Skip to main content

The Cancer Stem Cell Hypothesis

  • Chapter
  • First Online:
Stem Cells and Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

The “cancer stem cell” hypothesis is receiving increasing interest and has become the object of considerable debate among cancer biologists and clinicians. This ongoing debate is focusing attention on the very definition of stemness and its significance in the context of a malignancy. From a therapeutic standpoint, the cancer stem cell hypothesis emphasizes the cellular heterogeneity in cancers, and the need to specifically target small cell populations that resemble tissue stem cells and are phenotypically different from the majority of cancer cells. Regardless of their origin, these cells divide slowly, have the ability to undergo asymmetric cell division and are highly resistant to conventional chemotherapeutics. These characteristics make them prime suspects as potential causes of disease recurrence and metastasis, which are the main causes of morbidity and mortality in oncology. This chapter provides an introduction to the cancer stem cell hypothesis, briefly summarizes the evidence supporting this theory and the aspects that remain controversial. Finally, we present a brief discussion of the possible therapeutic significance of cancer stem cells and the current efforts to target developmental pathways on which these cells depend.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

REFERENCES

  1. Wicha MS, Liu S, Dontu G. Cancer stem cells: an old idea–a paradigm shift. Cancer Res 2006;66:1883–1890.

    Article  PubMed  CAS  Google Scholar 

  2. Song LL, Miele L. Cancer stem cells-an old idea that’s new again: implications for the diagnosis and treatment of breast cancer. Expert Opin Biol Ther 2007;7:431–438.

    Article  PubMed  CAS  Google Scholar 

  3. Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 2003;3:895–902.

    Article  PubMed  CAS  Google Scholar 

  4. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994;367:645–648.

    Article  PubMed  CAS  Google Scholar 

  5. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997;3:730–737.

    Article  PubMed  CAS  Google Scholar 

  6. Al Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003;100:3983–3988.

    Article  PubMed  CAS  Google Scholar 

  7. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB. Identification of human brain tumour initiating cells. Nature 2004;432:396–401.

    Article  PubMed  CAS  Google Scholar 

  8. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003;63:5821–5828.

    PubMed  CAS  Google Scholar 

  9. Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, Weissman IL, Clarke MF, Ailles LE. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA 2007;104:973–978.

    Article  PubMed  CAS  Google Scholar 

  10. O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007;445:106–110.

    Article  PubMed  Google Scholar 

  11. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R. Identification and expansion of human colon-cancer-initiating cells. Nature 2007;445:111–115.

    Article  PubMed  CAS  Google Scholar 

  12. Schatton T, Murphy GF, Frank NY, Yamaura K, Waaga-Gasser AM, Gasser M, Zhan Q, Jordan S, Duncan LM, Weishaupt C, Fuhlbrigge RC, Kupper TS, Sayegh MH, Frank MH. Identification of cells initiating human melanomas. Nature 2008;451:345–349.

    Article  PubMed  CAS  Google Scholar 

  13. Seigel GM, Hackam AS, Ganguly A, Mandell LM, Gonzalez-Fernandez F. Human embryonic and neuronal stem cell markers in retinoblastoma. Mol Vis 2007;13:823–832.

    PubMed  CAS  Google Scholar 

  14. Ho MM, Ng AV, Lam S, Hung JY. Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res 2007;67:4827–4833.

    Article  PubMed  CAS  Google Scholar 

  15. Zen Y, Fujii T, Yoshikawa S, Takamura H, Tani T, Ohta T, Nakanuma Y. Histological and culture studies with respect to ABCG2 expression support the existence of a cancer cell hierarchy in human hepatocellular carcinoma. Am J Pathol 2007;170:1750–1762.

    Article  PubMed  CAS  Google Scholar 

  16. Wang J, Guo LP, Chen LZ, Zeng YX, Lu SH. Identification of cancer stem cell-like side population cells in human nasopharyngeal carcinoma cell line. Cancer Res 2007;67:3716–3724.

    Article  PubMed  CAS  Google Scholar 

  17. Olempska M, Eisenach PA, Ammerpohl O, Ungefroren H, Fandrich F, Kalthoff H. Detection of tumor stem cell markers in pancreatic carcinoma cell lines. Hepatobiliary Pancreat Dis Int 2007;6:92–97.

    PubMed  CAS  Google Scholar 

  18. Haraguchi N, Inoue H, Tanaka F, Mimori K, Utsunomiya T, Sasaki A, Mori M. Cancer stem cells in human gastrointestinal cancers. Hum Cell 2006;19:24–29.

    Article  PubMed  Google Scholar 

  19. Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW, Hoey T, Gurney A, Huang EH, Simeone DM, Shelton AA, Parmiani G, Castelli C, Clarke MF. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA 2007;104:10158–10163.

    Article  PubMed  CAS  Google Scholar 

  20. Kondo T. Stem cell-like cancer cells in cancer cell lines. Cancer Biomark 2007;3:245–250.

    PubMed  CAS  Google Scholar 

  21. Setoguchi T, Taga T, Kondo T. Cancer stem cells persist in many cancer cell lines. Cell Cycle 2004;3:414–415.

    Article  PubMed  CAS  Google Scholar 

  22. Lou H, Dean M. Targeted therapy for cancer stem cells: the patched pathway and ABC transporters. Oncogene 2007;26:1357–1360.

    Article  PubMed  CAS  Google Scholar 

  23. Donnenberg VS, Donnenberg AD. Multiple drug resistance in cancer revisited: the cancer stem cell hypothesis. J Clin Pharmacol 2005;45:872–877.

    Article  PubMed  CAS  Google Scholar 

  24. Hadnagy A, Gaboury L, Beaulieu R, Balicki D. SP analysis may be used to identify cancer stem cell populations. Exp Cell Res 2006;312:3701–3710.

    Article  PubMed  CAS  Google Scholar 

  25. Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U, Goodell MA, Brenner MK. A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA 2004;101:14228–14233.

    Article  PubMed  CAS  Google Scholar 

  26. Hirschmann-Jax C, Foster AE, Wulf GG, Goodell MA, Brenner MK. A distinct “side population” of cells in human tumor cells: implications for tumor biology and therapy. Cell Cycle 2005;4:203–205.

    Article  PubMed  CAS  Google Scholar 

  27. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 2005;65:10946–10951.

    Article  PubMed  CAS  Google Scholar 

  28. Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, Kornblum HI. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA 2003;100:15178–15183.

    Article  PubMed  CAS  Google Scholar 

  29. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007;318:1917–1920.

    Article  PubMed  CAS  Google Scholar 

  30. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131:861–872.

    Article  PubMed  CAS  Google Scholar 

  31. Hugo H, Ackland ML, Blick T, Lawrence MG, Clements JA, Williams ED, Thompson EW. Epithelial-mesenchymal and mesenchymal–epithelial transitions in carcinoma progression. J Cell Physiol 2007;213:374–383.

    Article  PubMed  CAS  Google Scholar 

  32. Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 2007;7:415–428.

    Article  PubMed  CAS  Google Scholar 

  33. Gupta PB, Mani S, Yang J, Hartwell K, Weinberg RA. The evolving portrait of cancer metastasis. Cold Spring Harb Symp Quant Biol 2005;70:291–297.

    Article  PubMed  CAS  Google Scholar 

  34. Yang J, Mani SA, Weinberg RA. Exploring a new twist on tumor metastasis. Cancer Res 2006;66:4549–4552.

    Article  PubMed  CAS  Google Scholar 

  35. Hendrix MJ, Seftor RE, Seftor EA, Gruman LM, Lee LM, Nickoloff BJ, Miele L, Sheriff DD, Schatteman GC. Transendothelial function of human metastatic melanoma cells: role of the microenvironment in cell-fate determination. Cancer Res 2002;62:665–668.

    PubMed  CAS  Google Scholar 

  36. Hess AR, Margaryan NV, Seftor EA, Hendrix MJ. Deciphering the signaling events that promote melanoma tumor cell vasculogenic mimicry and their link to embryonic vasculogenesis: role of the Eph receptors. Dev Dyn 2007;236:3283–3296.

    Article  PubMed  CAS  Google Scholar 

  37. Cozzio A, Passegue E, Ayton PM, Karsunky H, Cleary ML, Weissman IL. Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev 2003;17:3029–3035.

    Article  PubMed  CAS  Google Scholar 

  38. Huntly BJ, Shigematsu H, Deguchi K, Lee BH, Mizuno S, Duclos N, Rowan R, Amaral S, Curley D, Williams IR, Akashi K, Gilliland DG. MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 2004;6:587–596.

    Article  PubMed  CAS  Google Scholar 

  39. Somervaille TC, Cleary ML. Identification and characterization of leukemia stem cells in murine MLL-AF9 acute myeloid leukemia. Cancer Cell 2006;10:257–268.

    Article  PubMed  CAS  Google Scholar 

  40. Rangarajan A, Weinberg RA. Opinion: Comparative biology of mouse versus human cells: modelling human cancer in mice. Nat Rev Cancer 2003;3:952–959.

    Article  PubMed  CAS  Google Scholar 

  41. Dontu G, El Ashry D, Wicha MS. Breast cancer, stem/progenitor cells and the estrogen receptor. Trends Endocrinol Metab 2004;15:193–197.

    Article  PubMed  CAS  Google Scholar 

  42. Kalirai H, Clarke RB. Human breast epithelial stem cells and their regulation. J Pathol 2006;208:7–16.

    Article  PubMed  CAS  Google Scholar 

  43. Kelly PN, Dakic A, Adams JM, Nutt SL, Strasser A. Tumor growth need not be driven by rare cancer stem cells. Science 2007;317:337.

    Article  PubMed  CAS  Google Scholar 

  44. Hill RP. Identifying cancer stem cells in solid tumors: case not proven. Cancer Res 2006;66:1891–1895.

    Article  PubMed  CAS  Google Scholar 

  45. Kuperwasser C, Chavarria T, Wu M, Magrane G, Gray JW, Carey L, Richardson A, Weinberg RA. Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci USA 2004;101:4966–4971.

    Article  PubMed  CAS  Google Scholar 

  46. Scadden DT. The stem cell niche in health and leukemic disease. Best Pract Res Clin Haematol 2007;20:19–27.

    Article  PubMed  CAS  Google Scholar 

  47. Gilbertson RJ, Rich JN. Making a tumour’s bed: glioblastoma stem cells and the vascular niche. Nat Rev Cancer 2007;7:733–736.

    Article  PubMed  CAS  Google Scholar 

  48. Baguley BC. Tumor stem cell niches: a new functional framework for the action of anticancer drugs. Recent Patents Anticancer Drug Discov 2006;1:121–127.

    Article  CAS  Google Scholar 

  49. Yang ZJ, Wechsler-Reya RJ. Hit ‘em where they live: targeting the cancer stem cell niche. Cancer Cell 2007;11:3–5.

    Article  PubMed  CAS  Google Scholar 

  50. Hoelzinger DB, Demuth T, Berens ME. Autocrine factors that sustain glioma invasion and paracrine biology in the brain microenvironment. J Natl Cancer Inst 2007;99:1583–1593.

    Article  PubMed  CAS  Google Scholar 

  51. Fodde R, Brabletz T. Wnt/beta-catenin signaling in cancer stemness and malignant behavior. Curr Opin Cell Biol 2007;19:150–158.

    Article  PubMed  CAS  Google Scholar 

  52. Dontu G, Wicha MS. Survival of mammary stem cells in suspension culture: implications for stem cell biology and neoplasia. J Mammary Gland Biol Neoplasia 2005;10:75–86.

    Article  PubMed  Google Scholar 

  53. Liu S, Dontu G, Wicha MS. Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Res 2005;7:86–95.

    Article  PubMed  CAS  Google Scholar 

  54. Hosen N, Park CY, Tatsumi N, Oji Y, Sugiyama H, Gramatzki M, Krensky AM, Weissman IL. CD96 is a leukemic stem cell-specific marker in human acute myeloid leukemia. Proc Natl Acad Sci USA 2007;104:11008–11013.

    Article  PubMed  CAS  Google Scholar 

  55. Katoh M. Networking of WNT, FGF, Notch, BMP, and Hedgehog signaling pathways during carcinogenesis. Stem Cell Rev 2007;3:30–38.

    Article  PubMed  CAS  Google Scholar 

  56. Tung DC, Chao KS. Targeting hedgehog in cancer stem cells: how a paradigm shift can improve treatment response. Future Oncol 2007;3:569–574.

    Article  PubMed  CAS  Google Scholar 

  57. Cho RW, Wang X, Diehn M, Shedden K, Chen GY, Sherlock G, Gurney A, Lewicki J, Clarke MF. Isolation and molecular characterization of cancer stem cells in MMTV-Wnt-1 murine breast tumors. Stem Cells 2008;26:364–371.

    Article  PubMed  CAS  Google Scholar 

  58. Korkaya H, Wicha MS. Selective targeting of cancer stem cells: a new concept in cancer therapeutics. BioDrugs 2007;21:299–310.

    Article  PubMed  CAS  Google Scholar 

  59. Dontu G, Jackson KW, McNicholas E, Kawamura MJ, Abdallah WM, Wicha MS. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res 2004;6:R605–R615.

    Article  PubMed  CAS  Google Scholar 

  60. Bailey JM, Singh PK, Hollingsworth MA. Cancer metastasis facilitated by developmental pathways: Sonic hedgehog, Notch, and bone morphogenic proteins. J Cell Biochem 2007;102:829–839.

    Article  PubMed  CAS  Google Scholar 

  61. Rizzo P, Osipo C, Foreman KE, Miele L. Rational targeting of Notch signaling in cancer. Oncogene 2008;27:5124–31.

    Article  PubMed  CAS  Google Scholar 

  62. Shih AH, Holland EC. Notch signaling enhances nestin expression in gliomas. Neoplasia 2006;8:1072–1082.

    Article  PubMed  CAS  Google Scholar 

  63. Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, Nigro JM, Colman H, Soroceanu L, Williams PM, Modrusan Z, Feuerstein BG, Aldape K. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 2006;9:157–173.

    Article  PubMed  CAS  Google Scholar 

  64. Fan X, Matsui W, Khaki L, Stearns D, Chun J, Li YM, Eberhart CG. Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res 2006;66:7445–7452.

    Article  PubMed  CAS  Google Scholar 

  65. Reedijk M, Odorcic S, Chang L, Zhang H, Miller N, McCready DR, Lockwood G, Egan SE. High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res 2005;65:8530–8537.

    Article  PubMed  CAS  Google Scholar 

  66. Dickson BC, Mulligan AM, Zhang H, Lockwood G, O’Malley FP, Egan SE, Reedijk M. High-level JAG1 mRNA and protein predict poor outcome in breast cancer. Mod Pathol 2007;20:685–693.

    Article  PubMed  CAS  Google Scholar 

  67. Zang S, Ji C, Qu X, Dong X, Ma D, Ye J, Ma R, Dai J, Guo D. A study on Notch signaling in human breast cancer. Neoplasma 2007;54:304–310.

    PubMed  CAS  Google Scholar 

  68. Farnie G, Clarke RB, Spence K, Pinnock N, Brennan K, Anderson NG, Bundred NJ. Novel cell culture technique for primary ductal carcinoma in situ: role of Notch and epidermal growth factor receptor signaling pathways. J Natl Cancer Inst 2007;99:616–627.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucio Miele .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Foreman, K.E., Rizzo, P., Osipo, C., Miele, L. (2009). The Cancer Stem Cell Hypothesis. In: Teicher, B., Bagley, R. (eds) Stem Cells and Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-60327-933-8_1

Download citation

Publish with us

Policies and ethics