Skip to main content

PTEN in Hematopoietic and Intestinal Stem Cells and Cancer

  • Chapter
  • First Online:
Stem Cells and Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 978 Accesses

Abstract

In this chapter, we discuss the roles of the tumor suppressor PTEN in regulating stem cells of the hematopoietic and intestinal systems as well as its contributions to carcinogenesis in these tissues. Stem cells in continually renewing tissues must balance the necessity to maintain their respective tissue with the requirement to preserve the stem cell pool throughout adult life. Hematopoietic stem cells (HSCs) are tasked with sustaining the various cell types of the blood while intestinal stem cells must continually regenerate the gut epithelium. PTEN, a dual-specificity phosphatase able to target proteins and lipids, is the sole antagonist of the PI3K/AKT signaling pathway. PI3K/AKT signaling is often activated by growth factors and typically results in the stimulation of cellular outcomes such as proliferation, inhibition of apoptosis, and migration. Functional studies of PTEN loss in animal models have indicated a role for PTEN as a protective agent for stem cells that promote quiescence, as PTEN-deficient animals exhibit overproliferative stem and progenitor cells and are prone to proliferative disorders and cancer development. However, from these and other studies including accumulated clinical evidence, it is not likely that PTEN acts alone to stimulate malignant transformation. Indeed, HSCs in PTEN-deficient animals become exhausted and unable to sustain a healthy hematopoietic system. Rather, PTEN appears to function as a restrictive factor that prevents unregulated proliferation, which leaves stem and progenitor cells susceptible to additional mutations/deregulation, such as in Wnt/β-catenin signaling, that results in overt cancer. Additional study into PTEN/PI3K/AKT signaling should provide further insight into self-renewal mechanisms of adult stem cells that may aid in distinguishing normal stem cells from their cancer-initiating counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

REFERENCES

  1. Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2006;2(7):489–501.

    Article  Google Scholar 

  2. Cully M, You H, Levine AJ, Mak TW. Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 2006;6(3):184–92.

    Article  PubMed  CAS  Google Scholar 

  3. Stiles B, Groszer M, Wang S, Jiao J, Wu H. PTENless means more. Dev Biol 2004;273(2):175–84.

    Article  PubMed  CAS  Google Scholar 

  4. Mutter GL. Pten, a protean tumor suppressor. Am J Pathol 2001;158(6):1895–8.

    Article  PubMed  CAS  Google Scholar 

  5. Parsons DW, Wang TL, Samuels Y, et al Colorectal cancer: mutations in a signalling pathway. Nature 2005;436:792.

    Article  PubMed  CAS  Google Scholar 

  6. Sakai A, Thieblemont C, Wellmann A, Jaffe ES, Raffeld M. PTEN gene alterations in lymphoid neoplasms. Blood 1998;92(9):3410–5.

    PubMed  CAS  Google Scholar 

  7. Till JE, McCulloch EA, Siminovitch L. A stochastic model of stem cell proliferation, based on the growth of spleen colony-forming cells. Proc Natl Acad Sci USA 1964;51:29–36.

    Article  PubMed  CAS  Google Scholar 

  8. Spangrude GJ, Heimfeld S, Weissman IL. Purification and characterization of mouse hematopoietic stem cells. Science 1988;241:58–62.

    Article  PubMed  CAS  Google Scholar 

  9. Ikuta K, Weissman IL. Evidence that hematopoietic stem cells express mouse c-kit but do not depend on steel factor for their generation. Proc Natl Acad Sci USA 1992;89:1502–6.

    Article  PubMed  CAS  Google Scholar 

  10. Shivdasani RA, Orkin SH. The transcriptional control of hematopoiesis. Blood 1996;87:4025–39.

    PubMed  CAS  Google Scholar 

  11. Cantor AB, Orkin SH. Hematopoietic development: a balancing act. Curr Opin Genet Dev 2001;11:513–9.

    Article  PubMed  CAS  Google Scholar 

  12. Shizuru JA, Negrin RS, Weissman IL. Hematopoietic stem and progenitor cells: clinical and preclinical regeneration of the hematolymphoid system. Annu Rev Med 2005;56:509–38.

    Article  PubMed  CAS  Google Scholar 

  13. Li L. Finding the hematopoietic stem cell niche in the placenta. Dev Cell 2005;8(3):297–8.

    Article  PubMed  CAS  Google Scholar 

  14. Thomas J, Liu F, Link DC. Mechanisms of mobilization of hematopoietic progenitors with granulocyte colony-stimulating factor. Curr Opin Hematol 2002;9:183–9.

    Article  PubMed  Google Scholar 

  15. Wright DE, Wagers AJ, Gulati AP, Johnson FL, Weissman IL. Physiological migration of hematopoietic stem and progenitor cells. Science 2001;294:1933–6.

    Article  PubMed  CAS  Google Scholar 

  16. Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 1978;4:7–25.

    PubMed  CAS  Google Scholar 

  17. Lin H, Spradling AC. A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary. Development 1997;124:2463–76.

    PubMed  CAS  Google Scholar 

  18. Xie T, Spradling AC. A niche maintaining germ line stem cells in the Drosophila ovary. Science 2000;290:328–30.

    Article  PubMed  CAS  Google Scholar 

  19. Tulina N, Matunis E. Control of stem cell self-renewal in Drosophila spermatogenesis by JAK-STAT signaling. Science 2001;294:2546–9.

    Article  PubMed  CAS  Google Scholar 

  20. Kiger AA, Jones DL, Schulz C, Rogers MB, Fuller MT. Stem cell self-renewal specified by JAK-STAT activation in response to a support cell cue. Science 2001;294:2542–5.

    Article  PubMed  CAS  Google Scholar 

  21. Moore KA, Ema H, Lemischka IR. In vitro maintenance of highly purified, transplantable hematopoietic stem cells. Blood 1997;89:4337–47.

    PubMed  CAS  Google Scholar 

  22. Hackney JA, Charbord P, Brunk BP, Stoeckert CJ, Lemischka IR, Moore KA. A molecular profile of a hematopoietic stem cell niche. Proc Natl Acad Sci USA 2002;99:13061–6.

    Article  PubMed  CAS  Google Scholar 

  23. Wineman J, Moore K, Lemischka I, Muller-Sieburg C. Functional heterogeneity of the hematopoietic microenvironment: rare stromal elements maintain long-term repopulating stem cells. Blood 1996;87:4082–90.

    PubMed  CAS  Google Scholar 

  24. Wineman JP, Nishikawa S, Muller-Sieburg CE. Maintenance of high levels of pluripotent hematopoietic stem cells in vitro: effect of stromal cells and c-kit. Blood 1993;81:365–72.

    PubMed  CAS  Google Scholar 

  25. Calvi LM, Adams GB, Weibrecht KW, et al Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 2003;425:841–6.

    Article  PubMed  CAS  Google Scholar 

  26. Zhang J, Niu C, Ye L, et al Identification of the haematopoietic stem cell niche and control of the niche size. Nature 2003;425:836–41.

    Article  PubMed  CAS  Google Scholar 

  27. Arai F, Hirao A, Ohmura M, et al Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 2004;118:149–61.

    Article  PubMed  CAS  Google Scholar 

  28. Hosokawa K, Arai F, Yoshihara H, et al Function of oxidative stress in the regulation of hematopoietic stem cell-niche interaction. Biochem Biophys Res Commun 2007;363(3):578–83.

    Article  PubMed  CAS  Google Scholar 

  29. Kopp HG, Avecilla ST, Hooper AT, Rafii S. The bone marrow vascular niche: home of HSC differentiation and mobilization. Physiology (Bethesda) 2005;20:349–56.

    Article  CAS  Google Scholar 

  30. Kiel MJ, Yilmaz OH, Iwashita T, Terhorst C, Morrison SJ. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 2005;121:1109–21.

    Article  PubMed  CAS  Google Scholar 

  31. Kopp HG, Avecilla ST, Hooper AT, et al Tie2 activation contributes to hemangiogenic regeneration after myelosuppression. Blood 2005;106(2):505–13.

    Article  PubMed  CAS  Google Scholar 

  32. Yin T, Li L. The stem cell niches in bone. J Clin Invest 2006;116(5):1195–201.

    Article  PubMed  CAS  Google Scholar 

  33. Ara T, Tokoyoda K, Sugiyama T, Egawa T, Kawabata K, Nagasawa T. Long-term hematopoietic stem cells require stromal cell-derived factor-1 for colonizing bone marrow during ontogeny. Immunity 2003;19(2):257–67.

    Article  PubMed  CAS  Google Scholar 

  34. Sugiyama T, Kohara H, Noda M, Nagasawa T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 2006;25(6):977–88.

    Article  PubMed  CAS  Google Scholar 

  35. Kollet O, Dar A, Shivtiel S, et al Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med 2006;12(6):657–64.

    Article  PubMed  CAS  Google Scholar 

  36. Katayama Y, Battista M, Kao WM, et al Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 2006;124(2):407–21.

    Article  PubMed  CAS  Google Scholar 

  37. Al-Hajj M, Becker MW, Wicha M, Weissman I, Clarke MF. Therapeutic implications of cancer stem cells. Curr Opin Genet Dev 2004;14(1):43–7.

    Article  PubMed  CAS  Google Scholar 

  38. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001;414 (6859):105–11.

    Article  PubMed  CAS  Google Scholar 

  39. Clarke MF, Fuller M. Stem cells and cancer: two faces of eve. Cell 2006;124(6):1111–5.

    Article  PubMed  CAS  Google Scholar 

  40. Yilmaz OH, Valdez R, Theisen BK, et al Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 2006;441(7092):475–82.

    Article  PubMed  CAS  Google Scholar 

  41. Zhang J, Grindley JC, Yin T, et al PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 2006;441:518–22.

    Article  PubMed  CAS  Google Scholar 

  42. Guo W, Lasky JL, Chang CJ, et al Multi-genetic events collaboratively contribute to Pten-null leukaemia stem-cell formation. Nature 2008;453:529–33.

    Article  PubMed  CAS  Google Scholar 

  43. Liaw D, Marsh DJ, Li J, et al Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet 1997;16(1):64–7.

    Article  PubMed  CAS  Google Scholar 

  44. Rhei E, Kang L, Bogomolniy F, Federici MG, Borgen PI, Boyd J. Mutation analysis of the putative tumor suppressor gene PTEN/MMAC1 in primary breast carcinomas. Cancer research 1997;57(17):3657–9.

    PubMed  CAS  Google Scholar 

  45. Cairns P, Okami K, Halachmi S, et al Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. Cancer Res 1997;57(22):4997–5000.

    PubMed  CAS  Google Scholar 

  46. Kong D, Suzuki A, Zou TT, et al PTEN1 is frequently mutated in primary endometrial carcinomas. Nature Genet 1997;17(2):143–4.

    Article  PubMed  CAS  Google Scholar 

  47. Risinger JI, Hayes AK, Berchuck A, Barrett JC. PTEN/MMAC1 mutations in endometrial cancers. Cancer Res 1997;57(21):4736–8.

    PubMed  CAS  Google Scholar 

  48. Tashiro H, Blazes MS, Wu R, et al Mutations in PTEN are frequent in endometrial carcinoma but rare in other common gynecological malignancies. Cancer Res 1997;57(18):3935–40.

    PubMed  CAS  Google Scholar 

  49. Rasheed BK, Stenzel TT, McLendon RE, et al PTEN gene mutations are seen in high-grade but not in low-grade gliomas. Cancer Res 1997;57(19):4187–90.

    PubMed  CAS  Google Scholar 

  50. Wang SI, Puc J, Li J, et al Somatic mutations of PTEN in glioblastoma multiforme. Cancer Res 1997;57(19):4183–6.

    PubMed  CAS  Google Scholar 

  51. Guldberg P, thor Straten P, Birck A, Ahrenkiel V, Kirkin AF, Zeuthen J. Disruption of the MMAC1/PTEN gene by deletion or mutation is a frequent event in malignant melanoma. Cancer Res 1997;57(17):3660–3.

    PubMed  CAS  Google Scholar 

  52. Abbott RT, Tripp S, Perkins SL, Elenitoba-Johnson KS, Lim MS. Analysis of the PI-3-Kinase-PTEN-AKT pathway in human lymphoma and leukemia using a cell line microarray. Mod Pathol 2003;16(6):607–12.

    Article  PubMed  Google Scholar 

  53. Yang J, Liu J, Zheng J, et al A reappraisal by quantitative flow cytometry analysis of PTEN expression in acute leukemia. Leukemia 2007;21(9):2072–4.

    Article  PubMed  CAS  Google Scholar 

  54. Xu Z, Stokoe D, Kane LP, Weiss A. The inducible expression of the tumor suppressor gene PTEN promotes apoptosis and decreases cell size by inhibiting the PI3K/Akt pathway in Jurkat T cells. Cell Growth Differ 2002;13(7):285–96.

    PubMed  CAS  Google Scholar 

  55. Seminario MC, Precht P, Wersto RP, Gorospe M, Wange RL. PTEN expression in PTEN-null leukaemic T cell lines leads to reduced proliferation via slowed cell cycle progression. Oncogene 2003;22(50):8195–204.

    Article  PubMed  CAS  Google Scholar 

  56. Zhou M, Gu L, Findley HW, Jiang R, Woods WG. PTEN reverses MDM2-mediated chemotherapy resistance by interacting with p53 in acute lymphoblastic leukemia cells. Cancer Res 2003;63(19):6357–62.

    PubMed  CAS  Google Scholar 

  57. de Santa Barbara P, van den Brink GR, Roberts DJ. Development and differentiation of the intestinal epithelium. Cell Mol Life Sci 2003;60(7):1322–32.

    Article  PubMed  CAS  Google Scholar 

  58. Calvert R, Pothier P. Migration of fetal intestinal intervillous cells in neonatal mice. Anat Rec 1990;227(2):199–206.

    Article  PubMed  CAS  Google Scholar 

  59. Schmidt GH, Winton DJ, Ponder BA. Development of the pattern of cell renewal in the crypt-villus unit of chimaeric mouse small intestine. Development 1988;103:785–90.

    PubMed  CAS  Google Scholar 

  60. Korinek V, Barker N, Moerer P, et al Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nature Genet 1998;19:379–83.

    Article  PubMed  CAS  Google Scholar 

  61. Kim BM, Mao J, Taketo MM, Shivdasani RA. Phases of canonical Wnt signaling during the development of mouse intestinal epithelium. Gastroenterology 2007;133(2):529–38.

    Article  PubMed  CAS  Google Scholar 

  62. Madison BB, Braunstein K, Kuizon E, Portman K, Qiao XT, Gumucio DL. Epithelial hedgehog signals pattern the intestinal crypt-villus axis. Development 2005;132:279–89.

    Article  PubMed  CAS  Google Scholar 

  63. Bitgood MJ, McMahon AP. Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo. Dev Biol 1995;172(1):126–38.

    Article  PubMed  CAS  Google Scholar 

  64. He XC, Zhang J, Tong WG, et al BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling. Nature Genet 2004;36:1117–21.

    Article  PubMed  CAS  Google Scholar 

  65. Haramis AP, Begthel H, van den Born M, et al De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science 2004;303:1684–6.

    Article  PubMed  CAS  Google Scholar 

  66. Batts LE, Polk DB, Dubois RN, Kulessa H. Bmp signaling is required for intestinal growth and morphogenesis. Dev Dyn 2006;235(6):1563–70.

    Article  PubMed  CAS  Google Scholar 

  67. Cheng H. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. IV. Paneth cells. Am J Anat 1974;141(4):521–35.

    Article  PubMed  CAS  Google Scholar 

  68. Cheng H. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. II. Mucous cells. Am J Anat 1974;141(4):481–501.

    Article  PubMed  CAS  Google Scholar 

  69. Cheng H, Leblond CP. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of the four epithelial cell types. Am J Anat 1974;141(4):537–61.

    Article  PubMed  CAS  Google Scholar 

  70. Cheng H, Leblond CP. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. I. Columnar cell. Am J Anat 1974;141(4):461–79.

    Article  PubMed  CAS  Google Scholar 

  71. Cheng H, Leblond CP. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. III. Entero-endocrine cells. Am J Anat 1974;141(4):503–19.

    Article  PubMed  CAS  Google Scholar 

  72. Hermiston ML, Green RP, Gordon JI. Chimeric-transgenic mice represent a powerful tool for studying how the proliferation and differentiation programs of intestinal epithelial cell lineages are regulated. Proc Natl Acad Sci USA 1993;90:8866–70.

    Article  PubMed  CAS  Google Scholar 

  73. Roth KA, Hermiston ML, Gordon JI. Use of transgenic mice to infer the biological properties of small intestinal stem cells and to examine the lineage relationships of their descendants. Proc Natl Acad Sci USA 1991;88:9407–11.

    Article  PubMed  CAS  Google Scholar 

  74. Bjerknes M, Cheng H. Clonal analysis of mouse intestinal epithelial progenitors. Gastroenterology 1999;116:7–14.

    Article  PubMed  CAS  Google Scholar 

  75. Bjerknes M, Cheng H. The stem-cell zone of the small intestinal epithelium. IV. Effects of resecting 30% of the small intestine. Am J Anat 1981;160(1):93–103.

    Article  PubMed  CAS  Google Scholar 

  76. Cheshier SH, Morrison SJ, Liao X, Weissman IL. In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc Natl Acad Sci USA 1999;96(6):3120–5.

    Article  PubMed  CAS  Google Scholar 

  77. Cotsarelis G, Sun TT, Lavker RM. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 1990;61(7):1329–37.

    Article  PubMed  CAS  Google Scholar 

  78. Marshman E, Booth C, Potten CS. The intestinal epithelial stem cell. Bioessays 2002;24(1):91–8.

    Article  PubMed  Google Scholar 

  79. Potten CS, Owen G, Booth D. Intestinal stem cells protect their genome by selective segregation of template DNA strands. J Cell Sci 2002;115:2381–8.

    PubMed  CAS  Google Scholar 

  80. Barker N et al., Barker N, van Es JH, Kuipers J, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007.

    Google Scholar 

  81. Imai T, Tokunaga A, Yoshida T, et al The neural RNA-binding protein Musashi1 translationally regulates mammalian numb gene expression by interacting with its mRNA. Mol Cell Biol 2001;21(12):3888–900.

    Article  PubMed  CAS  Google Scholar 

  82. Gregorieff A, Pinto D, Begthel H, Destree O, Kielman M, Clevers H. Expression pattern of Wnt signaling components in the adult intestine. Gastroenterology 2005;129:626–38.

    PubMed  CAS  Google Scholar 

  83. Tumbar T, Guasch G, Greco V, et al Defining the epithelial stem cell niche in skin. Science 2004;303:359–63.

    Article  PubMed  CAS  Google Scholar 

  84. He XC, Yin T, Grindley JC, et al PTEN-deficient intestinal stem cells initiate intestinal polyposis. Nature Genet 2007;39(2):189–98.

    Article  PubMed  CAS  Google Scholar 

  85. Demidov ON, Timofeev O, Lwin HNY, Kek C, Appella E, Bulavin DV. Wip1 phosphatase regulates p53-dependent apoptosis of stem cells and tumorigenesis in the mouse intestine. Cell Stem Cell 2007;1(2):180–90.

    Article  PubMed  CAS  Google Scholar 

  86. Scoville DH, Sato T, He XC, Li L. Current view: intestinal stem cells and signaling. Gastroenterology 2008;134(3):849–64.

    Article  PubMed  CAS  Google Scholar 

  87. Brittan M, Wright NA. Gastrointestinal stem cells. J Pathol 2002;197:492–509.

    Article  PubMed  Google Scholar 

  88. Potten CS, Booth C, Tudor GL, et al Identification of a putative intestinal stem cell and early lineage marker; musashi-1. Differentiation 2003;71:28–41.

    Article  PubMed  CAS  Google Scholar 

  89. Asai R, Okano H, Yasugi S. Correlation between Musashi-1 and c-hairy-1 expression and cell proliferation activity in the developing intestine and stomach of both chicken and mouse. Dev Growth Differ 2005;47(8):501–10.

    Article  PubMed  CAS  Google Scholar 

  90. Lowry WE, Blanpain C, Nowak JA, Guasch G, Lewis L, Fuchs E. Defining the impact of beta-catenin/Tcf transactivation on epithelial stem cells. Genes Dev 2005;19(13):1596–611.

    Article  PubMed  CAS  Google Scholar 

  91. Tian Q, Feetham MC, Tao WA, et al Proteomic analysis identifies that 14-3-3zeta interacts with beta-catenin and facilitates its activation by Akt. Proc Natl Acad Sci USA 2004;101:15370–5.

    Article  PubMed  CAS  Google Scholar 

  92. Taurin S, Sandbo N, Qin Y, Browning D, Dulin NO. Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase. J Biol Chem 2006;281(15):9971–6.

    Article  PubMed  CAS  Google Scholar 

  93. Liaw D, Marsh DJ, Li J, et al Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nature Genet 1997;16:64–7.

    Article  PubMed  CAS  Google Scholar 

  94. Marsh DJ, Kum JB, Lunetta KL, et al PTEN mutation spectrum and genotype-phenotype correlations in Bannayan-Riley-Ruvalcaba syndrome suggest a single entity with Cowden syndrome. Hum Mol Genet 1999;8(8):1461–72.

    Article  PubMed  CAS  Google Scholar 

  95. Samuels Y, Ericson K. Oncogenic PI3K and its role in cancer. Curr Opin Oncol 2006;18(1):77–82.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ross, J.T., Scoville, D.H., He, X., Li, L. (2009). PTEN in Hematopoietic and Intestinal Stem Cells and Cancer. In: Teicher, B., Bagley, R. (eds) Stem Cells and Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-60327-933-8_5

Download citation

Publish with us

Policies and ethics