston R, Franssen E, Slingerland JM. PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nat Med 2002;8:1153–1160.

    Article  CAS  PubMed  Google Scholar 

  64. 64. Shin I, Yakes FM, Rojo F, Shin NY, Bakin AV, Baselga J, Arteaga CL. PKB/Akt mediates cell-cycle progression by phosphorylation of p27Kip1 at threonine 157 and modulation of its cellular localization. Nat Med 2002;8:1145–1152.

    Article  CAS  PubMed  Google Scholar 

  65. 65. Lenferink AE, Busse D, Flanagan WM, Yakes FM, Arteaga CL. ErbB2/neu kinase modulates cellular p27Kip1 and cyclin D1 through multiple signaling pathways. Cancer Res 2001;61:6583–6591.

    CAS  PubMed  Google Scholar 

  66. 66. Lane HA, Beuvink I, Motoyama AB, Daly JM, Neve RM, Hynes NE. ErbB2 potentiates breast tumor proliferation through modulation of p27Kip1–Cdk2 complex formation receptor overexpression does not determine growth dependency. Mol Cell Biol 2000;20:3210–3223.

    Article  CAS  PubMed  Google Scholar 

  67. 67. Le XF, Pruefer F, Bast RC Jr. HER2-targeting antibodies modulate the cyclin-dependent kinase inhibitor p27Kip1 via multiple signaling pathways. Cell Cycle 2005;4(1):87–95.

    Article  CAS  PubMed  Google Scholar 

  68. 68. Esteva FJ, Sahin AA, Smith TL, Yang Y, Pusztai L, Nahta R, Buchholz TA, Buzdar AU, Hortobagyi GN, Bacus SS. Prognostic significance of phosphorylated P38 mitogen-activated protein kinase and HER-2 expression in lymph node-positive breast carcinoma. Cancer 2004;100:499–506.

    Article  CAS  PubMed  Google Scholar 

  69. 69. Pohl G, Rudas M, Dietze O, Lax S, Markis E, Pirker R, Zielinski CC, Hausmaninger H, Kubista E, Samonigg H, Jakesz R, Filipits M. High p27Kip1 expression predicts superior relapse-free and overall survival for premenopausal women with early-stage breast cancer receiving adjuvant treatment with tamoxifen plus goserelin. J Clin Oncol 2003;21:3594–3600.

    Article  CAS  PubMed  Google Scholar 

  70. 70. Bearss DJ, Lee RJ, Troyer DA, Pestell RG, Windle JJ. Differential effects of p21(WAF1/CIP1) deficiency on MMTV-ras and MMTV-myc mammary tumor properties. Cancer Res 2002;62:2077–2084.

    CAS  PubMed  Google Scholar 

  71. 71. Xia W, Chen JS, Zhou X, Sun PR, Lee DF, Liao Y, Zhou BP, Hung MC. Phosphorylation/cytoplasmic localization of p21Cip1/WAF1 is associated with HER2/neu overexpression and provides a novel combination predictor for poor prognosis in breast cancer patients. Clin Cancer Res 2004;10:3815–3824.

    Article  CAS  PubMed  Google Scholar 

  72. 72. D’Amico M, Wu K, Di Vizio D, Reutens AT, Stahl M, Fu M, Albanese C, Russell RG, Muller WJ, White M, Negassa A, Lee HW, DePinho RA, Pestell RG. The role of Ink4a/Arf in ErbB2 mammary gland tumorigenesis. Cancer Res 2003;63:3395–3402.

    PubMed  Google Scholar 

  73. 73. Otterson GA, Kratzke RA, Coxon A, Kim YW, Kaye FJ. Absence of p16INK4a protein is restricted to the subset of lung cancer lines that retains wild type RB. Oncogene 1994;9:3375–3378.

    CAS  PubMed  Google Scholar 

  74. 74. Parry D, Bates S, Mann DJ, Peters G. Lack of cyclin D–Cdk complexes in Rb-negative cells correlates with high levels of p16INK4/MTS1 tumour suppressor gene product. EMBO J 1995;14:503–511.

    CAS  PubMed  Google Scholar 

  75. 75. Hui R, Macmillan RD, Kenny FS, Musgrove EA, Blamey RW, Nicholson RI, Robertson JF, Sutherland RL. INK4a gene expression and methylation in primary breast cancer: overexpression of p16INK4a messenger RNA is a marker of poor prognosis. Clin Cancer Res 2000;6(7):2777–2787.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Roberti, A., Macaluso, M., Giordano, A. (2009). Alterations in Cell Cycle Regulatory Genes in Breast Cancer. In: Giordano, A., Normanno, N. (eds) Breast Cancer in the Post-Genomic Era. Current Clinical Oncology. Humana Press. https://doi.org/10.1007/978-1-60327-945-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-945-1_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-944-4

  • Online ISBN: 978-1-60327-945-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics