Skip to main content

Bardet–Biedl and Jeune Syndromes

  • Chapter
  • First Online:
Fibrocystic Diseases of the Liver

Summary

Congenital fibrocystic liver diseases (CFLD) are a heterogeneous group of diseases that include a spectrum of features ranging from hepatic fibrosis, intrahepatic biliary tract dilatation to extrahepatic biliary tract dilatation, and liver cysts. CFLD frequently occur in association with renal disease such as autosomal recessive and autosomal dominant polycystic kidney disease (ARPKD, ADPKD) and nephronophthisis (NPHP). Recent insight into the molecular mechanisms underlying both disorders has demonstrated an important role for the primary cilium, a cellular sensory organelle. Cholangiocyte cilia play a regulatory role in bile formation through osmosensory, chemosensory, and mechanosensory functions while dysfunction of cholangiocyte cilia can result in cystic liver disease. Mutations in genes encoding components of the primary cilium can result in pleiotropic phenotypes such as that seen in Bardet–Biedl syndrome (BBS) and Jeune’s asphyxiating thoracic dystrophy (JATD). In the following chapter, we present an overview of the clinical features of both these disorders and provide a summary of recent advances in the molecular genetics underlying both of these disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Masyuk AL, Masyuk TV, La Russo NF. Cholangiocyte primary cilia in liver health and disease. Dev Dyn 2008;237(8), 2007–2012.

    Article  CAS  PubMed  Google Scholar 

  2. Nauta J, Goedbloed MA, Herck HV et al. New rat model that phenotypically resembles autosomal recessive polycystic kidney disease. J Am Soc Nephrol 2000;11(12), 2272–2284.

    CAS  PubMed  Google Scholar 

  3. Hildebrandt F, Zhou W. Nephronophthisis-associated ciliopathies. J Am Soc Nephrol 2007;18(6), 1855–1871.

    Article  CAS  PubMed  Google Scholar 

  4. Ward CJ, Hogan MC, Rossetti S et al. The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein. Nat Genet 2002;30(3), 259–269.

    Article  PubMed  Google Scholar 

  5. Onuchic LF, Furu L, Nagasawa Y et al. PKHD1, the polycystic kidney and hepatic disease 1 gene, encodes a novel large protein containing multiple immunoglobulin-like plexin-transcription-factor domains and parallel beta-helix 1 repeats. Am J Hum Genet 2002;70(5), 1305–1317.

    Article  CAS  PubMed  Google Scholar 

  6. Wang S, Luo Y, Wilson PD et al. The autosomal recessive polycystic kidney disease protein is localized to primary cilia, with concentration in the basal body area. J Am Soc Nephrol 2004;15(3), 592–602.

    Article  PubMed  Google Scholar 

  7. Menezes LF, Cai Y, Nagasawa Y et al. Polyductin, the PKHD1 gene product, comprises isoforms expressed in plasma membrane, primary cilium, and cytoplasm. Kidney Int 2004;66(4), 1345–1355.

    Article  CAS  PubMed  Google Scholar 

  8. Ward CJ, Yuan D, Masyuk TV et al. Cellular and subcellular localization of the ARPKD protein; fibrocystin is expressed on primary cilia. Hum Mol Genet 2003;12(20), 2703–2710.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang MZ, Mai W, Li C et al. PKHD1 protein encoded by the gene for autosomal recessive polycystic kidney disease associates with basal bodies and primary cilia in renal epithelial cells. Proc Natl Acad Sci USA 2004;101(8), 2311–2316.

    Article  CAS  PubMed  Google Scholar 

  10. Masyuk AI, Masyuk TV, Splinter PL et al. Cholangiocyte cilia detect changes in luminal fluid flow and transmit them into intracellular Ca2+ and cAMP signaling. Gastroenterology 2006;131(3), 911–920.

    Article  CAS  PubMed  Google Scholar 

  11. Gradilone SA, Masyuk AI, Splinter PL et al. Cholangiocyte cilia express TRPV4 and detect changes in luminal tonicity inducing bicarbonate secretion. Proc Natl Acad Sci USA 2007;104(48), 19138–19143.

    Article  CAS  PubMed  Google Scholar 

  12. Masyuk TV, Masyuk AI, Torres VE et al. Octreotide inhibits hepatic cystogenesis in a rodent model of polycystic liver disease by reducing cholangiocyte adenosine 3,5-cyclic monophosphate. Gastroenterology 2007;132(3), 1104–1116.

    Article  CAS  PubMed  Google Scholar 

  13. Johnson CA, Gissen P, Sergi C. Molecular pathology and genetics of congenital hepatorenal fibrocystic syndromes. J Med Genet 2003;40(5), 311–319.

    Article  CAS  PubMed  Google Scholar 

  14. Huang K, Diener DR, Mitchell A et al. Function and dynamics of PKD2 in Chlamydomonas reinhardtii flagella. J Cell Biol 2007;179(3), 501–514.

    Article  CAS  PubMed  Google Scholar 

  15. Inglis PN, Ou G, Leroux MR, Scholey JM. The sensory cilia of Caenorhabditis elegans. WormBook 2007;1–22.

    Google Scholar 

  16. Christensen ST, Ott CM. Cell signaling. A ciliary signaling switch. Science 2007;317(5836), 330–331.

    Article  CAS  PubMed  Google Scholar 

  17. Inglis PN, Boroevich KA, Leroux MR. Piecing together a ciliome. Trends Genet 2006;22(9), 491–500.

    Article  CAS  PubMed  Google Scholar 

  18. Rohatgi R, Milenkovic L, Scott MP. Patched1 regulates hedgehog signaling at the primary cilium. Science 2007;317(5836), 372–376.

    Article  CAS  PubMed  Google Scholar 

  19. Corbit KC, Shyer AE, Dowdle WE et al. Kif3a constrains beta-catenin-dependent Wnt signalling through dual ciliary and non-ciliary mechanisms. Nat Cell Biol 2008;10(1), 70–76.

    Article  CAS  PubMed  Google Scholar 

  20. Beales PL. Lifting the lid on Pandora’s box: The Bardet-Biedl syndrome. Curr Opin Genet Dev 2005;15(3), 315–323.

    Article  CAS  PubMed  Google Scholar 

  21. Masyuk AI, Gradilone SA, Banales JM et al. Cholangiocyte primary cilia are chemosensory organelles that detect biliary nucleotides via P2Y12 purinergic receptors. Am J Physiol Gastrointest Liver Physiol 2008;295(4), G725–G734.

    Article  CAS  PubMed  Google Scholar 

  22. Masyuk TV, Huang BQ, Ward CJ et al. Defects in cholangiocyte fibrocystin expression and ciliary structure in the PCK rat. Gastroenterology 2003;125(5), 1303–1310.

    Article  CAS  PubMed  Google Scholar 

  23. Masyuk TV, Huang BQ, Masyuk AI et al. Biliary dysgenesis in the PCK rat, an orthologous model of autosomal recessive polycystic kidney disease. Am J Pathol 2004;165(5), 1719–1730.

    PubMed  Google Scholar 

  24. Masyuk TV, Masyuk AI, Torres VE et al. Octreotide inhibits hepatic cystogenesis in a rodent model of polycystic liver disease by reducing cholangiocyte adenosine 3,5-cyclic monophosphate. Gastroenterology 2007;132(3), 1104–1116.

    Article  CAS  PubMed  Google Scholar 

  25. Laurence JZ, Moon RC. Four cases of retinitis pigmentosa occurring in the same family accompanied by general imperfection of development. Opthalmic Rev 1866;2, 32–41.

    Google Scholar 

  26. Bardet G. Sur un syndrome d’obesite congenitale avec polydactylie, et retinite pigmentaire (contribution a l’etude des forms cliniques de l’obesite hypophysaire) University of Paris 1920.

    Google Scholar 

  27. Biedl A. Ein Geschwesterpaar mit adipose-genitaler Dystrophie. Dtsch Med Wochenstr 1922;48, 1633.

    Google Scholar 

  28. Beales PL, Elcioglu N, Woolf AS et al. New criteria for improved diagnosis of Bardet-Biedl syndrome: Results of a population survey. J Med Genet 1999;36(6), 437–446.

    CAS  PubMed  Google Scholar 

  29. Campo RV, Aaberg TM. Ocular and systemic manifestations of the Bardet-Biedl syndrome. Am J Ophthalmol 1982;94(6), 750–756.

    Article  CAS  PubMed  Google Scholar 

  30. Cannon PS, Clayton-Smith J, Beales PL, Lloyd IC. Bardet-biedl syndrome: An atypical phenotype in brothers with a proven BBS1 mutation. Ophthalmic Genet 2008;29(3), 128–132.

    Article  PubMed  Google Scholar 

  31. Heon E, Westall C, Carmi R et al. Ocular phenotypes of three genetic variants of Bardet-Biedl syndrome. Am J Med Genet A 2005;132A(3), 283–287.

    Article  PubMed  Google Scholar 

  32. Azari AA, Aleman TS, Cideciyan AV et al. Retinal disease expression in Bardet-Biedl syndrome-1 (BBS1) is a spectrum from maculopathy to retina-wide degeneration. Invest Ophthalmol Vis Sci 2006;47(11), 5004–5010.

    Article  PubMed  Google Scholar 

  33. Iannacone A, De Propis G, Roncati S et al. The ocular phenotype of the Bardet Biedl syndrome. Comparison to non-syndromic retinitis pigmentosa. Ophthalmic Genet 1997;18, 13–26.

    Article  Google Scholar 

  34. Green JS, Parfrey PS, Harnett JD et al. The cardinal manifestations of Bardet Biedl syndrome, a form of Lawrence-Moon-Bardet-Biedl syndrome. New Engl J Med 1989;321, 1002–1009.

    Article  CAS  PubMed  Google Scholar 

  35. O’Dea D, Parfrey PS, Harnett JD et al. The importance of renal impairment in the natural history of Bardet-Biedl syndrome. Am J Kidney Dis 1996;27(6), 776–783.

    Article  PubMed  Google Scholar 

  36. Riise R, Andreasson S, Borgastrom MK et al. Intrafamilial variation of the phenotype in Bardet-Biedl syndrome. Br J Ophthalmol 1997;81(5), 378–385.

    Article  CAS  PubMed  Google Scholar 

  37. Nishimura DY, Fath M, Mullins RF et al. Bbs2-null mice have neurosensory deficits, a defect in social dominance, and retinopathy associated with mislocalization of rhodopsin. Proc Natl Acad Sci USA 2004;101(47), 16588–16593.

    Article  CAS  PubMed  Google Scholar 

  38. Moore SJ, Green JS, Fan Y et al. Clinical and genetic epidemiology of Bardet-Biedl syndrome in Newfoundland: A 22-year prospective, population-based, cohort study. Am J Med Genet A 2005;132(4), 352–360.

    PubMed  Google Scholar 

  39. Grace C, Beales P, Summerbell C et al. Energy metabolism in Bardet-Biedl syndrome. Int J Obes Relat Metab Disord 2003;27(11), 1319–1324.

    Article  CAS  PubMed  Google Scholar 

  40. Rahmouni K, Fath MA, Seo S et al. Leptin resistance contributes to obesity and hypertension in mouse models of Bardet-Biedl syndrome. J Clin Invest 2008;118(4), 1458–1467.

    Article  CAS  PubMed  Google Scholar 

  41. Tayeh MK, Yen HJ, Beck JS et al. Genetic interaction between Bardet-Biedl syndrome genes and implications for limb patterning. Hum Mol Genet 2008;17(13), 1956–1967.

    Article  CAS  PubMed  Google Scholar 

  42. Tobin JL, Beales PL. Bardet Biedl syndrome: Beyond the cilium. Pediatr Nephrol 2007;22(7), 926–936.

    Article  PubMed  Google Scholar 

  43. Fath MA, Mullins RF, Searby C et al. Mkks-null mice have a phenotype resembling Bardet-Biedl syndrome. Hum Mol Genet 2005;14(9), 1109–1118.

    Article  CAS  PubMed  Google Scholar 

  44. Mykytyn K, Mullins RF, Andrews M et al. Bardet-Biedl syndrome type 4 (BBS4)-null mice implicate Bbs4 in flagella formation but not global cilia assembly. Proc Natl Acad Sci USA 2004;101(23), 8664–8669.

    Article  CAS  PubMed  Google Scholar 

  45. Davis RE, Swiderski RE, Rahmouni K et al. A knockin mouse model of the Bardet-Biedl syndrome 1 M390R mutation has cilia defects, ventriculomegaly, retinopathy, and obesity. Proc Natl Acad Sci USA 2007;104(49), 19422–19427.

    Article  CAS  PubMed  Google Scholar 

  46. Tickle C, Summerbell D, Wolpert L. Positional signalling and specification of digits in chick limb morphogenesis. Nature 1975;254(5497), 199–202.

    Article  CAS  PubMed  Google Scholar 

  47. Hurley RM, Dery P, Norady MB, Drummond KN. The renal lesion of the Laurence-Moon-Biedl syndrome. J Pediatr 1975;87(2), 206–209.

    Article  CAS  PubMed  Google Scholar 

  48. Barakat AJ, Arianas P, Glick AD, Butler MG. Focal sclerosing glomerulonephritis in a child with Laurence-Moon-Biedl syndrome. Child Nephrol Urol 1990;10(2), 109–111.

    CAS  PubMed  Google Scholar 

  49. Francois B, Cahen R, Trolliet P et al. Glomerular nephropathy in Bardet Biedl Syndrome. Nephrologie 1987;8(4), 189–192.

    CAS  PubMed  Google Scholar 

  50. Cassart M, Eurin D, Didier F et al. Antenatal renal sonographic anomalies and postnatal follow-up of renal involvement in Bardet-Biedl syndrome. Ultrasound Obstet Gynecol 2004;24(1), 51–54.

    Article  CAS  PubMed  Google Scholar 

  51. Pagon RA, Haas JE, Bunt AH, Rodaway KA. Hepatic involvement in the Bardet-Biedl syndrome. Am J Med Genet 1982;13(4), 373–381.

    Article  CAS  PubMed  Google Scholar 

  52. Ross C, Crome L, MacKenzie D. The Laurence-Moon-Biedl syndrome. J Pathol 1956;72, 161.

    Article  Google Scholar 

  53. Meeker WR, Jr., Nighbert EJ. Association of cystic dilatation of intrahepatic and common bile ducts with Laurence-Moon-Biedl-Bardet syndrome. Am J Surg 1971;122(6), 822–824.

    Article  PubMed  Google Scholar 

  54. Tsuchiya R, Nishimura R, Ito T. Congenital cystic dilation of the bile duct associated with Laurence-Moon-Biedl-Bardet syndrome. Arch Surg 1977;112(1), 82–84.

    CAS  PubMed  Google Scholar 

  55. Dekaban A. Familial occurrence of congenital retinal blindness and developmental renal lesions. J Genet Hum 1969;17, 289–296.

    CAS  PubMed  Google Scholar 

  56. Proesmans W, VanDamme B, Macken J. Nephronopthisis and tapetoretinal degeneration associated with liver fibrosis. Clin Nephrol 1975;3, 160–164.

    CAS  PubMed  Google Scholar 

  57. Delaney V, Mullaney J, Bourke E. Juvenile nephronophthisis, congenital hepatic fibrosis and retinal hypoplasia in twins. Q J Med 1978;47(187), 281–290.

    CAS  PubMed  Google Scholar 

  58. Leppert M, Baird L, Anderson KL et al. Bardet-Biedl syndrome is linked to DNA markers on chromosome 11q and is genetically heterogeneous. Nat Genet 1994;7(1), 108–112.

    Article  CAS  PubMed  Google Scholar 

  59. Slavotinek AM, Stone EM, Mykytyn K et al. Mutations in MKKS cause Bardet-Biedl syndrome. Nat Genet 2000;26(1), 15–16.

    Article  CAS  PubMed  Google Scholar 

  60. Katsanis N, Beales PL, Woods MO et al. Mutations in MKKS cause obesity, retinal dystrophy and renal malformations associated with Bardet-Biedl syndrome. Nat Genet 2000;26(1), 67–70.

    Article  CAS  PubMed  Google Scholar 

  61. Esmer C, Alvarez-Mendoza A, Lieberman E, Del Castillo V, Ridaura-Sanz C. Liver fibrocystic disease and polydactyly: proposal of new syndrome. Am J Med Genet 2001;101(1), 12–16.

    Google Scholar 

  62. Tobin JL, Di Franco M, Eichers E et al. Inhibition of neural crest migration underlies craniofacial dysmorphology and Hirschsprung’s disease in Bardet Biedl syndrome. Proc Natl Acad Sci USA 2008;105(18), 6714–6719.

    Article  CAS  PubMed  Google Scholar 

  63. Nishimura DY, Searby CC, Carmi R et al. Positional cloning of a novel gene on chromosome 16q causing Bardet-Biedl syndrome (BBS2). Hum Mol Genet 2001;10(8), 865–874.

    Article  CAS  PubMed  Google Scholar 

  64. Mykytyn K, Nishimura DY, Searby CC et al. Identification of the gene (BBS1) most commonly involved in Bardet-Biedl syndrome, a complex human obesity syndrome. Nat Genet 2002;31(4), 435–438.

    CAS  PubMed  Google Scholar 

  65. Chiang AP, Nishimura D, Searby C et al. Comparative genomic analysis identifies an ADP-ribosylation factor-like gene as the cause of Bardet-Biedl syndrome (BBS3). Am J Hum Genet 2004;75(3), 475–484.

    Article  CAS  PubMed  Google Scholar 

  66. Fan Y, Esmail MA, Ansley SJ et al. Mutations in a member of the Ras superfamily of small GTP-binding proteins causes Bardet-Biedl syndrome. Nat Genet 2004;36(9), 989–993.

    Article  CAS  PubMed  Google Scholar 

  67. Ansley SJ, Badano JL, Blacque OE et al. Basal body dysfunction is a likely cause of pleiotropic Bardet-Biedl syndrome. Nature 2003;425(6958), 628–633.

    Article  CAS  PubMed  Google Scholar 

  68. Badano JL, Kim JC, Hoskins BE et al. Heterozygous mutations in BBS1, BBS2 and BBS6 have a potential epistatic effect on Bardet-Biedl patients with two mutations at a second BBS locus. Hum Mol Genet 2003;12(14), 1651–1659.

    Article  CAS  PubMed  Google Scholar 

  69. Li JB, Gerdes JM, Haycraft CJ et al. Comparative genomics identifies a flagellar and basal body proteome that includes the BBS5 human disease gene. Cell 2004;117(4), 541–552.

    Article  CAS  PubMed  Google Scholar 

  70. Kim JC, Ou YY, Badano JL et al. MKKS/BBS6, a divergent chaperonin-like protein linked to the obesity disorder Bardet-Biedl syndrome is a novel centrosomal component required for cytokinesis. J Cell Sci 2005;118(5), 1007–1020.

    Article  CAS  PubMed  Google Scholar 

  71. Blacque OE, Reardon MJ, Li C et al. Loss of C Elegans BBS-7 and BBS-8 protein function results in cilia defects and compromised intraflagellar transport. Genes Dev 2004;18(13), 1630–1642.

    Article  CAS  PubMed  Google Scholar 

  72. Nishimura DY, Swiderski RE, Searby CC et al. Comparative genomics and gene expression analysis identifies BBS9, a new Bardet-Biedl syndrome gene. Am J Hum Genet 2005;77(6), 1021–1033.

    Article  CAS  PubMed  Google Scholar 

  73. Stoetzel C, Laurier V, Davis EE et al. BBS10 encodes a vertebrate-specific chaperonin-like protein and is a major BBS locus. Nat Genet 2006;38(5), 521–524.

    Article  CAS  PubMed  Google Scholar 

  74. Leitch CC, Zaghloul NA, Davis EE et al. Hypomorphic mutations in syndromic encephalocele genes are associated with Bardet-Biedl syndrome. Nat Genet 2008;40(4), 443–448.

    Article  CAS  PubMed  Google Scholar 

  75. Chiang AP, Beck JS, Yen HJ et al. Homozygosity mapping with SNP arrays identifies TRIM32, an E3 ubiquitin ligase, as a Bardet-Biedl syndrome gene (BBS11). Proc Natl Acad Sci USA 2006;103(16), 6287–6292.

    Article  CAS  PubMed  Google Scholar 

  76. Stoetzel C, Muller J, Laurier V et al. Identification of a novel BBS gene (BBS12) highlights the major role of a vertebrate-specific branch of chaperonin-related proteins in Bardet-Biedl syndrome. Am J Hum Genet 2007;80(1), 1–11.

    Article  CAS  PubMed  Google Scholar 

  77. Nachury MV, Loktev AV, Zhang Q et al. A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 2007;129(6), 1201–1213.

    Article  CAS  PubMed  Google Scholar 

  78. Badano JL, Leitch CC, Ansley SJ et al. Dissection of epistasis in oligogenic Bardet-Biedl syndrome. Nature 2006;439(7074), 326–330.

    Article  CAS  PubMed  Google Scholar 

  79. Jeune M, Beraud C, Carron R. Dystrophie thoracique asphyxiante de caractere familial. Arch Fr Pediatr 1955;12, 886–891.

    CAS  PubMed  Google Scholar 

  80. Morgan NV, Bacchelli C, Gissen P et al. A locus for asphyxiating thoracic dystrophy, ATD, maps to chromosome 15q13. J Med Genet 2003;40(6), 431–435.

    Article  CAS  PubMed  Google Scholar 

  81. Beales PL, Bland E, Tobin JL et al. IFT80, which encodes a conserved intraflagellar transport protein, is mutated in Jeune asphyxiating thoracic dystrophy. Nat Genet 2007;39(6), 727–729.

    Article  CAS  PubMed  Google Scholar 

  82. Pirnar T, Neuhauser EB. Asphyxiating thoracic dystrophy of the newborn. Am J Roentgenol Radium Ther Nucl Med 1966;98(2), 358–364.

    CAS  PubMed  Google Scholar 

  83. Cortina H, Beltran J, Olague R et al. The wide spectrum of the asphyxiating thoracic dysplasia. Pediatr Radiol 1979;8(2), 93–99.

    Article  CAS  PubMed  Google Scholar 

  84. Singh M, Ray D, Paul VK, Kumar A. Hydrocephalus in asphyxiating thoracic dystrophy. Am J Med Genet 1988;29(2), 391–395.

    Article  CAS  PubMed  Google Scholar 

  85. Brueton LA, Dillon MJ, Winter RM. Ellis-van Creveld syndrome, Jeune syndrome, and renal-hepatic-pancreatic dysplasia: Separate entities or disease spectrum?. J Med Genet 1990;27(4), 252–255.

    Article  CAS  PubMed  Google Scholar 

  86. Finegold MJ, Katzew H, Genieser NB, Becker MH. Lung structure in thoracic dystrophy. Am J Dis Child 1971;122(2), 153–159.

    CAS  PubMed  Google Scholar 

  87. Kajantie E, Andersson S, Kaitila I. Familial asphyxiating thoracic dysplasia: Clinical variability and impact of improved neonatal intensive care. J Pediatr 2001;139(1), 130–133.

    Article  CAS  PubMed  Google Scholar 

  88. Barnes ND, Hull D, Milner AD, Waterston DJ. Chest reconstruction in thoracic dystrophy. Arch Dis Child 1971;46(250), 833–837.

    Article  CAS  PubMed  Google Scholar 

  89. Davis JT, Long FR, Adler BH et al. Lateral thoracic expansion for Jeune syndrome: Evidence of rib healing and new bone formation. Ann Thorac Surg 2004;77(2), 445–448.

    Article  PubMed  Google Scholar 

  90. Phillips JD, van Aalst JA. Jeune’s syndrome (asphyxiating thoracic dystrophy): Congenital and acquired. Semin Pediatr Surg 2008;17(3), 167–172.

    Article  PubMed  Google Scholar 

  91. Phillips CI, Stokoe NL, Bartholomew RS. Asphyxiating thoracic dystrophy (Jeune’s disease) with retinal aplasia: A sibship of two. J Pediatr Ophthalmol Strabismus 1979;16(5), 279–283.

    CAS  PubMed  Google Scholar 

  92. Casteels I, Demandt E, Legius E. Visual loss as the presenting sign of Jeune syndrome. Eur J Paediatr Neurol 2000;4(5), 243–247.

    Article  CAS  PubMed  Google Scholar 

  93. Allen AW, Jr, Moon JB, Hovland KR, Minckler DS. Ocular findings in thoracic-pelvic-phalangeal dystrophy. Arch Ophthalmol 1979;97(3), 489–492.

    PubMed  Google Scholar 

  94. Wilson DJ, Weleber RG, Beals RK. Retinal dystrophy in Jeune’s syndrome. Arch Ophthalmol 1987;105(5), 651–657.

    CAS  PubMed  Google Scholar 

  95. Shokeir MH, Houston CS, Awen CF. Asphyxiating thoracic chondrodystrophy. Association with renal disease and evidence for possible heterozygous expression. J Med Genet 1971;8(1), 107–112.

    Article  PubMed  Google Scholar 

  96. Donaldson MD, Warner AA, Trompeter RS et al. Familial juvenile nephronophthisis, Jeune’s syndrome, and associated disorders. Arch Dis Child 1985;60(5), 426–434.

    Article  CAS  PubMed  Google Scholar 

  97. Gruskin AB, Baluarte HJ, Cote ML, Elfenbein IB. The renal disease of thoracic asphyxiant dystrophy. Birth Defects Orig Artic Ser 1974;10(4), 44–50.

    CAS  PubMed  Google Scholar 

  98. Herdman RC, Langer LO. The thoracic asphyxiant dystrophy and renal disease. Am J Dis Child 1968;116(2), 192–201.

    CAS  PubMed  Google Scholar 

  99. Oberklaid F, Danks DM, Mayne V, Campbell P. Asphyxiating thoracic dysplasia. Clinical, radiological, and pathological information on 10 patients. Arch Dis Child 1977;52(10), 758–765.

    Article  CAS  PubMed  Google Scholar 

  100. Landing BH, Wells TR, Claireaux AE. Morphometric analysis of liver lesions in cystic diseases of childhood. Hum Pathol 1980;11(5 Suppl), 549–560.

    CAS  PubMed  Google Scholar 

  101. Whitley CB, Schwarzenberg SJ, Burke BA et al. Direct hyperbilirubinemia and hepatic fibrosis: A new presentation of Jeune syndrome (asphyxiating thoracic dystrophy). Am J Med Genet Suppl 1987;3, 211–220.

    Article  CAS  PubMed  Google Scholar 

  102. Hudgins L, Rosengren S, Treem W, Hyams J. Early cirrhosis in survivors with Jeune thoracic dystrophy. J Pediatr 1992;120(5), 754–756.

    Article  CAS  PubMed  Google Scholar 

  103. Labrune P, Fabre M, Trioche P et al. Jeune syndrome and liver disease: Report of three cases treated with ursodeoxycholic acid. Am J Med Genet 1999;87, 324–328.

    Google Scholar 

  104. Turkel SB, Diehl EJ, Richmond JA. Necropsy findings in neonatal asphyxiating thoracic dystrophy. J Med Genet 1985;22, 112–118.

    Article  CAS  PubMed  Google Scholar 

  105. Cremin BJ. Infantile thoracic dystrophy. Br J Radiol 1970;43, 199–204.

    Article  CAS  PubMed  Google Scholar 

  106. Russell JGB, Chouksey MB. Asphyxiating thoracic dystrophy. Br J Radiol 1970;43, 814–815.

    Article  CAS  PubMed  Google Scholar 

  107. Edelson P, Spackman TJ, Belliveau RE, Mahoney MJ. A renal lesion in Asphyxiating thoracic dysplasia. Birth Defects: OAS 1974;10, 51–56.

    CAS  Google Scholar 

  108. Friedman JM, Kaplan HG, Hall JG. The Jeune syndrome (asphyxiating thoracic dystrophy) in an adult. Am J Med 1975;59(6), 857–862.

    Article  CAS  PubMed  Google Scholar 

  109. Ozcay F, Derbent M, Demirhan B et al. A family with Jeune syndrome. Pediatr Nephrol 2001;16, 623–626.

    Article  CAS  PubMed  Google Scholar 

  110. Yerian LM, Brady L, Hart J. Hepatic manifestations of Jeune syndrome (asphyxiating thoracic dystrophy). Sem Liver Dis 2003;23(2), 195–200.

    Article  Google Scholar 

  111. Haycraft CJ, Zhang Q, Song B et al. Intraflagellar transport is essential for endochondral bone formation. Development 2007;134(2), 307–316.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Waters, A.M., Beales, P.L. (2010). Bardet–Biedl and Jeune Syndromes. In: Murray, K., Larson, A. (eds) Fibrocystic Diseases of the Liver. Clinical Gastroenterology. Humana Press. https://doi.org/10.1007/978-1-60327-524-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-524-8_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-523-1

  • Online ISBN: 978-1-60327-524-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics