Skip to main content

Biliary Atresia and the Ductal Plate

  • Chapter
  • First Online:
Fibrocystic Diseases of the Liver

Summary

Biliary atresia (BA) is a unique neonatal disease, presenting with complete obstruction of the extrahepatic biliary tree within the first 3 months of life. Current therapy requires a hepatic portoenterostomy within the first months of life; however, progressive intrahepatic bile duct injury, sclerosis, and obstruction lead to cirrhosis and the need for liver transplantation in the majority of patients. Medical treatments are inadequate largely because the pathogenesis of BA is poorly understood. Two major forms of BA have been described. The embryonic form is associated with other congenital malformations and presumably represents failure of normal bile duct formation. Mutations or epigenetic modifications in genes involving laterality and bile duct morphogenesis or ductal plate regression are proposed to be involved. The perinatal form is not associated with other malformations and is proposed to be caused by an immune or an autoimmune response to a perinatal insult (e.g., cholangiotropic viral infection). There is conflicting evidence for the role of several viruses, although the mouse rhesus rotavirus model of BA makes human rotavirus and reovirus intriguing candidates. Future investigations in coming years are anticipated to unlock the mysteries surrounding the etiology of BA with the promise of new therapeutic strategies and potential prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

APC:

antigen-presenting cell

BA:

biliary atresia

CD:

clusters of differentiation

CMV:

cytomegalovirus

HLA:

human leukocyte antigen

IFN:

interferon

IL:

interleukin

INV:

inversin

LBW:

low birth weight

MHC:

major histocompatibility complex

OR:

odds ratio

RNA:

ribonucleic acid

RR:

risk ratio

RT-PCR:

reverse transcriptase-polymerase chain reaction

SGA:

small for gestational age

TNF:

tumor necrosis factor

References

  1. Sokol RJ, Mack C, Narkewicz MR, Karrer FM. Pathogenesis and outcome of biliary atresia: Current concepts. J Pediatr Gastroenterol Nutr 2003;37, 4–21.

    Article  PubMed  Google Scholar 

  2. Ohi R. Biliary atresia. A surgical perspective. Clin Liver Dis 2000;4, 779–804.

    Article  CAS  PubMed  Google Scholar 

  3. Schweizer P. Treatment of extrahepatic biliary atresia: Results and long-term prognosis after hepatic portoenterostomy. Pediatr Surg 1986;1, 30–36.

    Google Scholar 

  4. Serinet MO, Wildhaber BE, Broué P et al. Impact of age at Kasai operation on its results in late childhood and adolescence: A rational basis for biliary atresia screening. Pediatrics 2009;123, 1280–1286.

    Article  PubMed  Google Scholar 

  5. Karrer FM, Bensard DD. Neonatal cholestasis. Semin Pediatr Surg 2000;9, 166–169.

    Article  CAS  PubMed  Google Scholar 

  6. Chardot C, Carton M, Spire-Bendelac N. Epidemiology of biliary atresia in France: A national study 1986–96. J Hepatol 1999;31, 1006–1013.

    Article  CAS  PubMed  Google Scholar 

  7. Karrer FM, Price MR, Bensard DD et al. Long-term results with the Kasai operation for biliary atresia. Arch Surg 1996;131, 493–496.

    CAS  PubMed  Google Scholar 

  8. Perlmutter DH, Shepherd RW. Extrahepatic biliary atresia: A disease or a phenotype? Hepatology 2002;35, 1297–1304.

    Article  PubMed  Google Scholar 

  9. Mazziotti MV, Willis LK, Heuckeroth RO et al. Anomalous development of the hepatobiliary system in the Inv mouse. Hepatology 1999;30, 372–378.

    Article  CAS  PubMed  Google Scholar 

  10. Yokoyama T, Copeland NG, Jenkins NA et al. Reversal of left-right asymmetry: A situs inversus mutation. Science 1993;260, 679–682.

    Article  CAS  PubMed  Google Scholar 

  11. Schon P, Tsuchiya K, Lenoir D et al. Identification, genomic organization, chromosomal mapping and mutation analysis of the human INV gene, the ortholog of a murine gene implicated in left-right axis development and biliary atresia. Hum Genet 2002;110, 157–165.

    Article  PubMed  Google Scholar 

  12. Otto EA, Schermer B, Obara T et al. Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left-right axis determination. Nat Genet 2003;34, 413–420.

    Article  CAS  PubMed  Google Scholar 

  13. Johnson CA, Gissen P, Sergi C. Molecular pathology and genetics of congenital hepatorenal fibrocystic syndromes. J Med Genet 2003;40, 311–319.

    Article  CAS  PubMed  Google Scholar 

  14. Low Y, Vijayan V, Tan CE. The prognostic value of ductal plate malformation and other histologic parameters in biliary atresia: An immunohistochemical study. J Pediatr 2001;139, 320–322.

    Article  CAS  PubMed  Google Scholar 

  15. Bamford RN, Roessler E, Burdine RD et al. Loss-of-function mutations in the EGF-CFC gene CFC1 are associated with human left-right laterality defects. Nat Genet 2000;26, 365–369.

    Article  CAS  PubMed  Google Scholar 

  16. Jacquemin E, Cresteil D, Raynaud N, Hadchouel M. CFCI gene mutation and biliary atresia with polysplenia syndrome. J Pediatr Gastroenterol Nutr 2002;34, 326–327.

    PubMed  Google Scholar 

  17. Ware SM, Peng J, Zhu L et al. Identification and functional analysis of ZIC3 mutations in heterotaxy and related congenital heart defects. Am J Hum Genet 2004;74, 93–105.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang DY, Sabla G, Shivakumar P et al. Coordinate expression of regulatory genes differentiates embryonic and perinatal forms of biliary atresia. Hepatology 2004;39, 954–962.

    Article  CAS  PubMed  Google Scholar 

  19. Schwarz KB, Shepherd R, Magee J et al. Clinical and demographic features of three major biliary atresia phenotypes in the BARC study. Hepatology 2008;48(Suppl), 1028A–1029A.

    Article  Google Scholar 

  20. Vijayani V, Tan CE. Developing human biliary system in three dimension. Anat Rec 1997;249, 389–398.

    Article  Google Scholar 

  21. Lemaigre FP. Development of the biliary tract. Mech Dev 2003;120, 81–87.

    Article  CAS  PubMed  Google Scholar 

  22. Clotman F, Lannoy VJ, Reber M et al. The onecut transcription factor HNF6 is required for normal development of the biliary tract. Development 2002;129, 1819–1828.

    CAS  PubMed  Google Scholar 

  23. Coffinier C, Gresh L, Fiette L et al. Bile system morphogenesis defects and liver dysfunction upon targeted deletion of HNF1beta. Development 2002;129, 1829–1838.

    CAS  PubMed  Google Scholar 

  24. Clotman F, Libbrecht L, Gresh L et al. Hepatic artery malformations associated with a primary defect in intrahepatic bile duct development. J Hepatol 2003;39, 686–692.

    Article  PubMed  Google Scholar 

  25. Kohsaka T, Yuan ZR, Guo SX et al. The significance of human jagged 1 mutations detected in severe cases of extrahepatic biliary atresia. Hepatology 2002;36, 904–912.

    CAS  PubMed  Google Scholar 

  26. Tan CE, Moscoso GJ. The developing human biliary system at the porta hepatis level between 11 and 25 weeks of gestation: A way to understanding biliary atresia. Part 2. Pathol Int 1994;44, 600–610.

    Article  CAS  PubMed  Google Scholar 

  27. Rolleston HD, Hayne LB. A case of congenital hepatic cirrhosis with obliterative cholangitis (congenital obliteration of the bile ducts). Br Med J 1901; 1, 758–760.

    Google Scholar 

  28. Gosseye S, Otte JB, De Meyer R, Maldague P. A histological study of extrahepatic biliary atresia. Acta Paediatr Belg 1977;30, 85–90.

    CAS  PubMed  Google Scholar 

  29. Bill AH, Haas JE, Foster GL. Biliary atresia: Histopathologic observations and reflections upon its natural history. J Pediatr Surg 1977;12, 977–982.

    Article  CAS  PubMed  Google Scholar 

  30. Ohya T, Fujimoto T, Shimomura H, Miyano T. Degeneration of intrahepatic bile duct with lymphocyte infiltration into biliary epithelial cells in biliary atresia. J Pediatr Surg 1995;30, 515–518.

    Article  CAS  PubMed  Google Scholar 

  31. Ahmed AF, Ohtani H, Nio M et al. CD8+ T cells infiltrating into bile ducts in biliary atresia do not appear to function as cytotoxic T cells: A clinicopathological analysis. J Pathol 2001;193, 383–389.

    Article  CAS  PubMed  Google Scholar 

  32. Mack CL, Tucker RM, Sokol RJ et al. Biliary atresia is associated with CD4+ Th1 cell-mediated portal tract inflammation. Pediatr Res 2004;56, 79–87.

    Article  CAS  PubMed  Google Scholar 

  33. Davenport M, Gonde C, Redkar R et al. Immunohistochemistry of the liver and biliary tree in extrahepatic biliary atresia. J Pediatr Surg 2001;36, 1017–1025.

    Article  CAS  PubMed  Google Scholar 

  34. Dillon P, Belchis D, Tracy T et al. Increased expression of intercellular adhesion molecules in biliary atresia. Am J Pathol 1994;145, 263–267.

    CAS  PubMed  Google Scholar 

  35. Bezerra JA, Tiao G, Ryckman FC et al. Genetic induction of proinflammatory immunity in children with biliary atresia. Lancet 2002;360, 1653–1659.

    Article  PubMed  Google Scholar 

  36. Shivakumar P, Campbell KM, Sabla GE et al. Obstruction of extrahepatic bile ducts by lymphocytes is regulated by IFN-gamma in experimental biliary atresia. J Clin Invest 2004;114, 322–329.

    CAS  PubMed  Google Scholar 

  37. Kobayashi H, Li Z, Yamataka A et al. Role of immunologic costimulatory factors in the pathogenesis of biliary atresia. J Pediatr Surg 2003;38, 892–896.

    Article  PubMed  Google Scholar 

  38. Dillon PW, Belchis D, Minnick K, Tracy T. Differential expression of the major histocompatibility antigens and ICAM-1 on bile duct epithelial cells in biliary atresia. Tohoku J Exp Med 1997;181, 33–40.

    Article  CAS  PubMed  Google Scholar 

  39. Broome U, Nemeth A, Hultcrantz R, Scheynius A. Different expression of HLA-DR and ICAM-1 in livers from patients with biliary atresia and Byler’s disease. J Hepatol 1997;26, 857–862.

    Article  CAS  PubMed  Google Scholar 

  40. Kobayashi H, Puri P, O‘Briain DS et al. Hepatic overexpression of MHC class II antigens and macrophage-associated antigens (CD68) in patients with biliary atresia of poor prognosis. J Pediatr Surg 1997;32, 590–593.

    Article  CAS  PubMed  Google Scholar 

  41. Tracy TF, Dillon P, Fox ES et al. The inflammatory response in pediatric biliary disease: Macrophage phenotype and distribution. J Pediatr Surg 1996;31, 121–125; discussion 125–126.

    Article  PubMed  Google Scholar 

  42. Urushihara N, Iwagaki H, Yagi T et al. Elevation of serum interleukin-18 levels and activation of Kupffer cells in biliary atresia. J Pediatr Surg 2000;35, 446–449.

    Article  CAS  PubMed  Google Scholar 

  43. Funaki N, Sasano H, Shizawa S et al. Apoptosis and cell proliferation in biliary atresia. J Pathol 1998;186, 429–433.

    Article  CAS  PubMed  Google Scholar 

  44. Liu C, Chiu JH, Chin T et al. Expression of fas ligand on bile ductule epithelium in biliary atresia – a poor prognostic factor. J Pediatr Surg 2000;35, 1591–1596.

    Article  CAS  PubMed  Google Scholar 

  45. Jafri M, Donnelly B, Bondoc A et al. Cholangiocyte secretion of chemokines in experimental biliary atresia. J Pediatr Surg. 2009;44(3), 500–507.

    Article  PubMed  Google Scholar 

  46. Barnes BH, Tucker RM, Wehrmann F et al. Cholangiocytes as immune modulators in rotavirus-induced murine biliary atresia. Liver Int 2008; Nov 25. [Epub ahead of print].

    Google Scholar 

  47. Schreiber RA, Kleinman RE. Genetics, immunology, and biliary atresia: An opening or a diversion? J Pediatr Gastroenterol Nutr 1993;16, 111–113.

    Article  CAS  PubMed  Google Scholar 

  48. Sokol RJ, Mack C. Etiopathogenesis of biliary atresia. Semin Liver Dis 2001;21, 517–524.

    Article  CAS  PubMed  Google Scholar 

  49. Eagar T, Tompkins S, Miller S. Helper T-cell subsets and control of the inflammatory response. In: Rich R, Fleisher T, Shearer W, Kotzin B, Schroeder H Jr., (eds.) Clinical Immunology Principles and Practice, 2001. London: Mosby, pp. 16.11–16.12.

    Google Scholar 

  50. Vasiliauskas E, Targan S, Cobb L et al. Biliary atresia – an autoimmune disorder? Hepatology 1995;22, 87.

    Google Scholar 

  51. Burch J, Sokol RJ, Narkewicz MR et al. The role of maternal antibodies in cholestatic liver disease in infants: A new isolated finding in neonatal lupus? J Pediatr Gastroenterol Nutr 2000;31(Suppl 2), S108.

    Google Scholar 

  52. Kerkar N, Hadzic N, Davies ET et al. De-novo autoimmune hepatitis after liver transplantation. Lancet 1998;351, 409–413.

    Article  CAS  PubMed  Google Scholar 

  53. Hernandez HM, Kovarik P, Whitington PF, Alonso EM. Autoimmune hepatitis as a late complication of liver transplantation. J Pediatr Gastroenterol Nutr 2001;32, 131–136.

    Article  CAS  PubMed  Google Scholar 

  54. Abbas AK, Lichtman AH, Pober JS. Cellular and Molecular Immunology, 2000. Philadelphia: W.B. Saunders, pp. vii, 553.

    Google Scholar 

  55. Chapman RW. Role of immune factors in the pathogenesis of primary sclerosing cholangitis. Semin Liver Dis 1991;11, 1–4.

    Article  CAS  PubMed  Google Scholar 

  56. Donaldson PT, Manns MP. Immunogenetics of liver disease. In Benhamou J-P, McIntyre N, Rizetto M, Rodes J. (eds) Oxford Textbook of Clinical Hepatology, 1999. Oxford; New York: Oxford University Press, 173–188.

    Google Scholar 

  57. Manabe K, Donaldson PT, Underhill JA et al. Human leukocyte antigen A1-B8-DR3-DQ2-DPB1*0401 extended haplotype in autoimmune hepatitis. Hepatology 1993;18, 1334–1337.

    Article  CAS  PubMed  Google Scholar 

  58. Rosenthal P, Woolf GM, Tyan DB. A striking association between HLA-C and biliary atresia. Gastroenterology 1995;108, A1158.

    Google Scholar 

  59. Silveira TR, Salzano FM, Donaldson PT et al. Association between HLA and extrahepatic biliary atresia. J Pediatr Gastroenterol Nutr 1993;16, 114–117.

    Article  CAS  PubMed  Google Scholar 

  60. A-Kader HH, El-Ayyouti M, Hawas S et al. HLA in Egyptian children with biliary atresia. J Pediatr 2002;141, 432–433.

    Article  PubMed  Google Scholar 

  61. Donaldson PT, Clare M, Constantini PK et al. HLA and cytokine gene polymorphisms in biliary atresia. Liver 2002;22, 213–219.

    Article  CAS  PubMed  Google Scholar 

  62. Yoon PW, Bresee JS, Olney RS et al. Epidemiology of biliary atresia: A population-based study. Pediatrics 1997;99, 376–382.

    Article  CAS  PubMed  Google Scholar 

  63. Strickland AD, Shannon K. Studies in the etiology of extrahepatic biliary atresia: Time–space clustering. J Pediatr 1982;100, 749–753.

    Article  CAS  PubMed  Google Scholar 

  64. Caton AR, Druschel CM, McNutt LA. The epidemiology of extrahepatic biliary atresia in New York State, 1983-98. Paediatr Perinat Epidemiol 2004;18, 97–105.

    Article  PubMed  Google Scholar 

  65. Fischler B, Haglund B, Hjern A. A population-based study on the incidence and possible pre- and perinatal etiologic risk factors of biliary atresia. J Pediatr 2002;141, 217–222.

    Article  PubMed  Google Scholar 

  66. Bangaru B, Morecki R, Glaser JH et al. Comparative studies of biliary atresia in the human newborn and reovirus-induced cholangitis in weanling mice. Lab Invest 1980;43, 456–462.

    CAS  PubMed  Google Scholar 

  67. Morecki R, Glaser JH, Cho S et al. Biliary atresia and reovirus type 3 infection. N Engl J Med 1982;307, 481–484.

    Article  CAS  PubMed  Google Scholar 

  68. Glaser JH, Balistreri WF, Morecki R. Role of reovirus type 3 in persistent infantile cholestasis. J Pediatr 1984;105, 912–915.

    Article  CAS  PubMed  Google Scholar 

  69. Brown WR, Sokol RJ, Levin MJ et al. Lack of correlation between infection with reovirus 3 and extrahepatic biliary atresia or neonatal hepatitis. J Pediatr 1988;113, 670–676.

    Article  CAS  PubMed  Google Scholar 

  70. Dussaix E, Hadchouel M, Tardieu M, Alagille D. Biliary atresia and reovirus type 3 infection. N Engl J Med 1984;310, 658.

    CAS  PubMed  Google Scholar 

  71. Rosenberg DP, Morecki R, Lollini LO et al. Extrahepatic biliary atresia in a rhesus monkey (Macaca mulatta). Hepatology 1983;3, 577–580.

    Article  CAS  PubMed  Google Scholar 

  72. Morecki R, Glaser JH, Johnson AB, Kress Y. Detection of reovirus type 3 in the porta hepatis of an infant with extrahepatic biliary atresia: Ultrastructural and immunocytochemical study. Hepatology 1984;4, 1137–1142.

    Article  CAS  PubMed  Google Scholar 

  73. Steele MI, Marshall CM, Lloyd RE, Randolph VE. Reovirus 3 not detected by reverse transcriptase-mediated polymerase chain reaction analysis of preserved tissue from infants with cholestatic liver disease. Hepatology 1995;21, 697–702.

    CAS  PubMed  Google Scholar 

  74. Saito T, Shinozaki K, Matsunaga T et al. Lack of evidence for reovirus infection in tissues from patients with biliary atresia and congenital dilatation of the bile duct. J Hepatol 2004;40, 203–211.

    Article  PubMed  Google Scholar 

  75. Tyler KL, Sokol RJ, Oberhaus SM et al. Detection of reovirus RNA in hepatobiliary tissues from patients with extrahepatic biliary atresia and choledochal cysts. Hepatology 1998;27, 1475–1482.

    Article  CAS  PubMed  Google Scholar 

  76. Riepenhoff-Talty M, Gouvea V, Evans MJ et al. Detection of group C rotavirus in infants with extrahepatic biliary atresia. J Infect Dis 1996;174, 8–15.

    CAS  PubMed  Google Scholar 

  77. Bobo L, Ojeh C, Chiu D et al. Lack of evidence for rotavirus by polymerase chain reaction/enzyme immunoassay of hepatobiliary samples from children with biliary atresia. Pediatr Res 1997;41, 229–234.

    Article  CAS  PubMed  Google Scholar 

  78. Riepenhoff-Talty M, Schaekel K, Clark HF et al. Group A rotaviruses produce extrahepatic biliary obstruction in orally inoculated newborn mice. Pediatr Res 1993;33, 394–399.

    CAS  PubMed  Google Scholar 

  79. Petersen C, Biermanns D, Kuske M et al. New aspects in a murine model for extrahepatic biliary atresia. J Pediatr Surg 1997;32, 1190–1195.

    Article  CAS  PubMed  Google Scholar 

  80. Harada K, Sato Y, Itatsu K et al. Innate immune response to double-stranded RNA in biliary epithelial cells is associated with the pathogenesis of biliary atresia. Hepatology 2007;46, 1146–1154.

    Article  CAS  PubMed  Google Scholar 

  81. Huang YH, Chou MH, Du YY et al. Expression of toll-like receptors and type 1 interferon specific protein MxA in biliary atresia. Lab Invest 2007;87, 66–74.

    Article  CAS  PubMed  Google Scholar 

  82. Tarr PI, Haas JE, Christie DL. Biliary atresia, cytomegalovirus, and age at referral. Pediatrics 1996;97, 828–831.

    CAS  PubMed  Google Scholar 

  83. Oliveira NL, Kanawaty FR, Costa SC, Hessel G. Infection by cytomegalovirus in patients with neonatal cholestasis. Arq Gastroenterol 2002;39, 132–136.

    Article  PubMed  Google Scholar 

  84. Fischler B, Ehrnst A, Forsgren M et al. The viral association of neonatal cholestasis in Sweden: A possible link between cytomegalovirus infection and extrahepatic biliary atresia. J Pediatr Gastroenterol Nutr 1998;27, 57–64.

    Article  CAS  PubMed  Google Scholar 

  85. Jevon GP, Dimmick JE. Biliary atresia and cytomegalovirus infection: A DNA study. Pediatr Dev Pathol 1999;2, 11–14.

    Article  CAS  PubMed  Google Scholar 

  86. Drut R, Drut RM, Gomez MA et al. Presence of human papillomavirus in extrahepatic biliary atresia. J Pediatr Gastroenterol Nutr 1998;27, 530–535.

    Article  CAS  PubMed  Google Scholar 

  87. Domiati-Saad R, Dawson DB, Margraf LR et al. Cytomegalovirus and human herpes virus 6, but not human papillomavirus, are present in neonatal giant cell hepatitis and extrahepatic biliary atresia. Pediatr Dev Pathol 2000;3, 367–373.

    Article  CAS  PubMed  Google Scholar 

  88. Tracy TF, Dillon P, Fox ES et al. The inflammatory response in pediatric biliary disease: Macrophage phenotype and distribution. J Pediatr Surg 1996;31, 121–125.

    Article  PubMed  Google Scholar 

  89. Ahmed AF, Nio M, Ohtani H et al. In situ CD14 expression in biliary atresia: Comparison between early and late stages. J Pediatr Surg 2001;36, 240–243.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Supported in part by grants from the National Institutes of Health (R01 DK38446, UO1 DK062453, U54 RR019455, M01 RR00069, and UL1RR025780) and the Abby Bennett Liver Research Fund.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sokol, R.J., Mack, C.L. (2010). Biliary Atresia and the Ductal Plate. In: Murray, K., Larson, A. (eds) Fibrocystic Diseases of the Liver. Clinical Gastroenterology. Humana Press. https://doi.org/10.1007/978-1-60327-524-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-524-8_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-523-1

  • Online ISBN: 978-1-60327-524-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics