Skip to main content

3 Conserved Mechanisms of Life-Span Regulation and Extension in Caenorhabditis elegans

  • Chapter
  • First Online:
Life-Span Extension

Part of the book series: Aging Medicine ((AGME))

  • 643 Accesses

Abstract

Human aging correlates with stereotypical changes in physical attributes as well as with an increased incidence of many diseases: atherosclerotic heart disease, cancer, neurological disorders, osteoporosis, obesity, and diabetes. Before we can successfully combat such a wide range of debilitating conditions, a more thorough understanding of the molecular determinants of aging is required. The use of Caenorhabditis elegans to identify the basis of human aging has facilitated the rapid identification of genes through a combination of genetic and RNA interference screens. These life-span-controlling genes identified in the worm regulate life span in many organisms and have been shown to play roles in endocrine signaling, reproduction, stress adaptation, metabolism, and genomic maintenance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DAF-c:

Dauer constitutive

DAF-d:

Dauer defective

DR:

Dietary restriction

ETC:

Electron transport chain

FOXO:

Forkhead

IGF-I:

Insulin-like growth factor I

PI3K:

Phosphatidylinositol-3-OH kinase

PTEN:

Phosphatase and tensin homolog

RNAi:

RNA interference

ROS:

Reactive oxygen species

TGF:

Transforming growth factor

TOR:

Target of rapamycin

References

  1. Wolff S, Dillin A. The trifecta of aging in Caenorhabditis elegans. Exp Gerontol 2006;41:894–903.

    PubMed  Google Scholar 

  2. Kenyon C. The plasticity of aging: insights from long-lived mutants. Cell 2005;120:449–60.

    CAS  PubMed  Google Scholar 

  3. Brenner S. The genetics of Caenorhabditis elegans. Genetics 1974;77:71–94.

    CAS  PubMed  Google Scholar 

  4. Sulston JE, Schierenberg E, White JG, Thomson JN. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 1983;100:64–119.

    CAS  PubMed  Google Scholar 

  5. Sulston JE, Horvitz HR. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol 1977;56:110–56.

    CAS  PubMed  Google Scholar 

  6. C. elegance Sequencing Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 1998;282:2012–8.

    Google Scholar 

  7. Johnson TE. Aging can be genetically dissected into component processes using long-lived lines of Caenorhabditis elegans. Proc Natl Acad Sci U S A 1987;84:377–81.

    Google Scholar 

  8. Herndon LA, Schmeissner PJ, Dudaronek JM, et al Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature 2002;419:808–14.

    CAS  PubMed  Google Scholar 

  9. Chalfie M. Touch receptor development and function in Caenorhabditis elegans. J Neurobiol 1993;24:1433–41.

    CAS  PubMed  Google Scholar 

  10. Johnston J, Iser WB, Chow DK, Goldberg IG, Wolkow CA. Quantitative image analysis reveals distinct structural transitions during aging in Caenorhabditis elegans tissues. PLoS ONE 2008;3:e2821.

    PubMed  Google Scholar 

  11. Hughes SE, Evason K, Xiong C, Kornfeld K. Genetic and pharmacological factors that influence reproductive aging in nematodes. PLoS Genet 2007;3:e25.

    PubMed  Google Scholar 

  12. Murakami S. Caenorhabditis elegans as a model system to study aging of learning and memory. Mol Neurobiol 2007;35:85–94.

    CAS  PubMed  Google Scholar 

  13. Ventura N, Rea SL, Testi R. Long-lived C. elegans mitochondrial mutants as a model for human mitochondrial-associated diseases. Exp Gerontol 2006;41:974–91.

    CAS  PubMed  Google Scholar 

  14. Olsen A, Vantipalli MC, Lithgow GJ. Using Caenorhabditis elegans as a model for aging and age-related diseases. Ann N Y Acad Sci 2006;1067:120–8.

    CAS  PubMed  Google Scholar 

  15. Bossy-Wetzel E, Barsoum MJ, Godzik A, Schwarzenbacher R, Lipton SA. Mitochondrial fission in apoptosis, neurodegeneration and aging. Curr Opin Cell Biol 2003;15:706–16.

    CAS  PubMed  Google Scholar 

  16. Barbieri M, Bonafe M, Franceschi C, Paolisso G. Insulin/IGF-I-signaling pathway: an evolutionarily conserved mechanism of longevity from yeast to humans. Am J Physiol Endocrinol Metab 2003;285:E1064–71.

    CAS  PubMed  Google Scholar 

  17. Tsang WY, Lemire BD. The role of mitochondria in the life of the nematode, Caenorhabditis elegans. Biochim Biophys Acta 2003;1638:91–105.

    CAS  PubMed  Google Scholar 

  18. Wallace DC. Animal models for mitochondrial disease. Methods Mol Biol 2002;197:3–54.

    CAS  PubMed  Google Scholar 

  19. Klass M, Hirsh D. Non-ageing developmental variant of Caenorhabditis elegans. Nature 1976;260:523–5.

    CAS  PubMed  Google Scholar 

  20. Klass MR. Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech Ageing Dev 1977;6:413–29.

    CAS  PubMed  Google Scholar 

  21. Herskind AM, McGue M, Holm NV, Sorensen TI, Harvald B, Vaupel JW. The heritability of human longevity: a population-based study of 2872 Danish twin pairs born 1870–1900. Hum Genet 1996;97:319–23.

    CAS  PubMed  Google Scholar 

  22. Ljungquist B, Berg S, Lanke J, McClearn GE, Pedersen NL. The effect of genetic factors for longevity: a comparison of identical and fraternal twins in the Swedish Twin Registry. J Gerontol A Biol Sci Med Sci 1998;53:M441–6.

    CAS  PubMed  Google Scholar 

  23. Perls T, Kohler IV, Andersen S, et al. Survival of parents and siblings of supercentenarians. J Gerontol A Biol Sci Med Sci 2007;62:1028–34.

    PubMed  Google Scholar 

  24. Johnson TE, Wood WB. Genetic analysis of life-span in Caenorhabditis elegans. Proc Natl Acad Sci U S A 1982;79:6603–7.

    CAS  PubMed  Google Scholar 

  25. Klass MR. A method for the isolation of longevity mutants in the nematode Caenorhabditis elegans and initial results. Mech Ageing Dev 1983;22:279–86.

    CAS  PubMed  Google Scholar 

  26. Friedman DB, Johnson TE. A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 1988;118:75–86.

    CAS  PubMed  Google Scholar 

  27. Larsen PL. Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc Natl Acad Sci U S A 1993;90:8905–9.

    CAS  PubMed  Google Scholar 

  28. Vanfleteren JR. Oxidative stress and ageing in Caenorhabditis elegans. Biochem J 1993;292 (Pt 2):605–8.

    CAS  PubMed  Google Scholar 

  29. Johnson TE. Increased life-span of age-1 mutants in Caenorhabditis elegans and lower Gompertz rate of aging. Science 1990;249:908–12.

    CAS  PubMed  Google Scholar 

  30. Golden JW, Riddle DL. The Caenorhabditis elegans dauer larva: developmental effects of pheromone, food, and temperature. Dev Biol 1984;102:368–78.

    CAS  PubMed  Google Scholar 

  31. Gottlieb S, Ruvkun G. daf-2, daf-16 and daf-23: genetically interacting genes controlling Dauer formation in Caenorhabditis elegans. Genetics 1994;137:107–20.

    CAS  PubMed  Google Scholar 

  32. Schackwitz WS, Inoue T, Thomas JH. Chemosensory neurons function in parallel to mediate a pheromone response in C. elegans. Neuron 1996;17:719–28.

    CAS  PubMed  Google Scholar 

  33. Thomas JH, Birnby DA, Vowels JJ. Evidence for parallel processing of sensory information controlling dauer formation in Caenorhabditis elegans. Genetics 1993;134:1105–17.

    CAS  PubMed  Google Scholar 

  34. Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R. A C. elegans mutant that lives twice as long as wild type. Nature 1993;366:461–4.

    CAS  PubMed  Google Scholar 

  35. Morris JZ, Tissenbaum HA, Ruvkun G. A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 1996;382:536–9.

    CAS  PubMed  Google Scholar 

  36. Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 1997;277:942–6.

    CAS  PubMed  Google Scholar 

  37. Ogg S, Paradis S, Gottlieb S, et al The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 1997;389:994–9.

    CAS  PubMed  Google Scholar 

  38. Lin K, Dorman JB, Rodan A, Kenyon C. daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 1997;278:1319–22.

    CAS  PubMed  Google Scholar 

  39. Clancy DJ, Gems D, Harshman LG, et al. Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 2001;292:104–6.

    CAS  PubMed  Google Scholar 

  40. Tatar M, Kopelman A, Epstein D, Tu MP, Yin CM, Garofalo RS. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 2001;292:107–10.

    CAS  PubMed  Google Scholar 

  41. Hwangbo DS, Gershman B, Tu MP, Palmer M, Tatar M. Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature 2004;429:562–6.

    CAS  PubMed  Google Scholar 

  42. Holzenberger M, Dupont J, Ducos B, et al. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 2003;421:182–7.

    CAS  PubMed  Google Scholar 

  43. Bluher M, Kahn BB, Kahn CR. Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 2003;299:572–4.

    PubMed  Google Scholar 

  44. Hu PJ. Dauer. WormBook 2007:1–19.

    Google Scholar 

  45. Dorman JB, Albinder B, Shroyer T, Kenyon C. The age-1 and daf-2 genes function in a common pathway to control the lifespan of Caenorhabditis elegans. Genetics 1995;141:1399–406.

    CAS  PubMed  Google Scholar 

  46. Paradis S, Ailion M, Toker A, Thomas JH, Ruvkun G. A PDK1 homolog is necessary and sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans. Genes Dev 1999;13:1438–52.

    CAS  PubMed  Google Scholar 

  47. Alessi DR, Andjelkovic M, Caudwell B, et al. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 1996;15:6541–51.

    CAS  PubMed  Google Scholar 

  48. Alessi DR, James SR, Downes CP, et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 1997;7:261–9.

    CAS  PubMed  Google Scholar 

  49. Van Voorhies WA, Ward S. Genetic and environmental conditions that increase longevity in Caenorhabditis elegans decrease metabolic rate. Proc Natl Acad Sci U S A 1999;96:11399–403.

    CAS  PubMed  Google Scholar 

  50. Gems D. Nematode ageing: putting metabolic theories to the test. Curr Biol 1999;9:R614–6.

    CAS  PubMed  Google Scholar 

  51. Ogg S, Ruvkun G. The C. elegans PTEN homolog, DAF-18, acts in the insulin receptor-like metabolic signaling pathway. Mol Cell 1998;2:887–93.

    CAS  PubMed  Google Scholar 

  52. Oh SW, Mukhopadhyay A, Dixit BL, Raha T, Green MR, Tissenbaum HA. Identification of direct DAF-16 targets controlling longevity, metabolism and diapause by chromatin immunoprecipitation. Nat Genet 2006;38:251–7.

    PubMed  Google Scholar 

  53. Lee SS, Kennedy S, Tolonen AC, Ruvkun G. DAF-16 target genes that control C. elegans life-span and metabolism. Science 2003;300:644–7.

    CAS  PubMed  Google Scholar 

  54. Murphy CT, McCarroll SA, Bargmann CI, et al. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 2003;424:277–83.

    CAS  PubMed  Google Scholar 

  55. Lee SS, Lee RY, Fraser AG, Kamath RS, Ahringer J, Ruvkun G. A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat Genet 2003;33:40–8.

    CAS  PubMed  Google Scholar 

  56. Nakae J, Barr V, Accili D. Differential regulation of gene expression by insulin and IGF-1 receptors correlates with phosphorylation of a single amino acid residue in the forkhead transcription factor FKHR. EMBO J 2000;19:989–96.

    CAS  PubMed  Google Scholar 

  57. Zhang X, Gan L, Pan H, et al Phosphorylation of serine 256 suppresses transactivation by FKHR (FOXO1) by multiple mechanisms. Direct and indirect effects on nuclear/cytoplasmic shuttling and DNA binding. J Biol Chem 2002;277:45276–84.

    CAS  PubMed  Google Scholar 

  58. Durham SK, Suwanichkul A, Scheimann AO, et al. FKHR binds the insulin response element in the insulin-like growth factor binding protein-1 promoter. Endocrinology 1999;140:3140–6.

    CAS  PubMed  Google Scholar 

  59. Tang ED, Nunez G, Barr FG, Guan KL. Negative regulation of the forkhead transcription factor FKHR by Akt. J Biol Chem 1999;274:16741–6.

    CAS  PubMed  Google Scholar 

  60. Yu H, Larsen PL. DAF-16-dependent and independent expression targets of DAF-2 insulin receptor-like pathway in Caenorhabditis elegans include FKBPs. J Mol Biol 2001;314:1017–28.

    CAS  PubMed  Google Scholar 

  61. McElwee J, Bubb K, Thomas JH. Transcriptional outputs of the Caenorhabditis elegans forkhead protein DAF-16. Aging Cell 2003;2:111–21.

    CAS  PubMed  Google Scholar 

  62. McCarroll SA, Murphy CT, Zou S, et al. Comparing genomic expression patterns across species identifies shared transcriptional profile in aging. Nat Genet 2004;36:197–204.

    CAS  PubMed  Google Scholar 

  63. Nasrin N, Ogg S, Cahill CM, et al. DAF-16 recruits the CREB-binding protein coactivator complex to the insulin-like growth factor binding protein 1 promoter in HepG2 cells. Proc Natl Acad Sci U S A 2000;97:10412–7.

    CAS  PubMed  Google Scholar 

  64. Hall RK, Yamasaki T, Kucera T, Waltner-Law M, O’Brien R, Granner DK. Regulation of phosphoenolpyruvate carboxykinase and insulin-like growth factor-binding protein-1 gene expression by insulin. The role of winged helix/forkhead proteins. J Biol Chem 2000;275:30169–75.

    CAS  PubMed  Google Scholar 

  65. Ambros V, Bartel B, Bartel DP, et al. A uniform system for microRNA annotation. RNA 2003;9(3):277–9.

    CAS  PubMed  Google Scholar 

  66. Schmoll D, Walker KS, Alessi DR, et al Regulation of glucose-6-phosphatase gene expression by protein kinase Balpha and the forkhead transcription factor FKHR. Evidence for insulin response unit-dependent and -independent effects of insulin on promoter activity. J Biol Chem 2000;275:36324–33.

    CAS  PubMed  Google Scholar 

  67. Oh SW, Mukhopadhyay A, Svrzikapa N, Jiang F, Davis RJ, Tissenbaum HA. JNK regulates lifespan in Caenorhabditis elegans by modulating nuclear translocation of forkhead transcription factor/DAF-16. Proc Natl Acad Sci U S A 2005;102:4494–9.

    CAS  PubMed  Google Scholar 

  68. Boehm M, Slack F. A developmental timing microRNA and its target regulate life span in C. elegans. Science 2005;310:1954–7.

    CAS  PubMed  Google Scholar 

  69. Hallam SJ, Jin Y. lin-14 regulates the timing of synaptic remodelling in Caenorhabditis elegans. Nature 1998;395:78–82.

    CAS  PubMed  Google Scholar 

  70. Ruvkun G, Giusto J. The Caenorhabditis elegans heterochronic gene lin-14 encodes a nuclear protein that forms a temporal developmental switch. Nature 1989;338:313–9.

    CAS  PubMed  Google Scholar 

  71. Hong Y, Lee RC, Ambros V. Structure and function analysis of LIN-14, a temporal regulator of postembryonic developmental events in Caenorhabditis elegans. Mol Cell Biol 2000;20:2285–95.

    CAS  PubMed  Google Scholar 

  72. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993;75:843–54.

    CAS  PubMed  Google Scholar 

  73. Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993;75:855–62.

    CAS  PubMed  Google Scholar 

  74. Bluher M, Michael MD, Peroni OD, et al. Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose intolerance. Dev Cell 2002;3:25–38.

    CAS  PubMed  Google Scholar 

  75. Ren P, Lim CS, Johnsen R, Albert PS, Pilgrim D, Riddle DL. Control of C. elegans larval development by neuronal expression of a TGF-beta homolog. Science 1996;274:1389–91.

    CAS  PubMed  Google Scholar 

  76. Georgi LL, Albert PS, Riddle DL. daf-1, a C. elegans gene controlling dauer larva development, encodes a novel receptor protein kinase. Cell 1990;61:635–45.

    CAS  PubMed  Google Scholar 

  77. Estevez M, Attisano L, Wrana JL, Albert PS, Massague J, Riddle DL. The daf-4 gene encodes a bone morphogenetic protein receptor controlling C. elegans dauer larva development. Nature 1993;365:644–9.

    CAS  PubMed  Google Scholar 

  78. Inoue T, Thomas J. Suppressors of transforming growth factor-beta pathway mutants in the Caenorhabditis elegans dauer formation pathway. Genetics 2000;156:1035–46.

    CAS  PubMed  Google Scholar 

  79. Patterson GI, Koweek A, Wong A, Liu Y, Ruvkun G. The DAF-3 Smad protein antagonizes TGF-beta-related receptor signaling in the Caenorhabditis elegans dauer pathway. Genes Dev 1997;11:2679–90.

    CAS  PubMed  Google Scholar 

  80. Shaw WM, Luo S, Landis J, Ashraf J, Murphy CT. The C. elegans TGF-beta Dauer pathway regulates longevity via insulin signaling. Curr Biol 2007;17:1635–45.

    CAS  PubMed  Google Scholar 

  81. Wolkow CA, Kimura KD, Lee MS, Ruvkun G. Regulation of C. elegans life-span by insulinlike signaling in the nervous system. Science 2000;290:147–50.

    CAS  PubMed  Google Scholar 

  82. Libina N, Berman J, Kenyon C. Tissue-specific activities of C. elegans DAF-16 in the regulation of lifespan. Cell 2003;115:489–502.

    CAS  PubMed  Google Scholar 

  83. Murphy CT, Lee SJ, Kenyon C. Tissue entrainment by feedback regulation of insulin gene expression in the endoderm of Caenorhabditis elegans. Proc Natl Acad Sci U S A 2007;104:19046–50.

    CAS  PubMed  Google Scholar 

  84. Pierce SB, Costa M, Wisotzkey R, et al Regulation of DAF-2 receptor signaling by human insulin and ins-1, a member of the unusually large and diverse C. elegans insulin gene family. Genes Dev 2001;15:672–86.

    CAS  PubMed  Google Scholar 

  85. Li W, Kennedy SG, Ruvkun G. daf-28 encodes a C. elegans insulin superfamily member that is regulated by environmental cues and acts in the DAF-2 signaling pathway. Genes Dev 2003;17:844–58.

    CAS  PubMed  Google Scholar 

  86. Finch CE, Ruvkun G. The genetics of aging. Annu Rev Genomics Hum Genet 2001;2:435–62.

    CAS  PubMed  Google Scholar 

  87. Libert S, Pletcher SD. Modulation of longevity by environmental sensing. Cell 2007;131:1231–4.

    CAS  PubMed  Google Scholar 

  88. Alcedo J, Kenyon C. Regulation of C. elegans longevity by specific gustatory and olfactory neurons. Neuron 2004;41:45–55.

    CAS  PubMed  Google Scholar 

  89. Lindemann B. Receptors and transduction in taste. Nature 2001;413:219–25.

    CAS  PubMed  Google Scholar 

  90. Morley JF, Brignull HR, Weyers JJ, Morimoto RI. The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2002;99:10417–22.

    PubMed  Google Scholar 

  91. Pinkston-Gosse J, Kenyon C. DAF-16/FOXO targets genes that regulate tumor growth in Caenorhabditis elegans. Nat Genet 2007;39:1403–9.

    CAS  PubMed  Google Scholar 

  92. Seoane J, Le HV, Shen L, Anderson SA, Massague J. Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 2004;117:211–23.

    CAS  PubMed  Google Scholar 

  93. Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999;96:857–68.

    CAS  PubMed  Google Scholar 

  94. Dijkers PF, Medema RH, Lammers JW, Koenderman L, Coffer PJ. Expression of the pro-apoptotic Bcl-2 family member Bim is regulated by the forkhead transcription factor FKHR-L1. Curr Biol 2000;10:1201–4.

    CAS  PubMed  Google Scholar 

  95. Pinkston JM, Garigan D, Hansen M, Kenyon C. Mutations that increase the life span of C. elegans inhibit tumor growth. Science 2006;313:971–5.

    CAS  PubMed  Google Scholar 

  96. Larsen P, Albert P, Riddle D. Genes that regulate both development and longevity in Caenorhabditis elegans. Genetics 1995;139:1567–83.

    CAS  PubMed  Google Scholar 

  97. Gems D, Partridge L. Insulin/IGF signalling and ageing: seeing the bigger picture. Curr Opin Genet Dev 2001;11:287–92.

    CAS  PubMed  Google Scholar 

  98. Snieder H, MacGregor AJ, Spector TD. Genes control the cessation of a woman’s reproductive life: a twin study of hysterectomy and age at menopause. J Clin Endocrinol Metab 1998;83:1875–80.

    CAS  PubMed  Google Scholar 

  99. Hsin H, Kenyon C. Signals from the reproductive system regulate the lifespan of C. elegans. Nature 1999;399:362–6.

    CAS  PubMed  Google Scholar 

  100. Berman J, Kenyon C. Germ-cell loss extends C. elegans life span through regulation of DAF-16 by kri-1 and lipophilic-hormone signaling. Cell 2006;124:1055–68.

    CAS  PubMed  Google Scholar 

  101. Cargill SL, Carey JR, Muller HG, Anderson G. Age of ovary determines remaining life expectancy in old ovariectomized mice. Aging Cell 2003;2:185–90.

    CAS  PubMed  Google Scholar 

  102. Houthoofd K, Braeckman BP, Lenaerts I, et al. No reduction of metabolic rate in food restricted Caenorhabditis elegans. Exp Gerontol 2002;37:1359–69.

    PubMed  Google Scholar 

  103. Lakowski B, Hekimi S. The genetics of caloric restriction in Caenorhabditis elegans. Proc Natl Acad Sci U S A 1998;95:13091–6.

    CAS  PubMed  Google Scholar 

  104. Bartke A, Brown-Borg H. Life extension in the dwarf mouse. Curr Top Dev Biol 2004;63:189–225.

    CAS  PubMed  Google Scholar 

  105. Kaeberlein TL, Smith ED, Tsuchiya M, et al. Lifespan extension in Caenorhabditis elegans by complete removal of food. Aging Cell 2006;5:487–94.

    CAS  PubMed  Google Scholar 

  106. Sohal RS, Weindruch R. Oxidative stress, caloric restriction, and aging. Science 1996;273:59–63.

    CAS  PubMed  Google Scholar 

  107. Houthoofd K, Braeckman BP, Johnson TE, Vanfleteren JR. Life extension via dietary restriction is independent of the Ins/IGF-1 signalling pathway in Caenorhabditis elegans. Exp Gerontol 2003;38:947–54.

    CAS  PubMed  Google Scholar 

  108. Westphal CH, Dipp MA, Guarente L. A therapeutic role for sirtuins in diseases of aging? Trends Biochem Sci 2007;32(12):555–60.

    CAS  PubMed  Google Scholar 

  109. Howitz KT, Bitterman KJ, Cohen HY, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 2003;425:191–6.

    CAS  PubMed  Google Scholar 

  110. Wood JG, Rogina B, Lavu S, et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 2004;430:686–9.

    CAS  PubMed  Google Scholar 

  111. Tissenbaum HA, Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 2001;410:227–30.

    CAS  PubMed  Google Scholar 

  112. Wang Y, Tissenbaum H. Overlapping and distinct functions for a Caenorhabditis elegans SIR2 and DAF-16/FOXO. Mech Ageing Dev 2006;127:48–56.

    CAS  PubMed  Google Scholar 

  113. Brunet A, Sweeney LB, Sturgill JF, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 2004;303:2011–5.

    CAS  PubMed  Google Scholar 

  114. Daitoku H, Hatta M, Matsuzaki H, et al. Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity. Proc Natl Acad Sci U S A 2004;101:10042–7.

    CAS  PubMed  Google Scholar 

  115. Kaeberlein M, Powers RW III, Steffen KK, et al. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 2005;310:1193–6.

    CAS  PubMed  Google Scholar 

  116. Powers RW III, Kaeberlein M, Caldwell SD, Kennedy BK, Fields S. Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev 2006;20:174–84.

    CAS  PubMed  Google Scholar 

  117. Jia K, Chen D, Riddle DL. The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development 2004;131:3897–906.

    CAS  PubMed  Google Scholar 

  118. Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Muller F. Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 2003;426:620.

    CAS  PubMed  Google Scholar 

  119. Panowski S, Wolff S, Aguilaniu H, Durieux J, Dillin A. PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans. Nature 2007;447:550–5.

    CAS  PubMed  Google Scholar 

  120. Bishop N, Guarente L. Two neurons mediate diet-restriction-induced longevity in C. elegans. Nature 2007;447:545–9.

    CAS  PubMed  Google Scholar 

  121. Lakowski B, Hekimi S. Determination of life-span in Caenorhabditis elegans by four clock genes. Science 1996;272:1010–3.

    CAS  PubMed  Google Scholar 

  122. Ewbank JJ, Barnes TM, Lakowski B, Lussier M, Bussey H, Hekimi S. Structural and functional conservation of the Caenorhabditis elegans timing gene clk-1. Science 1997;275:980–3.

    CAS  PubMed  Google Scholar 

  123. Jonassen T, Larsen PL, Clarke CF. A dietary source of coenzyme Q is essential for growth of long-lived Caenorhabditis elegans clk-1 mutants. Proc Natl Acad Sci U S A 2001;98:421–6.

    CAS  PubMed  Google Scholar 

  124. Miyadera H, Amino H, Hiraishi A, et al. Altered quinone biosynthesis in the long-lived clk-1 mutants of Caenorhabditis elegans. J Biol Chem 2001;276:7713–6.

    CAS  PubMed  Google Scholar 

  125. Larsen PL, Clarke CF. Extension of life-span in Caenorhabditis elegans by a diet lacking coenzyme Q. Science 2002;295:120–3.

    CAS  PubMed  Google Scholar 

  126. Liu X, Jiang N, Hughes B, Bigras E, Shoubridge E, Hekimi S. Evolutionary conservation of the clk-1-dependent mechanism of longevity: loss of mclk1 increases cellular fitness and lifespan in mice. Genes Dev 2005;19:2424–34.

    CAS  PubMed  Google Scholar 

  127. Feng J, Bussiere F, Hekimi S. Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans. Dev Cell 2001;1:633–44.

    CAS  PubMed  Google Scholar 

  128. Dillin A, Hsu A, Arantes-Oliveira N, et al. Rates of behavior and aging specified by mitochondrial function during development. Science 2002;298:2398–401.

    CAS  PubMed  Google Scholar 

  129. Ishii N, Fujii M, Hartman PS, et al. A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes. Nature 1998;394:694–7.

    CAS  PubMed  Google Scholar 

  130. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998;391:806–11.

    CAS  PubMed  Google Scholar 

  131. Tabara H, Grishok A, Mello CC. RNAi in C. elegans: soaking in the genome sequence. Science 1998;282:430–1.

    CAS  PubMed  Google Scholar 

  132. Timmons L, Court DL, Fire A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 2001;263:103–12.

    CAS  PubMed  Google Scholar 

  133. Kamath RS, Fraser AG, Dong Y, et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 2003;421:231–7.

    CAS  PubMed  Google Scholar 

  134. Rual JF, Ceron J, Koreth J, et al. Toward improving Caenorhabditis elegans phenome mapping with an ORFeome-based RNAi library. Genome Res 2004;14:2162–8.

    CAS  PubMed  Google Scholar 

  135. van Ham TJ, Thijssen KL, Breitling R, Hofstra RM, Plasterk RH, Nollen EA. C. elegans model identifies genetic modifiers of alpha-synuclein inclusion formation during aging. PLoS Genet 2008;4:e1000027.

    PubMed  Google Scholar 

  136. Brignull H, Morley J, Garcia S, Morimoto R. Modeling polyglutamine pathogenesis in C. elegans. Methods Enzymol 2006;412:256–82.

    CAS  PubMed  Google Scholar 

  137. Hamilton B, Dong Y, Shindo M, et al A systematic RNAi screen for longevity genes in C. elegans. Genes Dev 2005;19:1544–55.

    CAS  PubMed  Google Scholar 

  138. Curran S, Ruvkun G. Lifespan regulation by evolutionarily conserved genes essential for viability. PLoS Genet 2007;3:e56.

    PubMed  Google Scholar 

  139. Dillin A, Crawford D, Kenyon C. Timing requirements for insulin/IGF-1 signaling in C. elegans. Science 2002;298:830–4.

    CAS  PubMed  Google Scholar 

  140. Hansen M, Hsu AL, Dillin A, Kenyon C. New genes tied to endocrine, metabolic, and dietary regulation of lifespan from a Caenorhabditis elegans genomic RNAi screen. PLoS Genet 2005;1:e17.

    Google Scholar 

  141. Lee SS. Whole genome RNAi screens for increased longevity: important new insights but not the whole story. Exp Gerontol 2006;41:968–73.

    CAS  PubMed  Google Scholar 

  142. Williams PD, Day T. Antagonistic pleiotropy, mortality source interactions, and the evolutionary theory of senescence. Evolution 2003;57:1478–88.

    PubMed  Google Scholar 

  143. Chen D, Pan KZ, Palter JE, Kapahi P. Longevity determined by developmental arrest genes in Caenorhabditis elegans. Aging Cell 2007;6:525–33.

    CAS  PubMed  Google Scholar 

  144. Hansen M, Taubert S, Crawford D, Libina N, Lee S, Kenyon C. Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 2007;6:95–110.

    CAS  PubMed  Google Scholar 

  145. Hipkiss A. On why decreasing protein synthesis can increase lifespan. Mech Ageing Dev 2007;128:412–4.

    CAS  PubMed  Google Scholar 

  146. Samuelson AV, Carr CE, Ruvkun G. Gene activities that mediate increased life span of C. elegans insulin-like signaling mutants. Genes Dev 2007;21:2976–94.

    CAS  PubMed  Google Scholar 

  147. Melendez A, Talloczy Z, Seaman M, Eskelinen EL, Hall DH, Levine B. Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 2003;301:1387–91.

    CAS  PubMed  Google Scholar 

  148. Wolff S, Ma H, Burch D, Maciel G, Hunter T, Dillin A. SMK-1, an essential regulator of DAF-16-mediated longevity. Cell 2006;124:1039–53.

    CAS  PubMed  Google Scholar 

  149. Melov S, Ravenscroft J, Malik S, et al. Extension of life-span with superoxide dismutase/catalase mimetics. Science 2000;289:1567–9.

    CAS  PubMed  Google Scholar 

  150. Evason K, Collins JJ, Huang C, Hughes S, Kornfeld K. Valproic acid extends Caenorhabditis elegans lifespan. Aging Cell 2008;7:305–17.

    CAS  PubMed  Google Scholar 

  151. Zou S, Sinclair J, Wilson MA, et al. Comparative approaches to facilitate the discovery of prolongevity interventions: effects of tocopherols on lifespan of three invertebrate species. Mech Ageing Dev 2007;128:222–6.

    CAS  PubMed  Google Scholar 

  152. Evason K, Huang C, Yamben I, Covey DF, Kornfeld K. Anticonvulsant medications extend worm life-span. Science 2005;307:258–62.

    CAS  PubMed  Google Scholar 

  153. Wilson MA, Shukitt-Hale B, Kalt W, Ingram DK, Joseph JA, Wolkow CA. Blueberry polyphenols increase lifespan and thermotolerance in Caenorhabditis elegans. Aging Cell 2006;5:59–68.

    CAS  PubMed  Google Scholar 

  154. Petrascheck M, Ye X, Buck LB. An antidepressant that extends lifespan in adult Caenorhabditis elegans. Nature 2007;450:553–6.

    CAS  PubMed  Google Scholar 

  155. Baur JA, Pearson KJ, Price NL, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006;444:337–42.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Special thanks to members of the Ruvkun laboratory for comments on this chapter and to the NIH for funding. I regret that, due to length limitations, I could not acknowledge all the studies on aging of the C. elegans research community.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean P. Curran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Curran, S.P. (2009). 3 Conserved Mechanisms of Life-Span Regulation and Extension in Caenorhabditis elegans . In: Sell, C., Lorenzini, A., Brown-Borg, H. (eds) Life-Span Extension. Aging Medicine. Humana Press. https://doi.org/10.1007/978-1-60327-507-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-507-1_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-506-4

  • Online ISBN: 978-1-60327-507-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics